Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
H. Nikolaus Schaller | 3689 | 93.82% | 2 | 20.00% |
Marek Belisko | 207 | 5.26% | 1 | 10.00% |
Sergiu Cuciurean | 19 | 0.48% | 1 | 10.00% |
Jonathan Cameron | 9 | 0.23% | 1 | 10.00% |
Thomas Gleixner | 2 | 0.05% | 1 | 10.00% |
Alison Schofield | 2 | 0.05% | 1 | 10.00% |
Colin Ian King | 2 | 0.05% | 1 | 10.00% |
Julia Lawall | 1 | 0.03% | 1 | 10.00% |
Liu Shixin | 1 | 0.03% | 1 | 10.00% |
Total | 3932 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * palmas-adc.c -- TI PALMAS GPADC. * * Copyright (c) 2013, NVIDIA Corporation. All rights reserved. * * Author: Pradeep Goudagunta <pgoudagunta@nvidia.com> */ #include <linux/module.h> #include <linux/err.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/pm.h> #include <linux/mfd/palmas.h> #include <linux/completion.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/iio/iio.h> #include <linux/iio/machine.h> #include <linux/iio/driver.h> #define MOD_NAME "palmas-gpadc" #define PALMAS_ADC_CONVERSION_TIMEOUT (msecs_to_jiffies(5000)) #define PALMAS_TO_BE_CALCULATED 0 #define PALMAS_GPADC_TRIMINVALID -1 struct palmas_gpadc_info { /* calibration codes and regs */ int x1; /* lower ideal code */ int x2; /* higher ideal code */ int v1; /* expected lower volt reading */ int v2; /* expected higher volt reading */ u8 trim1_reg; /* register number for lower trim */ u8 trim2_reg; /* register number for upper trim */ int gain; /* calculated from above (after reading trim regs) */ int offset; /* calculated from above (after reading trim regs) */ int gain_error; /* calculated from above (after reading trim regs) */ bool is_uncalibrated; /* if channel has calibration data */ }; #define PALMAS_ADC_INFO(_chan, _x1, _x2, _v1, _v2, _t1, _t2, _is_uncalibrated) \ [PALMAS_ADC_CH_##_chan] = { \ .x1 = _x1, \ .x2 = _x2, \ .v1 = _v1, \ .v2 = _v2, \ .gain = PALMAS_TO_BE_CALCULATED, \ .offset = PALMAS_TO_BE_CALCULATED, \ .gain_error = PALMAS_TO_BE_CALCULATED, \ .trim1_reg = PALMAS_GPADC_TRIM##_t1, \ .trim2_reg = PALMAS_GPADC_TRIM##_t2, \ .is_uncalibrated = _is_uncalibrated \ } static struct palmas_gpadc_info palmas_gpadc_info[] = { PALMAS_ADC_INFO(IN0, 2064, 3112, 630, 950, 1, 2, false), PALMAS_ADC_INFO(IN1, 2064, 3112, 630, 950, 1, 2, false), PALMAS_ADC_INFO(IN2, 2064, 3112, 1260, 1900, 3, 4, false), PALMAS_ADC_INFO(IN3, 2064, 3112, 630, 950, 1, 2, false), PALMAS_ADC_INFO(IN4, 2064, 3112, 630, 950, 1, 2, false), PALMAS_ADC_INFO(IN5, 2064, 3112, 630, 950, 1, 2, false), PALMAS_ADC_INFO(IN6, 2064, 3112, 2520, 3800, 5, 6, false), PALMAS_ADC_INFO(IN7, 2064, 3112, 2520, 3800, 7, 8, false), PALMAS_ADC_INFO(IN8, 2064, 3112, 3150, 4750, 9, 10, false), PALMAS_ADC_INFO(IN9, 2064, 3112, 5670, 8550, 11, 12, false), PALMAS_ADC_INFO(IN10, 2064, 3112, 3465, 5225, 13, 14, false), PALMAS_ADC_INFO(IN11, 0, 0, 0, 0, INVALID, INVALID, true), PALMAS_ADC_INFO(IN12, 0, 0, 0, 0, INVALID, INVALID, true), PALMAS_ADC_INFO(IN13, 0, 0, 0, 0, INVALID, INVALID, true), PALMAS_ADC_INFO(IN14, 2064, 3112, 3645, 5225, 15, 16, false), PALMAS_ADC_INFO(IN15, 0, 0, 0, 0, INVALID, INVALID, true), }; /* * struct palmas_gpadc - the palmas_gpadc structure * @ch0_current: channel 0 current source setting * 0: 0 uA * 1: 5 uA * 2: 15 uA * 3: 20 uA * @ch3_current: channel 0 current source setting * 0: 0 uA * 1: 10 uA * 2: 400 uA * 3: 800 uA * @extended_delay: enable the gpadc extended delay mode * @auto_conversion_period: define the auto_conversion_period * @lock: Lock to protect the device state during a potential concurrent * read access from userspace. Reading a raw value requires a sequence * of register writes, then a wait for a completion callback, * and finally a register read, during which userspace could issue * another read request. This lock protects a read access from * ocurring before another one has finished. * * This is the palmas_gpadc structure to store run-time information * and pointers for this driver instance. */ struct palmas_gpadc { struct device *dev; struct palmas *palmas; u8 ch0_current; u8 ch3_current; bool extended_delay; int irq; int irq_auto_0; int irq_auto_1; struct palmas_gpadc_info *adc_info; struct completion conv_completion; struct palmas_adc_wakeup_property wakeup1_data; struct palmas_adc_wakeup_property wakeup2_data; bool wakeup1_enable; bool wakeup2_enable; int auto_conversion_period; struct mutex lock; }; /* * GPADC lock issue in AUTO mode. * Impact: In AUTO mode, GPADC conversion can be locked after disabling AUTO * mode feature. * Details: * When the AUTO mode is the only conversion mode enabled, if the AUTO * mode feature is disabled with bit GPADC_AUTO_CTRL. AUTO_CONV1_EN = 0 * or bit GPADC_AUTO_CTRL. AUTO_CONV0_EN = 0 during a conversion, the * conversion mechanism can be seen as locked meaning that all following * conversion will give 0 as a result. Bit GPADC_STATUS.GPADC_AVAILABLE * will stay at 0 meaning that GPADC is busy. An RT conversion can unlock * the GPADC. * * Workaround(s): * To avoid the lock mechanism, the workaround to follow before any stop * conversion request is: * Force the GPADC state machine to be ON by using the GPADC_CTRL1. * GPADC_FORCE bit = 1 * Shutdown the GPADC AUTO conversion using * GPADC_AUTO_CTRL.SHUTDOWN_CONV[01] = 0. * After 100us, force the GPADC state machine to be OFF by using the * GPADC_CTRL1. GPADC_FORCE bit = 0 */ static int palmas_disable_auto_conversion(struct palmas_gpadc *adc) { int ret; ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_CTRL1, PALMAS_GPADC_CTRL1_GPADC_FORCE, PALMAS_GPADC_CTRL1_GPADC_FORCE); if (ret < 0) { dev_err(adc->dev, "GPADC_CTRL1 update failed: %d\n", ret); return ret; } ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_AUTO_CTRL, PALMAS_GPADC_AUTO_CTRL_SHUTDOWN_CONV1 | PALMAS_GPADC_AUTO_CTRL_SHUTDOWN_CONV0, 0); if (ret < 0) { dev_err(adc->dev, "AUTO_CTRL update failed: %d\n", ret); return ret; } udelay(100); ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_CTRL1, PALMAS_GPADC_CTRL1_GPADC_FORCE, 0); if (ret < 0) dev_err(adc->dev, "GPADC_CTRL1 update failed: %d\n", ret); return ret; } static irqreturn_t palmas_gpadc_irq(int irq, void *data) { struct palmas_gpadc *adc = data; complete(&adc->conv_completion); return IRQ_HANDLED; } static irqreturn_t palmas_gpadc_irq_auto(int irq, void *data) { struct palmas_gpadc *adc = data; dev_dbg(adc->dev, "Threshold interrupt %d occurs\n", irq); palmas_disable_auto_conversion(adc); return IRQ_HANDLED; } static int palmas_gpadc_start_mask_interrupt(struct palmas_gpadc *adc, bool mask) { int ret; if (!mask) ret = palmas_update_bits(adc->palmas, PALMAS_INTERRUPT_BASE, PALMAS_INT3_MASK, PALMAS_INT3_MASK_GPADC_EOC_SW, 0); else ret = palmas_update_bits(adc->palmas, PALMAS_INTERRUPT_BASE, PALMAS_INT3_MASK, PALMAS_INT3_MASK_GPADC_EOC_SW, PALMAS_INT3_MASK_GPADC_EOC_SW); if (ret < 0) dev_err(adc->dev, "GPADC INT MASK update failed: %d\n", ret); return ret; } static int palmas_gpadc_enable(struct palmas_gpadc *adc, int adc_chan, int enable) { unsigned int mask, val; int ret; if (enable) { val = (adc->extended_delay << PALMAS_GPADC_RT_CTRL_EXTEND_DELAY_SHIFT); ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_RT_CTRL, PALMAS_GPADC_RT_CTRL_EXTEND_DELAY, val); if (ret < 0) { dev_err(adc->dev, "RT_CTRL update failed: %d\n", ret); return ret; } mask = (PALMAS_GPADC_CTRL1_CURRENT_SRC_CH0_MASK | PALMAS_GPADC_CTRL1_CURRENT_SRC_CH3_MASK | PALMAS_GPADC_CTRL1_GPADC_FORCE); val = (adc->ch0_current << PALMAS_GPADC_CTRL1_CURRENT_SRC_CH0_SHIFT); val |= (adc->ch3_current << PALMAS_GPADC_CTRL1_CURRENT_SRC_CH3_SHIFT); val |= PALMAS_GPADC_CTRL1_GPADC_FORCE; ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_CTRL1, mask, val); if (ret < 0) { dev_err(adc->dev, "Failed to update current setting: %d\n", ret); return ret; } mask = (PALMAS_GPADC_SW_SELECT_SW_CONV0_SEL_MASK | PALMAS_GPADC_SW_SELECT_SW_CONV_EN); val = (adc_chan | PALMAS_GPADC_SW_SELECT_SW_CONV_EN); ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_SW_SELECT, mask, val); if (ret < 0) { dev_err(adc->dev, "SW_SELECT update failed: %d\n", ret); return ret; } } else { ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_SW_SELECT, 0); if (ret < 0) dev_err(adc->dev, "SW_SELECT write failed: %d\n", ret); ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_CTRL1, PALMAS_GPADC_CTRL1_GPADC_FORCE, 0); if (ret < 0) { dev_err(adc->dev, "CTRL1 update failed: %d\n", ret); return ret; } } return ret; } static int palmas_gpadc_read_prepare(struct palmas_gpadc *adc, int adc_chan) { int ret; ret = palmas_gpadc_enable(adc, adc_chan, true); if (ret < 0) return ret; return palmas_gpadc_start_mask_interrupt(adc, 0); } static void palmas_gpadc_read_done(struct palmas_gpadc *adc, int adc_chan) { palmas_gpadc_start_mask_interrupt(adc, 1); palmas_gpadc_enable(adc, adc_chan, false); } static int palmas_gpadc_calibrate(struct palmas_gpadc *adc, int adc_chan) { int k; int d1; int d2; int ret; int gain; int x1 = adc->adc_info[adc_chan].x1; int x2 = adc->adc_info[adc_chan].x2; int v1 = adc->adc_info[adc_chan].v1; int v2 = adc->adc_info[adc_chan].v2; ret = palmas_read(adc->palmas, PALMAS_TRIM_GPADC_BASE, adc->adc_info[adc_chan].trim1_reg, &d1); if (ret < 0) { dev_err(adc->dev, "TRIM read failed: %d\n", ret); goto scrub; } ret = palmas_read(adc->palmas, PALMAS_TRIM_GPADC_BASE, adc->adc_info[adc_chan].trim2_reg, &d2); if (ret < 0) { dev_err(adc->dev, "TRIM read failed: %d\n", ret); goto scrub; } /* gain error calculation */ k = (1000 + (1000 * (d2 - d1)) / (x2 - x1)); /* gain calculation */ gain = ((v2 - v1) * 1000) / (x2 - x1); adc->adc_info[adc_chan].gain_error = k; adc->adc_info[adc_chan].gain = gain; /* offset Calculation */ adc->adc_info[adc_chan].offset = (d1 * 1000) - ((k - 1000) * x1); scrub: return ret; } static int palmas_gpadc_start_conversion(struct palmas_gpadc *adc, int adc_chan) { unsigned int val; int ret; init_completion(&adc->conv_completion); ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_SW_SELECT, PALMAS_GPADC_SW_SELECT_SW_START_CONV0, PALMAS_GPADC_SW_SELECT_SW_START_CONV0); if (ret < 0) { dev_err(adc->dev, "SELECT_SW_START write failed: %d\n", ret); return ret; } ret = wait_for_completion_timeout(&adc->conv_completion, PALMAS_ADC_CONVERSION_TIMEOUT); if (ret == 0) { dev_err(adc->dev, "conversion not completed\n"); return -ETIMEDOUT; } ret = palmas_bulk_read(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_SW_CONV0_LSB, &val, 2); if (ret < 0) { dev_err(adc->dev, "SW_CONV0_LSB read failed: %d\n", ret); return ret; } ret = val & 0xFFF; return ret; } static int palmas_gpadc_get_calibrated_code(struct palmas_gpadc *adc, int adc_chan, int val) { if (!adc->adc_info[adc_chan].is_uncalibrated) val = (val*1000 - adc->adc_info[adc_chan].offset) / adc->adc_info[adc_chan].gain_error; if (val < 0) { if (val < -10) dev_err(adc->dev, "Mismatch with calibration var = %d\n", val); return 0; } val = (val * adc->adc_info[adc_chan].gain) / 1000; return val; } static int palmas_gpadc_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct palmas_gpadc *adc = iio_priv(indio_dev); int adc_chan = chan->channel; int ret = 0; if (adc_chan > PALMAS_ADC_CH_MAX) return -EINVAL; mutex_lock(&adc->lock); switch (mask) { case IIO_CHAN_INFO_RAW: case IIO_CHAN_INFO_PROCESSED: ret = palmas_gpadc_read_prepare(adc, adc_chan); if (ret < 0) goto out; ret = palmas_gpadc_start_conversion(adc, adc_chan); if (ret < 0) { dev_err(adc->dev, "ADC start conversion failed\n"); goto out; } if (mask == IIO_CHAN_INFO_PROCESSED) ret = palmas_gpadc_get_calibrated_code( adc, adc_chan, ret); *val = ret; ret = IIO_VAL_INT; goto out; } mutex_unlock(&adc->lock); return ret; out: palmas_gpadc_read_done(adc, adc_chan); mutex_unlock(&adc->lock); return ret; } static const struct iio_info palmas_gpadc_iio_info = { .read_raw = palmas_gpadc_read_raw, }; #define PALMAS_ADC_CHAN_IIO(chan, _type, chan_info) \ { \ .datasheet_name = PALMAS_DATASHEET_NAME(chan), \ .type = _type, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(chan_info), \ .indexed = 1, \ .channel = PALMAS_ADC_CH_##chan, \ } static const struct iio_chan_spec palmas_gpadc_iio_channel[] = { PALMAS_ADC_CHAN_IIO(IN0, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN1, IIO_TEMP, IIO_CHAN_INFO_RAW), PALMAS_ADC_CHAN_IIO(IN2, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN3, IIO_TEMP, IIO_CHAN_INFO_RAW), PALMAS_ADC_CHAN_IIO(IN4, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN5, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN6, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN7, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN8, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN9, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN10, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN11, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN12, IIO_TEMP, IIO_CHAN_INFO_RAW), PALMAS_ADC_CHAN_IIO(IN13, IIO_TEMP, IIO_CHAN_INFO_RAW), PALMAS_ADC_CHAN_IIO(IN14, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), PALMAS_ADC_CHAN_IIO(IN15, IIO_VOLTAGE, IIO_CHAN_INFO_PROCESSED), }; static int palmas_gpadc_get_adc_dt_data(struct platform_device *pdev, struct palmas_gpadc_platform_data **gpadc_pdata) { struct device_node *np = pdev->dev.of_node; struct palmas_gpadc_platform_data *gp_data; int ret; u32 pval; gp_data = devm_kzalloc(&pdev->dev, sizeof(*gp_data), GFP_KERNEL); if (!gp_data) return -ENOMEM; ret = of_property_read_u32(np, "ti,channel0-current-microamp", &pval); if (!ret) gp_data->ch0_current = pval; ret = of_property_read_u32(np, "ti,channel3-current-microamp", &pval); if (!ret) gp_data->ch3_current = pval; gp_data->extended_delay = of_property_read_bool(np, "ti,enable-extended-delay"); *gpadc_pdata = gp_data; return 0; } static int palmas_gpadc_probe(struct platform_device *pdev) { struct palmas_gpadc *adc; struct palmas_platform_data *pdata; struct palmas_gpadc_platform_data *gpadc_pdata = NULL; struct iio_dev *indio_dev; int ret, i; pdata = dev_get_platdata(pdev->dev.parent); if (pdata && pdata->gpadc_pdata) gpadc_pdata = pdata->gpadc_pdata; if (!gpadc_pdata && pdev->dev.of_node) { ret = palmas_gpadc_get_adc_dt_data(pdev, &gpadc_pdata); if (ret < 0) return ret; } if (!gpadc_pdata) return -EINVAL; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc)); if (!indio_dev) { dev_err(&pdev->dev, "iio_device_alloc failed\n"); return -ENOMEM; } adc = iio_priv(indio_dev); adc->dev = &pdev->dev; adc->palmas = dev_get_drvdata(pdev->dev.parent); adc->adc_info = palmas_gpadc_info; mutex_init(&adc->lock); init_completion(&adc->conv_completion); platform_set_drvdata(pdev, indio_dev); adc->auto_conversion_period = gpadc_pdata->auto_conversion_period_ms; adc->irq = palmas_irq_get_virq(adc->palmas, PALMAS_GPADC_EOC_SW_IRQ); if (adc->irq < 0) { dev_err(adc->dev, "get virq failed: %d\n", adc->irq); ret = adc->irq; goto out; } ret = request_threaded_irq(adc->irq, NULL, palmas_gpadc_irq, IRQF_ONESHOT, dev_name(adc->dev), adc); if (ret < 0) { dev_err(adc->dev, "request irq %d failed: %d\n", adc->irq, ret); goto out; } if (gpadc_pdata->adc_wakeup1_data) { memcpy(&adc->wakeup1_data, gpadc_pdata->adc_wakeup1_data, sizeof(adc->wakeup1_data)); adc->wakeup1_enable = true; adc->irq_auto_0 = platform_get_irq(pdev, 1); ret = request_threaded_irq(adc->irq_auto_0, NULL, palmas_gpadc_irq_auto, IRQF_ONESHOT, "palmas-adc-auto-0", adc); if (ret < 0) { dev_err(adc->dev, "request auto0 irq %d failed: %d\n", adc->irq_auto_0, ret); goto out_irq_free; } } if (gpadc_pdata->adc_wakeup2_data) { memcpy(&adc->wakeup2_data, gpadc_pdata->adc_wakeup2_data, sizeof(adc->wakeup2_data)); adc->wakeup2_enable = true; adc->irq_auto_1 = platform_get_irq(pdev, 2); ret = request_threaded_irq(adc->irq_auto_1, NULL, palmas_gpadc_irq_auto, IRQF_ONESHOT, "palmas-adc-auto-1", adc); if (ret < 0) { dev_err(adc->dev, "request auto1 irq %d failed: %d\n", adc->irq_auto_1, ret); goto out_irq_auto0_free; } } /* set the current source 0 (value 0/5/15/20 uA => 0..3) */ if (gpadc_pdata->ch0_current <= 1) adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_0; else if (gpadc_pdata->ch0_current <= 5) adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_5; else if (gpadc_pdata->ch0_current <= 15) adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_15; else adc->ch0_current = PALMAS_ADC_CH0_CURRENT_SRC_20; /* set the current source 3 (value 0/10/400/800 uA => 0..3) */ if (gpadc_pdata->ch3_current <= 1) adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_0; else if (gpadc_pdata->ch3_current <= 10) adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_10; else if (gpadc_pdata->ch3_current <= 400) adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_400; else adc->ch3_current = PALMAS_ADC_CH3_CURRENT_SRC_800; adc->extended_delay = gpadc_pdata->extended_delay; indio_dev->name = MOD_NAME; indio_dev->info = &palmas_gpadc_iio_info; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = palmas_gpadc_iio_channel; indio_dev->num_channels = ARRAY_SIZE(palmas_gpadc_iio_channel); ret = iio_device_register(indio_dev); if (ret < 0) { dev_err(adc->dev, "iio_device_register() failed: %d\n", ret); goto out_irq_auto1_free; } device_set_wakeup_capable(&pdev->dev, 1); for (i = 0; i < PALMAS_ADC_CH_MAX; i++) { if (!(adc->adc_info[i].is_uncalibrated)) palmas_gpadc_calibrate(adc, i); } if (adc->wakeup1_enable || adc->wakeup2_enable) device_wakeup_enable(&pdev->dev); return 0; out_irq_auto1_free: if (gpadc_pdata->adc_wakeup2_data) free_irq(adc->irq_auto_1, adc); out_irq_auto0_free: if (gpadc_pdata->adc_wakeup1_data) free_irq(adc->irq_auto_0, adc); out_irq_free: free_irq(adc->irq, adc); out: return ret; } static int palmas_gpadc_remove(struct platform_device *pdev) { struct iio_dev *indio_dev = dev_to_iio_dev(&pdev->dev); struct palmas_gpadc *adc = iio_priv(indio_dev); if (adc->wakeup1_enable || adc->wakeup2_enable) device_wakeup_disable(&pdev->dev); iio_device_unregister(indio_dev); free_irq(adc->irq, adc); if (adc->wakeup1_enable) free_irq(adc->irq_auto_0, adc); if (adc->wakeup2_enable) free_irq(adc->irq_auto_1, adc); return 0; } static int palmas_adc_wakeup_configure(struct palmas_gpadc *adc) { int adc_period, conv; int i; int ch0 = 0, ch1 = 0; int thres; int ret; adc_period = adc->auto_conversion_period; for (i = 0; i < 16; ++i) { if (((1000 * (1 << i)) / 32) >= adc_period) break; } if (i > 0) i--; adc_period = i; ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_AUTO_CTRL, PALMAS_GPADC_AUTO_CTRL_COUNTER_CONV_MASK, adc_period); if (ret < 0) { dev_err(adc->dev, "AUTO_CTRL write failed: %d\n", ret); return ret; } conv = 0; if (adc->wakeup1_enable) { int polarity; ch0 = adc->wakeup1_data.adc_channel_number; conv |= PALMAS_GPADC_AUTO_CTRL_AUTO_CONV0_EN; if (adc->wakeup1_data.adc_high_threshold > 0) { thres = adc->wakeup1_data.adc_high_threshold; polarity = 0; } else { thres = adc->wakeup1_data.adc_low_threshold; polarity = PALMAS_GPADC_THRES_CONV0_MSB_THRES_CONV0_POL; } ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_THRES_CONV0_LSB, thres & 0xFF); if (ret < 0) { dev_err(adc->dev, "THRES_CONV0_LSB write failed: %d\n", ret); return ret; } ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_THRES_CONV0_MSB, ((thres >> 8) & 0xF) | polarity); if (ret < 0) { dev_err(adc->dev, "THRES_CONV0_MSB write failed: %d\n", ret); return ret; } } if (adc->wakeup2_enable) { int polarity; ch1 = adc->wakeup2_data.adc_channel_number; conv |= PALMAS_GPADC_AUTO_CTRL_AUTO_CONV1_EN; if (adc->wakeup2_data.adc_high_threshold > 0) { thres = adc->wakeup2_data.adc_high_threshold; polarity = 0; } else { thres = adc->wakeup2_data.adc_low_threshold; polarity = PALMAS_GPADC_THRES_CONV1_MSB_THRES_CONV1_POL; } ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_THRES_CONV1_LSB, thres & 0xFF); if (ret < 0) { dev_err(adc->dev, "THRES_CONV1_LSB write failed: %d\n", ret); return ret; } ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_THRES_CONV1_MSB, ((thres >> 8) & 0xF) | polarity); if (ret < 0) { dev_err(adc->dev, "THRES_CONV1_MSB write failed: %d\n", ret); return ret; } } ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_AUTO_SELECT, (ch1 << 4) | ch0); if (ret < 0) { dev_err(adc->dev, "AUTO_SELECT write failed: %d\n", ret); return ret; } ret = palmas_update_bits(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_AUTO_CTRL, PALMAS_GPADC_AUTO_CTRL_AUTO_CONV1_EN | PALMAS_GPADC_AUTO_CTRL_AUTO_CONV0_EN, conv); if (ret < 0) dev_err(adc->dev, "AUTO_CTRL write failed: %d\n", ret); return ret; } static int palmas_adc_wakeup_reset(struct palmas_gpadc *adc) { int ret; ret = palmas_write(adc->palmas, PALMAS_GPADC_BASE, PALMAS_GPADC_AUTO_SELECT, 0); if (ret < 0) { dev_err(adc->dev, "AUTO_SELECT write failed: %d\n", ret); return ret; } ret = palmas_disable_auto_conversion(adc); if (ret < 0) dev_err(adc->dev, "Disable auto conversion failed: %d\n", ret); return ret; } static int palmas_gpadc_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct palmas_gpadc *adc = iio_priv(indio_dev); int wakeup = adc->wakeup1_enable || adc->wakeup2_enable; int ret; if (!device_may_wakeup(dev) || !wakeup) return 0; ret = palmas_adc_wakeup_configure(adc); if (ret < 0) return ret; if (adc->wakeup1_enable) enable_irq_wake(adc->irq_auto_0); if (adc->wakeup2_enable) enable_irq_wake(adc->irq_auto_1); return 0; } static int palmas_gpadc_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct palmas_gpadc *adc = iio_priv(indio_dev); int wakeup = adc->wakeup1_enable || adc->wakeup2_enable; int ret; if (!device_may_wakeup(dev) || !wakeup) return 0; ret = palmas_adc_wakeup_reset(adc); if (ret < 0) return ret; if (adc->wakeup1_enable) disable_irq_wake(adc->irq_auto_0); if (adc->wakeup2_enable) disable_irq_wake(adc->irq_auto_1); return 0; }; static DEFINE_SIMPLE_DEV_PM_OPS(palmas_pm_ops, palmas_gpadc_suspend, palmas_gpadc_resume); static const struct of_device_id of_palmas_gpadc_match_tbl[] = { { .compatible = "ti,palmas-gpadc", }, { /* end */ } }; MODULE_DEVICE_TABLE(of, of_palmas_gpadc_match_tbl); static struct platform_driver palmas_gpadc_driver = { .probe = palmas_gpadc_probe, .remove = palmas_gpadc_remove, .driver = { .name = MOD_NAME, .pm = pm_sleep_ptr(&palmas_pm_ops), .of_match_table = of_palmas_gpadc_match_tbl, }, }; module_platform_driver(palmas_gpadc_driver); MODULE_DESCRIPTION("palmas GPADC driver"); MODULE_AUTHOR("Pradeep Goudagunta<pgoudagunta@nvidia.com>"); MODULE_ALIAS("platform:palmas-gpadc"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1