Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jishnu Prakash | 1363 | 35.60% | 2 | 13.33% |
Siddartha Mohanadoss | 1092 | 28.52% | 1 | 6.67% |
Linus Walleij | 651 | 17.00% | 2 | 13.33% |
Dmitry Eremin-Solenikov | 650 | 16.98% | 7 | 46.67% |
Andy Shevchenko | 61 | 1.59% | 1 | 6.67% |
Akinobu Mita | 11 | 0.29% | 1 | 6.67% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 6.67% |
Total | 3829 | 15 |
// SPDX-License-Identifier: GPL-2.0 #include <linux/bug.h> #include <linux/kernel.h> #include <linux/bitops.h> #include <linux/fixp-arith.h> #include <linux/iio/adc/qcom-vadc-common.h> #include <linux/math64.h> #include <linux/log2.h> #include <linux/err.h> #include <linux/module.h> #include <linux/units.h> /** * struct vadc_map_pt - Map the graph representation for ADC channel * @x: Represent the ADC digitized code. * @y: Represent the physical data which can be temperature, voltage, * resistance. */ struct vadc_map_pt { s32 x; s32 y; }; /* Voltage to temperature */ static const struct vadc_map_pt adcmap_100k_104ef_104fb[] = { {1758, -40000 }, {1742, -35000 }, {1719, -30000 }, {1691, -25000 }, {1654, -20000 }, {1608, -15000 }, {1551, -10000 }, {1483, -5000 }, {1404, 0 }, {1315, 5000 }, {1218, 10000 }, {1114, 15000 }, {1007, 20000 }, {900, 25000 }, {795, 30000 }, {696, 35000 }, {605, 40000 }, {522, 45000 }, {448, 50000 }, {383, 55000 }, {327, 60000 }, {278, 65000 }, {237, 70000 }, {202, 75000 }, {172, 80000 }, {146, 85000 }, {125, 90000 }, {107, 95000 }, {92, 100000 }, {79, 105000 }, {68, 110000 }, {59, 115000 }, {51, 120000 }, {44, 125000 } }; /* * Voltage to temperature table for 100k pull up for NTCG104EF104 with * 1.875V reference. */ static const struct vadc_map_pt adcmap_100k_104ef_104fb_1875_vref[] = { { 1831, -40000 }, { 1814, -35000 }, { 1791, -30000 }, { 1761, -25000 }, { 1723, -20000 }, { 1675, -15000 }, { 1616, -10000 }, { 1545, -5000 }, { 1463, 0 }, { 1370, 5000 }, { 1268, 10000 }, { 1160, 15000 }, { 1049, 20000 }, { 937, 25000 }, { 828, 30000 }, { 726, 35000 }, { 630, 40000 }, { 544, 45000 }, { 467, 50000 }, { 399, 55000 }, { 340, 60000 }, { 290, 65000 }, { 247, 70000 }, { 209, 75000 }, { 179, 80000 }, { 153, 85000 }, { 130, 90000 }, { 112, 95000 }, { 96, 100000 }, { 82, 105000 }, { 71, 110000 }, { 62, 115000 }, { 53, 120000 }, { 46, 125000 }, }; static const struct vadc_map_pt adcmap7_die_temp[] = { { 857300, 160000 }, { 820100, 140000 }, { 782500, 120000 }, { 744600, 100000 }, { 706400, 80000 }, { 667900, 60000 }, { 629300, 40000 }, { 590500, 20000 }, { 551500, 0 }, { 512400, -20000 }, { 473100, -40000 }, { 433700, -60000 }, }; /* * Resistance to temperature table for 100k pull up for NTCG104EF104. */ static const struct vadc_map_pt adcmap7_100k[] = { { 4250657, -40960 }, { 3962085, -39936 }, { 3694875, -38912 }, { 3447322, -37888 }, { 3217867, -36864 }, { 3005082, -35840 }, { 2807660, -34816 }, { 2624405, -33792 }, { 2454218, -32768 }, { 2296094, -31744 }, { 2149108, -30720 }, { 2012414, -29696 }, { 1885232, -28672 }, { 1766846, -27648 }, { 1656598, -26624 }, { 1553884, -25600 }, { 1458147, -24576 }, { 1368873, -23552 }, { 1285590, -22528 }, { 1207863, -21504 }, { 1135290, -20480 }, { 1067501, -19456 }, { 1004155, -18432 }, { 944935, -17408 }, { 889550, -16384 }, { 837731, -15360 }, { 789229, -14336 }, { 743813, -13312 }, { 701271, -12288 }, { 661405, -11264 }, { 624032, -10240 }, { 588982, -9216 }, { 556100, -8192 }, { 525239, -7168 }, { 496264, -6144 }, { 469050, -5120 }, { 443480, -4096 }, { 419448, -3072 }, { 396851, -2048 }, { 375597, -1024 }, { 355598, 0 }, { 336775, 1024 }, { 319052, 2048 }, { 302359, 3072 }, { 286630, 4096 }, { 271806, 5120 }, { 257829, 6144 }, { 244646, 7168 }, { 232209, 8192 }, { 220471, 9216 }, { 209390, 10240 }, { 198926, 11264 }, { 189040, 12288 }, { 179698, 13312 }, { 170868, 14336 }, { 162519, 15360 }, { 154622, 16384 }, { 147150, 17408 }, { 140079, 18432 }, { 133385, 19456 }, { 127046, 20480 }, { 121042, 21504 }, { 115352, 22528 }, { 109960, 23552 }, { 104848, 24576 }, { 100000, 25600 }, { 95402, 26624 }, { 91038, 27648 }, { 86897, 28672 }, { 82965, 29696 }, { 79232, 30720 }, { 75686, 31744 }, { 72316, 32768 }, { 69114, 33792 }, { 66070, 34816 }, { 63176, 35840 }, { 60423, 36864 }, { 57804, 37888 }, { 55312, 38912 }, { 52940, 39936 }, { 50681, 40960 }, { 48531, 41984 }, { 46482, 43008 }, { 44530, 44032 }, { 42670, 45056 }, { 40897, 46080 }, { 39207, 47104 }, { 37595, 48128 }, { 36057, 49152 }, { 34590, 50176 }, { 33190, 51200 }, { 31853, 52224 }, { 30577, 53248 }, { 29358, 54272 }, { 28194, 55296 }, { 27082, 56320 }, { 26020, 57344 }, { 25004, 58368 }, { 24033, 59392 }, { 23104, 60416 }, { 22216, 61440 }, { 21367, 62464 }, { 20554, 63488 }, { 19776, 64512 }, { 19031, 65536 }, { 18318, 66560 }, { 17636, 67584 }, { 16982, 68608 }, { 16355, 69632 }, { 15755, 70656 }, { 15180, 71680 }, { 14628, 72704 }, { 14099, 73728 }, { 13592, 74752 }, { 13106, 75776 }, { 12640, 76800 }, { 12192, 77824 }, { 11762, 78848 }, { 11350, 79872 }, { 10954, 80896 }, { 10574, 81920 }, { 10209, 82944 }, { 9858, 83968 }, { 9521, 84992 }, { 9197, 86016 }, { 8886, 87040 }, { 8587, 88064 }, { 8299, 89088 }, { 8023, 90112 }, { 7757, 91136 }, { 7501, 92160 }, { 7254, 93184 }, { 7017, 94208 }, { 6789, 95232 }, { 6570, 96256 }, { 6358, 97280 }, { 6155, 98304 }, { 5959, 99328 }, { 5770, 100352 }, { 5588, 101376 }, { 5412, 102400 }, { 5243, 103424 }, { 5080, 104448 }, { 4923, 105472 }, { 4771, 106496 }, { 4625, 107520 }, { 4484, 108544 }, { 4348, 109568 }, { 4217, 110592 }, { 4090, 111616 }, { 3968, 112640 }, { 3850, 113664 }, { 3736, 114688 }, { 3626, 115712 }, { 3519, 116736 }, { 3417, 117760 }, { 3317, 118784 }, { 3221, 119808 }, { 3129, 120832 }, { 3039, 121856 }, { 2952, 122880 }, { 2868, 123904 }, { 2787, 124928 }, { 2709, 125952 }, { 2633, 126976 }, { 2560, 128000 }, { 2489, 129024 }, { 2420, 130048 } }; static const struct u32_fract adc5_prescale_ratios[] = { { .numerator = 1, .denominator = 1 }, { .numerator = 1, .denominator = 3 }, { .numerator = 1, .denominator = 4 }, { .numerator = 1, .denominator = 6 }, { .numerator = 1, .denominator = 20 }, { .numerator = 1, .denominator = 8 }, { .numerator = 10, .denominator = 81 }, { .numerator = 1, .denominator = 10 }, { .numerator = 1, .denominator = 16 }, }; static int qcom_vadc_scale_hw_calib_volt( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_uv); static int qcom_vadc_scale_hw_calib_therm( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec); static int qcom_vadc7_scale_hw_calib_therm( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec); static int qcom_vadc_scale_hw_smb_temp( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec); static int qcom_vadc_scale_hw_chg5_temp( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec); static int qcom_vadc_scale_hw_calib_die_temp( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec); static int qcom_vadc7_scale_hw_calib_die_temp( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec); static struct qcom_adc5_scale_type scale_adc5_fn[] = { [SCALE_HW_CALIB_DEFAULT] = {qcom_vadc_scale_hw_calib_volt}, [SCALE_HW_CALIB_THERM_100K_PULLUP] = {qcom_vadc_scale_hw_calib_therm}, [SCALE_HW_CALIB_XOTHERM] = {qcom_vadc_scale_hw_calib_therm}, [SCALE_HW_CALIB_THERM_100K_PU_PM7] = { qcom_vadc7_scale_hw_calib_therm}, [SCALE_HW_CALIB_PMIC_THERM] = {qcom_vadc_scale_hw_calib_die_temp}, [SCALE_HW_CALIB_PMIC_THERM_PM7] = { qcom_vadc7_scale_hw_calib_die_temp}, [SCALE_HW_CALIB_PM5_CHG_TEMP] = {qcom_vadc_scale_hw_chg5_temp}, [SCALE_HW_CALIB_PM5_SMB_TEMP] = {qcom_vadc_scale_hw_smb_temp}, }; static int qcom_vadc_map_voltage_temp(const struct vadc_map_pt *pts, u32 tablesize, s32 input, int *output) { u32 i = 0; if (!pts) return -EINVAL; while (i < tablesize && pts[i].x > input) i++; if (i == 0) { *output = pts[0].y; } else if (i == tablesize) { *output = pts[tablesize - 1].y; } else { /* interpolate linearly */ *output = fixp_linear_interpolate(pts[i - 1].x, pts[i - 1].y, pts[i].x, pts[i].y, input); } return 0; } static s32 qcom_vadc_map_temp_voltage(const struct vadc_map_pt *pts, u32 tablesize, int input) { u32 i = 0; /* * Table must be sorted, find the interval of 'y' which contains value * 'input' and map it to proper 'x' value */ while (i < tablesize && pts[i].y < input) i++; if (i == 0) return pts[0].x; if (i == tablesize) return pts[tablesize - 1].x; /* interpolate linearly */ return fixp_linear_interpolate(pts[i - 1].y, pts[i - 1].x, pts[i].y, pts[i].x, input); } static void qcom_vadc_scale_calib(const struct vadc_linear_graph *calib_graph, u16 adc_code, bool absolute, s64 *scale_voltage) { *scale_voltage = (adc_code - calib_graph->gnd); *scale_voltage *= calib_graph->dx; *scale_voltage = div64_s64(*scale_voltage, calib_graph->dy); if (absolute) *scale_voltage += calib_graph->dx; if (*scale_voltage < 0) *scale_voltage = 0; } static int qcom_vadc_scale_volt(const struct vadc_linear_graph *calib_graph, const struct u32_fract *prescale, bool absolute, u16 adc_code, int *result_uv) { s64 voltage = 0, result = 0; qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage); voltage *= prescale->denominator; result = div64_s64(voltage, prescale->numerator); *result_uv = result; return 0; } static int qcom_vadc_scale_therm(const struct vadc_linear_graph *calib_graph, const struct u32_fract *prescale, bool absolute, u16 adc_code, int *result_mdec) { s64 voltage = 0; int ret; qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage); if (absolute) voltage = div64_s64(voltage, 1000); ret = qcom_vadc_map_voltage_temp(adcmap_100k_104ef_104fb, ARRAY_SIZE(adcmap_100k_104ef_104fb), voltage, result_mdec); if (ret) return ret; return 0; } static int qcom_vadc_scale_die_temp(const struct vadc_linear_graph *calib_graph, const struct u32_fract *prescale, bool absolute, u16 adc_code, int *result_mdec) { s64 voltage = 0; u64 temp; /* Temporary variable for do_div */ qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage); if (voltage > 0) { temp = voltage * prescale->denominator; do_div(temp, prescale->numerator * 2); voltage = temp; } else { voltage = 0; } *result_mdec = milli_kelvin_to_millicelsius(voltage); return 0; } static int qcom_vadc_scale_chg_temp(const struct vadc_linear_graph *calib_graph, const struct u32_fract *prescale, bool absolute, u16 adc_code, int *result_mdec) { s64 voltage = 0, result = 0; qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage); voltage *= prescale->denominator; voltage = div64_s64(voltage, prescale->numerator); voltage = ((PMI_CHG_SCALE_1) * (voltage * 2)); voltage = (voltage + PMI_CHG_SCALE_2); result = div64_s64(voltage, 1000000); *result_mdec = result; return 0; } /* convert voltage to ADC code, using 1.875V reference */ static u16 qcom_vadc_scale_voltage_code(s32 voltage, const struct u32_fract *prescale, const u32 full_scale_code_volt, unsigned int factor) { s64 volt = voltage; s64 adc_vdd_ref_mv = 1875; /* reference voltage */ volt *= prescale->numerator * factor * full_scale_code_volt; volt = div64_s64(volt, (s64)prescale->denominator * adc_vdd_ref_mv * 1000); return volt; } static int qcom_vadc_scale_code_voltage_factor(u16 adc_code, const struct u32_fract *prescale, const struct adc5_data *data, unsigned int factor) { s64 voltage, temp, adc_vdd_ref_mv = 1875; /* * The normal data range is between 0V to 1.875V. On cases where * we read low voltage values, the ADC code can go beyond the * range and the scale result is incorrect so we clamp the values * for the cases where the code represents a value below 0V */ if (adc_code > VADC5_MAX_CODE) adc_code = 0; /* (ADC code * vref_vadc (1.875V)) / full_scale_code */ voltage = (s64) adc_code * adc_vdd_ref_mv * 1000; voltage = div64_s64(voltage, data->full_scale_code_volt); if (voltage > 0) { voltage *= prescale->denominator; temp = prescale->numerator * factor; voltage = div64_s64(voltage, temp); } else { voltage = 0; } return (int) voltage; } static int qcom_vadc7_scale_hw_calib_therm( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec) { s64 resistance = adc_code; int ret, result; if (adc_code >= RATIO_MAX_ADC7) return -EINVAL; /* (ADC code * R_PULLUP (100Kohm)) / (full_scale_code - ADC code)*/ resistance *= R_PU_100K; resistance = div64_s64(resistance, RATIO_MAX_ADC7 - adc_code); ret = qcom_vadc_map_voltage_temp(adcmap7_100k, ARRAY_SIZE(adcmap7_100k), resistance, &result); if (ret) return ret; *result_mdec = result; return 0; } static int qcom_vadc_scale_hw_calib_volt( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_uv) { *result_uv = qcom_vadc_scale_code_voltage_factor(adc_code, prescale, data, 1); return 0; } static int qcom_vadc_scale_hw_calib_therm( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec) { int voltage; voltage = qcom_vadc_scale_code_voltage_factor(adc_code, prescale, data, 1000); /* Map voltage to temperature from look-up table */ return qcom_vadc_map_voltage_temp(adcmap_100k_104ef_104fb_1875_vref, ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref), voltage, result_mdec); } static int qcom_vadc_scale_hw_calib_die_temp( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec) { *result_mdec = qcom_vadc_scale_code_voltage_factor(adc_code, prescale, data, 2); *result_mdec = milli_kelvin_to_millicelsius(*result_mdec); return 0; } static int qcom_vadc7_scale_hw_calib_die_temp( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec) { int voltage; voltage = qcom_vadc_scale_code_voltage_factor(adc_code, prescale, data, 1); return qcom_vadc_map_voltage_temp(adcmap7_die_temp, ARRAY_SIZE(adcmap7_die_temp), voltage, result_mdec); } static int qcom_vadc_scale_hw_smb_temp( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec) { *result_mdec = qcom_vadc_scale_code_voltage_factor(adc_code * 100, prescale, data, PMIC5_SMB_TEMP_SCALE_FACTOR); *result_mdec = PMIC5_SMB_TEMP_CONSTANT - *result_mdec; return 0; } static int qcom_vadc_scale_hw_chg5_temp( const struct u32_fract *prescale, const struct adc5_data *data, u16 adc_code, int *result_mdec) { *result_mdec = qcom_vadc_scale_code_voltage_factor(adc_code, prescale, data, 4); *result_mdec = PMIC5_CHG_TEMP_SCALE_FACTOR - *result_mdec; return 0; } int qcom_vadc_scale(enum vadc_scale_fn_type scaletype, const struct vadc_linear_graph *calib_graph, const struct u32_fract *prescale, bool absolute, u16 adc_code, int *result) { switch (scaletype) { case SCALE_DEFAULT: return qcom_vadc_scale_volt(calib_graph, prescale, absolute, adc_code, result); case SCALE_THERM_100K_PULLUP: case SCALE_XOTHERM: return qcom_vadc_scale_therm(calib_graph, prescale, absolute, adc_code, result); case SCALE_PMIC_THERM: return qcom_vadc_scale_die_temp(calib_graph, prescale, absolute, adc_code, result); case SCALE_PMI_CHG_TEMP: return qcom_vadc_scale_chg_temp(calib_graph, prescale, absolute, adc_code, result); default: return -EINVAL; } } EXPORT_SYMBOL(qcom_vadc_scale); u16 qcom_adc_tm5_temp_volt_scale(unsigned int prescale_ratio, u32 full_scale_code_volt, int temp) { const struct u32_fract *prescale = &adc5_prescale_ratios[prescale_ratio]; s32 voltage; voltage = qcom_vadc_map_temp_voltage(adcmap_100k_104ef_104fb_1875_vref, ARRAY_SIZE(adcmap_100k_104ef_104fb_1875_vref), temp); return qcom_vadc_scale_voltage_code(voltage, prescale, full_scale_code_volt, 1000); } EXPORT_SYMBOL(qcom_adc_tm5_temp_volt_scale); u16 qcom_adc_tm5_gen2_temp_res_scale(int temp) { int64_t resistance; resistance = qcom_vadc_map_temp_voltage(adcmap7_100k, ARRAY_SIZE(adcmap7_100k), temp); return div64_s64(resistance * RATIO_MAX_ADC7, resistance + R_PU_100K); } EXPORT_SYMBOL(qcom_adc_tm5_gen2_temp_res_scale); int qcom_adc5_hw_scale(enum vadc_scale_fn_type scaletype, unsigned int prescale_ratio, const struct adc5_data *data, u16 adc_code, int *result) { const struct u32_fract *prescale = &adc5_prescale_ratios[prescale_ratio]; if (!(scaletype >= SCALE_HW_CALIB_DEFAULT && scaletype < SCALE_HW_CALIB_INVALID)) { pr_err("Invalid scale type %d\n", scaletype); return -EINVAL; } return scale_adc5_fn[scaletype].scale_fn(prescale, data, adc_code, result); } EXPORT_SYMBOL(qcom_adc5_hw_scale); int qcom_adc5_prescaling_from_dt(u32 numerator, u32 denominator) { unsigned int pre; for (pre = 0; pre < ARRAY_SIZE(adc5_prescale_ratios); pre++) if (adc5_prescale_ratios[pre].numerator == numerator && adc5_prescale_ratios[pre].denominator == denominator) break; if (pre == ARRAY_SIZE(adc5_prescale_ratios)) return -EINVAL; return pre; } EXPORT_SYMBOL(qcom_adc5_prescaling_from_dt); int qcom_adc5_hw_settle_time_from_dt(u32 value, const unsigned int *hw_settle) { unsigned int i; for (i = 0; i < VADC_HW_SETTLE_SAMPLES_MAX; i++) { if (value == hw_settle[i]) return i; } return -EINVAL; } EXPORT_SYMBOL(qcom_adc5_hw_settle_time_from_dt); int qcom_adc5_avg_samples_from_dt(u32 value) { if (!is_power_of_2(value) || value > ADC5_AVG_SAMPLES_MAX) return -EINVAL; return __ffs(value); } EXPORT_SYMBOL(qcom_adc5_avg_samples_from_dt); int qcom_adc5_decimation_from_dt(u32 value, const unsigned int *decimation) { unsigned int i; for (i = 0; i < ADC5_DECIMATION_SAMPLES_MAX; i++) { if (value == decimation[i]) return i; } return -EINVAL; } EXPORT_SYMBOL(qcom_adc5_decimation_from_dt); int qcom_vadc_decimation_from_dt(u32 value) { if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN || value > VADC_DECIMATION_MAX) return -EINVAL; return __ffs64(value / VADC_DECIMATION_MIN); } EXPORT_SYMBOL(qcom_vadc_decimation_from_dt); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Qualcomm ADC common functionality");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1