Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tomasz Duszynski | 3291 | 99.34% | 1 | 16.67% |
Jonathan Cameron | 18 | 0.54% | 4 | 66.67% |
Krzysztof Kozlowski | 4 | 0.12% | 1 | 16.67% |
Total | 3313 | 6 |
// SPDX-License-Identifier: GPL-2.0 /* * Sensirion SCD30 carbon dioxide sensor core driver * * Copyright (c) 2020 Tomasz Duszynski <tomasz.duszynski@octakon.com> */ #include <linux/bits.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/export.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include <linux/iio/types.h> #include <linux/interrupt.h> #include <linux/irqreturn.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/regulator/consumer.h> #include <linux/string.h> #include <linux/sysfs.h> #include <linux/types.h> #include <asm/byteorder.h> #include "scd30.h" #define SCD30_PRESSURE_COMP_MIN_MBAR 700 #define SCD30_PRESSURE_COMP_MAX_MBAR 1400 #define SCD30_PRESSURE_COMP_DEFAULT 1013 #define SCD30_MEAS_INTERVAL_MIN_S 2 #define SCD30_MEAS_INTERVAL_MAX_S 1800 #define SCD30_MEAS_INTERVAL_DEFAULT SCD30_MEAS_INTERVAL_MIN_S #define SCD30_FRC_MIN_PPM 400 #define SCD30_FRC_MAX_PPM 2000 #define SCD30_TEMP_OFFSET_MAX 655360 #define SCD30_EXTRA_TIMEOUT_PER_S 250 enum { SCD30_CONC, SCD30_TEMP, SCD30_HR, }; static int scd30_command_write(struct scd30_state *state, enum scd30_cmd cmd, u16 arg) { return state->command(state, cmd, arg, NULL, 0); } static int scd30_command_read(struct scd30_state *state, enum scd30_cmd cmd, u16 *val) { __be16 tmp; int ret; ret = state->command(state, cmd, 0, &tmp, sizeof(tmp)); *val = be16_to_cpup(&tmp); return ret; } static int scd30_reset(struct scd30_state *state) { int ret; u16 val; ret = scd30_command_write(state, CMD_RESET, 0); if (ret) return ret; /* sensor boots up within 2 secs */ msleep(2000); /* * Power-on-reset causes sensor to produce some glitch on i2c bus and * some controllers end up in error state. Try to recover by placing * any data on the bus. */ scd30_command_read(state, CMD_MEAS_READY, &val); return 0; } /* simplified float to fixed point conversion with a scaling factor of 0.01 */ static int scd30_float_to_fp(int float32) { int fraction, shift, mantissa = float32 & GENMASK(22, 0), sign = (float32 & BIT(31)) ? -1 : 1, exp = (float32 & ~BIT(31)) >> 23; /* special case 0 */ if (!exp && !mantissa) return 0; exp -= 127; if (exp < 0) { exp = -exp; /* return values ranging from 1 to 99 */ return sign * ((((BIT(23) + mantissa) * 100) >> 23) >> exp); } /* return values starting at 100 */ shift = 23 - exp; float32 = BIT(exp) + (mantissa >> shift); fraction = mantissa & GENMASK(shift - 1, 0); return sign * (float32 * 100 + ((fraction * 100) >> shift)); } static int scd30_read_meas(struct scd30_state *state) { int i, ret; ret = state->command(state, CMD_READ_MEAS, 0, state->meas, sizeof(state->meas)); if (ret) return ret; be32_to_cpu_array(state->meas, (__be32 *)state->meas, ARRAY_SIZE(state->meas)); for (i = 0; i < ARRAY_SIZE(state->meas); i++) state->meas[i] = scd30_float_to_fp(state->meas[i]); /* * co2 is left unprocessed while temperature and humidity are scaled * to milli deg C and milli percent respectively. */ state->meas[SCD30_TEMP] *= 10; state->meas[SCD30_HR] *= 10; return 0; } static int scd30_wait_meas_irq(struct scd30_state *state) { int ret, timeout; reinit_completion(&state->meas_ready); enable_irq(state->irq); timeout = msecs_to_jiffies(state->meas_interval * (1000 + SCD30_EXTRA_TIMEOUT_PER_S)); ret = wait_for_completion_interruptible_timeout(&state->meas_ready, timeout); if (ret > 0) ret = 0; else if (!ret) ret = -ETIMEDOUT; disable_irq(state->irq); return ret; } static int scd30_wait_meas_poll(struct scd30_state *state) { int timeout = state->meas_interval * SCD30_EXTRA_TIMEOUT_PER_S, tries = 5; do { int ret; u16 val; ret = scd30_command_read(state, CMD_MEAS_READY, &val); if (ret) return -EIO; /* new measurement available */ if (val) break; msleep_interruptible(timeout); } while (--tries); return tries ? 0 : -ETIMEDOUT; } static int scd30_read_poll(struct scd30_state *state) { int ret; ret = scd30_wait_meas_poll(state); if (ret) return ret; return scd30_read_meas(state); } static int scd30_read(struct scd30_state *state) { if (state->irq > 0) return scd30_wait_meas_irq(state); return scd30_read_poll(state); } static int scd30_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct scd30_state *state = iio_priv(indio_dev); int ret = -EINVAL; u16 tmp; mutex_lock(&state->lock); switch (mask) { case IIO_CHAN_INFO_RAW: case IIO_CHAN_INFO_PROCESSED: if (chan->output) { *val = state->pressure_comp; ret = IIO_VAL_INT; break; } ret = iio_device_claim_direct_mode(indio_dev); if (ret) break; ret = scd30_read(state); if (ret) { iio_device_release_direct_mode(indio_dev); break; } *val = state->meas[chan->address]; iio_device_release_direct_mode(indio_dev); ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_SCALE: *val = 0; *val2 = 1; ret = IIO_VAL_INT_PLUS_MICRO; break; case IIO_CHAN_INFO_SAMP_FREQ: ret = scd30_command_read(state, CMD_MEAS_INTERVAL, &tmp); if (ret) break; *val = 0; *val2 = 1000000000 / tmp; ret = IIO_VAL_INT_PLUS_NANO; break; case IIO_CHAN_INFO_CALIBBIAS: ret = scd30_command_read(state, CMD_TEMP_OFFSET, &tmp); if (ret) break; *val = tmp; ret = IIO_VAL_INT; break; } mutex_unlock(&state->lock); return ret; } static int scd30_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct scd30_state *state = iio_priv(indio_dev); int ret = -EINVAL; mutex_lock(&state->lock); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: if (val) break; val = 1000000000 / val2; if (val < SCD30_MEAS_INTERVAL_MIN_S || val > SCD30_MEAS_INTERVAL_MAX_S) break; ret = scd30_command_write(state, CMD_MEAS_INTERVAL, val); if (ret) break; state->meas_interval = val; break; case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_PRESSURE: if (val < SCD30_PRESSURE_COMP_MIN_MBAR || val > SCD30_PRESSURE_COMP_MAX_MBAR) break; ret = scd30_command_write(state, CMD_START_MEAS, val); if (ret) break; state->pressure_comp = val; break; default: break; } break; case IIO_CHAN_INFO_CALIBBIAS: if (val < 0 || val > SCD30_TEMP_OFFSET_MAX) break; /* * Manufacturer does not explicitly specify min/max sensible * values hence check is omitted for simplicity. */ ret = scd30_command_write(state, CMD_TEMP_OFFSET / 10, val); } mutex_unlock(&state->lock); return ret; } static int scd30_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_RAW: case IIO_CHAN_INFO_CALIBBIAS: return IIO_VAL_INT; } return -EINVAL; } static const int scd30_pressure_raw_available[] = { SCD30_PRESSURE_COMP_MIN_MBAR, 1, SCD30_PRESSURE_COMP_MAX_MBAR, }; static const int scd30_temp_calibbias_available[] = { 0, 10, SCD30_TEMP_OFFSET_MAX, }; static int scd30_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_RAW: *vals = scd30_pressure_raw_available; *type = IIO_VAL_INT; return IIO_AVAIL_RANGE; case IIO_CHAN_INFO_CALIBBIAS: *vals = scd30_temp_calibbias_available; *type = IIO_VAL_INT; return IIO_AVAIL_RANGE; } return -EINVAL; } static ssize_t sampling_frequency_available_show(struct device *dev, struct device_attribute *attr, char *buf) { int i = SCD30_MEAS_INTERVAL_MIN_S; ssize_t len = 0; do { len += scnprintf(buf + len, PAGE_SIZE - len, "0.%09u ", 1000000000 / i); /* * Not all values fit PAGE_SIZE buffer hence print every 6th * (each frequency differs by 6s in time domain from the * adjacent). Unlisted but valid ones are still accepted. */ i += 6; } while (i <= SCD30_MEAS_INTERVAL_MAX_S); buf[len - 1] = '\n'; return len; } static ssize_t calibration_auto_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct scd30_state *state = iio_priv(indio_dev); int ret; u16 val; mutex_lock(&state->lock); ret = scd30_command_read(state, CMD_ASC, &val); mutex_unlock(&state->lock); return ret ?: sprintf(buf, "%d\n", val); } static ssize_t calibration_auto_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct scd30_state *state = iio_priv(indio_dev); bool val; int ret; ret = kstrtobool(buf, &val); if (ret) return ret; mutex_lock(&state->lock); ret = scd30_command_write(state, CMD_ASC, val); mutex_unlock(&state->lock); return ret ?: len; } static ssize_t calibration_forced_value_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct scd30_state *state = iio_priv(indio_dev); int ret; u16 val; mutex_lock(&state->lock); ret = scd30_command_read(state, CMD_FRC, &val); mutex_unlock(&state->lock); return ret ?: sprintf(buf, "%d\n", val); } static ssize_t calibration_forced_value_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct scd30_state *state = iio_priv(indio_dev); int ret; u16 val; ret = kstrtou16(buf, 0, &val); if (ret) return ret; if (val < SCD30_FRC_MIN_PPM || val > SCD30_FRC_MAX_PPM) return -EINVAL; mutex_lock(&state->lock); ret = scd30_command_write(state, CMD_FRC, val); mutex_unlock(&state->lock); return ret ?: len; } static IIO_DEVICE_ATTR_RO(sampling_frequency_available, 0); static IIO_DEVICE_ATTR_RW(calibration_auto_enable, 0); static IIO_DEVICE_ATTR_RW(calibration_forced_value, 0); static struct attribute *scd30_attrs[] = { &iio_dev_attr_sampling_frequency_available.dev_attr.attr, &iio_dev_attr_calibration_auto_enable.dev_attr.attr, &iio_dev_attr_calibration_forced_value.dev_attr.attr, NULL }; static const struct attribute_group scd30_attr_group = { .attrs = scd30_attrs, }; static const struct iio_info scd30_info = { .attrs = &scd30_attr_group, .read_raw = scd30_read_raw, .write_raw = scd30_write_raw, .write_raw_get_fmt = scd30_write_raw_get_fmt, .read_avail = scd30_read_avail, }; #define SCD30_CHAN_SCAN_TYPE(_sign, _realbits) .scan_type = { \ .sign = _sign, \ .realbits = _realbits, \ .storagebits = 32, \ .endianness = IIO_CPU, \ } static const struct iio_chan_spec scd30_channels[] = { { /* * this channel is special in a sense we are pretending that * sensor is able to change measurement chamber pressure but in * fact we're just setting pressure compensation value */ .type = IIO_PRESSURE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW), .output = 1, .scan_index = -1, }, { .type = IIO_CONCENTRATION, .channel2 = IIO_MOD_CO2, .address = SCD30_CONC, .scan_index = SCD30_CONC, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), .modified = 1, SCD30_CHAN_SCAN_TYPE('u', 20), }, { .type = IIO_TEMP, .address = SCD30_TEMP, .scan_index = SCD30_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_CALIBBIAS), .info_mask_separate_available = BIT(IIO_CHAN_INFO_CALIBBIAS), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), SCD30_CHAN_SCAN_TYPE('s', 18), }, { .type = IIO_HUMIDITYRELATIVE, .address = SCD30_HR, .scan_index = SCD30_HR, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), SCD30_CHAN_SCAN_TYPE('u', 17), }, IIO_CHAN_SOFT_TIMESTAMP(3), }; static int scd30_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct scd30_state *state = iio_priv(indio_dev); int ret; ret = scd30_command_write(state, CMD_STOP_MEAS, 0); if (ret) return ret; return regulator_disable(state->vdd); } static int scd30_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct scd30_state *state = iio_priv(indio_dev); int ret; ret = regulator_enable(state->vdd); if (ret) return ret; return scd30_command_write(state, CMD_START_MEAS, state->pressure_comp); } EXPORT_NS_SIMPLE_DEV_PM_OPS(scd30_pm_ops, scd30_suspend, scd30_resume, IIO_SCD30); static void scd30_stop_meas(void *data) { struct scd30_state *state = data; scd30_command_write(state, CMD_STOP_MEAS, 0); } static void scd30_disable_regulator(void *data) { struct scd30_state *state = data; regulator_disable(state->vdd); } static irqreturn_t scd30_irq_handler(int irq, void *priv) { struct iio_dev *indio_dev = priv; if (iio_buffer_enabled(indio_dev)) { iio_trigger_poll(indio_dev->trig); return IRQ_HANDLED; } return IRQ_WAKE_THREAD; } static irqreturn_t scd30_irq_thread_handler(int irq, void *priv) { struct iio_dev *indio_dev = priv; struct scd30_state *state = iio_priv(indio_dev); int ret; ret = scd30_read_meas(state); if (ret) goto out; complete_all(&state->meas_ready); out: return IRQ_HANDLED; } static irqreturn_t scd30_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct scd30_state *state = iio_priv(indio_dev); struct { int data[SCD30_MEAS_COUNT]; s64 ts __aligned(8); } scan; int ret; mutex_lock(&state->lock); if (!iio_trigger_using_own(indio_dev)) ret = scd30_read_poll(state); else ret = scd30_read_meas(state); memset(&scan, 0, sizeof(scan)); memcpy(scan.data, state->meas, sizeof(state->meas)); mutex_unlock(&state->lock); if (ret) goto out; iio_push_to_buffers_with_timestamp(indio_dev, &scan, iio_get_time_ns(indio_dev)); out: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int scd30_set_trigger_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct scd30_state *st = iio_priv(indio_dev); if (state) enable_irq(st->irq); else disable_irq(st->irq); return 0; } static const struct iio_trigger_ops scd30_trigger_ops = { .set_trigger_state = scd30_set_trigger_state, .validate_device = iio_trigger_validate_own_device, }; static int scd30_setup_trigger(struct iio_dev *indio_dev) { struct scd30_state *state = iio_priv(indio_dev); struct device *dev = indio_dev->dev.parent; struct iio_trigger *trig; int ret; trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!trig) { dev_err(dev, "failed to allocate trigger\n"); return -ENOMEM; } trig->ops = &scd30_trigger_ops; iio_trigger_set_drvdata(trig, indio_dev); ret = devm_iio_trigger_register(dev, trig); if (ret) return ret; indio_dev->trig = iio_trigger_get(trig); /* * Interrupt is enabled just before taking a fresh measurement * and disabled afterwards. This means we need to ensure it is not * enabled here to keep calls to enable/disable balanced. */ ret = devm_request_threaded_irq(dev, state->irq, scd30_irq_handler, scd30_irq_thread_handler, IRQF_TRIGGER_HIGH | IRQF_ONESHOT | IRQF_NO_AUTOEN, indio_dev->name, indio_dev); if (ret) dev_err(dev, "failed to request irq\n"); return ret; } int scd30_probe(struct device *dev, int irq, const char *name, void *priv, scd30_command_t command) { static const unsigned long scd30_scan_masks[] = { 0x07, 0x00 }; struct scd30_state *state; struct iio_dev *indio_dev; int ret; u16 val; indio_dev = devm_iio_device_alloc(dev, sizeof(*state)); if (!indio_dev) return -ENOMEM; state = iio_priv(indio_dev); state->dev = dev; state->priv = priv; state->irq = irq; state->pressure_comp = SCD30_PRESSURE_COMP_DEFAULT; state->meas_interval = SCD30_MEAS_INTERVAL_DEFAULT; state->command = command; mutex_init(&state->lock); init_completion(&state->meas_ready); dev_set_drvdata(dev, indio_dev); indio_dev->info = &scd30_info; indio_dev->name = name; indio_dev->channels = scd30_channels; indio_dev->num_channels = ARRAY_SIZE(scd30_channels); indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->available_scan_masks = scd30_scan_masks; state->vdd = devm_regulator_get(dev, "vdd"); if (IS_ERR(state->vdd)) return dev_err_probe(dev, PTR_ERR(state->vdd), "failed to get regulator\n"); ret = regulator_enable(state->vdd); if (ret) return ret; ret = devm_add_action_or_reset(dev, scd30_disable_regulator, state); if (ret) return ret; ret = scd30_reset(state); if (ret) { dev_err(dev, "failed to reset device: %d\n", ret); return ret; } if (state->irq > 0) { ret = scd30_setup_trigger(indio_dev); if (ret) { dev_err(dev, "failed to setup trigger: %d\n", ret); return ret; } } ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, scd30_trigger_handler, NULL); if (ret) return ret; ret = scd30_command_read(state, CMD_FW_VERSION, &val); if (ret) { dev_err(dev, "failed to read firmware version: %d\n", ret); return ret; } dev_info(dev, "firmware version: %d.%d\n", val >> 8, (char)val); ret = scd30_command_write(state, CMD_MEAS_INTERVAL, state->meas_interval); if (ret) { dev_err(dev, "failed to set measurement interval: %d\n", ret); return ret; } ret = scd30_command_write(state, CMD_START_MEAS, state->pressure_comp); if (ret) { dev_err(dev, "failed to start measurement: %d\n", ret); return ret; } ret = devm_add_action_or_reset(dev, scd30_stop_meas, state); if (ret) return ret; return devm_iio_device_register(dev, indio_dev); } EXPORT_SYMBOL_NS(scd30_probe, IIO_SCD30); MODULE_AUTHOR("Tomasz Duszynski <tomasz.duszynski@octakon.com>"); MODULE_DESCRIPTION("Sensirion SCD30 carbon dioxide sensor core driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1