Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alberto Panizzo | 1887 | 76.96% | 1 | 3.85% |
Hui Wang | 178 | 7.26% | 1 | 3.85% |
Liu Ying | 137 | 5.59% | 1 | 3.85% |
Fabio Estevam | 103 | 4.20% | 11 | 42.31% |
Anson Huang | 61 | 2.49% | 2 | 7.69% |
Dmitry Torokhov | 28 | 1.14% | 2 | 7.69% |
Michael Grzeschik | 18 | 0.73% | 1 | 3.85% |
Kees Cook | 14 | 0.57% | 1 | 3.85% |
Andreas Pretzsch | 13 | 0.53% | 1 | 3.85% |
Andrzej Pietrasiewicz | 6 | 0.24% | 1 | 3.85% |
Tejun Heo | 3 | 0.12% | 1 | 3.85% |
JJ Ding | 2 | 0.08% | 1 | 3.85% |
Yong Zhang | 1 | 0.04% | 1 | 3.85% |
Jingoo Han | 1 | 0.04% | 1 | 3.85% |
Total | 2452 | 26 |
// SPDX-License-Identifier: GPL-2.0 // // Driver for the IMX keypad port. // Copyright (C) 2009 Alberto Panizzo <maramaopercheseimorto@gmail.com> #include <linux/clk.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/input.h> #include <linux/input/matrix_keypad.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/timer.h> /* * Keypad Controller registers (halfword) */ #define KPCR 0x00 /* Keypad Control Register */ #define KPSR 0x02 /* Keypad Status Register */ #define KBD_STAT_KPKD (0x1 << 0) /* Key Press Interrupt Status bit (w1c) */ #define KBD_STAT_KPKR (0x1 << 1) /* Key Release Interrupt Status bit (w1c) */ #define KBD_STAT_KDSC (0x1 << 2) /* Key Depress Synch Chain Status bit (w1c)*/ #define KBD_STAT_KRSS (0x1 << 3) /* Key Release Synch Status bit (w1c)*/ #define KBD_STAT_KDIE (0x1 << 8) /* Key Depress Interrupt Enable Status bit */ #define KBD_STAT_KRIE (0x1 << 9) /* Key Release Interrupt Enable */ #define KBD_STAT_KPPEN (0x1 << 10) /* Keypad Clock Enable */ #define KDDR 0x04 /* Keypad Data Direction Register */ #define KPDR 0x06 /* Keypad Data Register */ #define MAX_MATRIX_KEY_ROWS 8 #define MAX_MATRIX_KEY_COLS 8 #define MATRIX_ROW_SHIFT 3 #define MAX_MATRIX_KEY_NUM (MAX_MATRIX_KEY_ROWS * MAX_MATRIX_KEY_COLS) struct imx_keypad { struct clk *clk; struct input_dev *input_dev; void __iomem *mmio_base; int irq; struct timer_list check_matrix_timer; /* * The matrix is stable only if no changes are detected after * IMX_KEYPAD_SCANS_FOR_STABILITY scans */ #define IMX_KEYPAD_SCANS_FOR_STABILITY 3 int stable_count; bool enabled; /* Masks for enabled rows/cols */ unsigned short rows_en_mask; unsigned short cols_en_mask; unsigned short keycodes[MAX_MATRIX_KEY_NUM]; /* * Matrix states: * -stable: achieved after a complete debounce process. * -unstable: used in the debouncing process. */ unsigned short matrix_stable_state[MAX_MATRIX_KEY_COLS]; unsigned short matrix_unstable_state[MAX_MATRIX_KEY_COLS]; }; /* Scan the matrix and return the new state in *matrix_volatile_state. */ static void imx_keypad_scan_matrix(struct imx_keypad *keypad, unsigned short *matrix_volatile_state) { int col; unsigned short reg_val; for (col = 0; col < MAX_MATRIX_KEY_COLS; col++) { if ((keypad->cols_en_mask & (1 << col)) == 0) continue; /* * Discharge keypad capacitance: * 2. write 1s on column data. * 3. configure columns as totem-pole to discharge capacitance. * 4. configure columns as open-drain. */ reg_val = readw(keypad->mmio_base + KPDR); reg_val |= 0xff00; writew(reg_val, keypad->mmio_base + KPDR); reg_val = readw(keypad->mmio_base + KPCR); reg_val &= ~((keypad->cols_en_mask & 0xff) << 8); writew(reg_val, keypad->mmio_base + KPCR); udelay(2); reg_val = readw(keypad->mmio_base + KPCR); reg_val |= (keypad->cols_en_mask & 0xff) << 8; writew(reg_val, keypad->mmio_base + KPCR); /* * 5. Write a single column to 0, others to 1. * 6. Sample row inputs and save data. * 7. Repeat steps 2 - 6 for remaining columns. */ reg_val = readw(keypad->mmio_base + KPDR); reg_val &= ~(1 << (8 + col)); writew(reg_val, keypad->mmio_base + KPDR); /* * Delay added to avoid propagating the 0 from column to row * when scanning. */ udelay(5); /* * 1s in matrix_volatile_state[col] means key pressures * throw data from non enabled rows. */ reg_val = readw(keypad->mmio_base + KPDR); matrix_volatile_state[col] = (~reg_val) & keypad->rows_en_mask; } /* * Return in standby mode: * 9. write 0s to columns */ reg_val = readw(keypad->mmio_base + KPDR); reg_val &= 0x00ff; writew(reg_val, keypad->mmio_base + KPDR); } /* * Compare the new matrix state (volatile) with the stable one stored in * keypad->matrix_stable_state and fire events if changes are detected. */ static void imx_keypad_fire_events(struct imx_keypad *keypad, unsigned short *matrix_volatile_state) { struct input_dev *input_dev = keypad->input_dev; int row, col; for (col = 0; col < MAX_MATRIX_KEY_COLS; col++) { unsigned short bits_changed; int code; if ((keypad->cols_en_mask & (1 << col)) == 0) continue; /* Column is not enabled */ bits_changed = keypad->matrix_stable_state[col] ^ matrix_volatile_state[col]; if (bits_changed == 0) continue; /* Column does not contain changes */ for (row = 0; row < MAX_MATRIX_KEY_ROWS; row++) { if ((keypad->rows_en_mask & (1 << row)) == 0) continue; /* Row is not enabled */ if ((bits_changed & (1 << row)) == 0) continue; /* Row does not contain changes */ code = MATRIX_SCAN_CODE(row, col, MATRIX_ROW_SHIFT); input_event(input_dev, EV_MSC, MSC_SCAN, code); input_report_key(input_dev, keypad->keycodes[code], matrix_volatile_state[col] & (1 << row)); dev_dbg(&input_dev->dev, "Event code: %d, val: %d", keypad->keycodes[code], matrix_volatile_state[col] & (1 << row)); } } input_sync(input_dev); } /* * imx_keypad_check_for_events is the timer handler. */ static void imx_keypad_check_for_events(struct timer_list *t) { struct imx_keypad *keypad = from_timer(keypad, t, check_matrix_timer); unsigned short matrix_volatile_state[MAX_MATRIX_KEY_COLS]; unsigned short reg_val; bool state_changed, is_zero_matrix; int i; memset(matrix_volatile_state, 0, sizeof(matrix_volatile_state)); imx_keypad_scan_matrix(keypad, matrix_volatile_state); state_changed = false; for (i = 0; i < MAX_MATRIX_KEY_COLS; i++) { if ((keypad->cols_en_mask & (1 << i)) == 0) continue; if (keypad->matrix_unstable_state[i] ^ matrix_volatile_state[i]) { state_changed = true; break; } } /* * If the matrix state is changed from the previous scan * (Re)Begin the debouncing process, saving the new state in * keypad->matrix_unstable_state. * else * Increase the count of number of scans with a stable state. */ if (state_changed) { memcpy(keypad->matrix_unstable_state, matrix_volatile_state, sizeof(matrix_volatile_state)); keypad->stable_count = 0; } else keypad->stable_count++; /* * If the matrix is not as stable as we want reschedule scan * in the near future. */ if (keypad->stable_count < IMX_KEYPAD_SCANS_FOR_STABILITY) { mod_timer(&keypad->check_matrix_timer, jiffies + msecs_to_jiffies(10)); return; } /* * If the matrix state is stable, fire the events and save the new * stable state. Note, if the matrix is kept stable for longer * (keypad->stable_count > IMX_KEYPAD_SCANS_FOR_STABILITY) all * events have already been generated. */ if (keypad->stable_count == IMX_KEYPAD_SCANS_FOR_STABILITY) { imx_keypad_fire_events(keypad, matrix_volatile_state); memcpy(keypad->matrix_stable_state, matrix_volatile_state, sizeof(matrix_volatile_state)); } is_zero_matrix = true; for (i = 0; i < MAX_MATRIX_KEY_COLS; i++) { if (matrix_volatile_state[i] != 0) { is_zero_matrix = false; break; } } if (is_zero_matrix) { /* * All keys have been released. Enable only the KDI * interrupt for future key presses (clear the KDI * status bit and its sync chain before that). */ reg_val = readw(keypad->mmio_base + KPSR); reg_val |= KBD_STAT_KPKD | KBD_STAT_KDSC; writew(reg_val, keypad->mmio_base + KPSR); reg_val = readw(keypad->mmio_base + KPSR); reg_val |= KBD_STAT_KDIE; reg_val &= ~KBD_STAT_KRIE; writew(reg_val, keypad->mmio_base + KPSR); } else { /* * Some keys are still pressed. Schedule a rescan in * attempt to detect multiple key presses and enable * the KRI interrupt to react quickly to key release * event. */ mod_timer(&keypad->check_matrix_timer, jiffies + msecs_to_jiffies(60)); reg_val = readw(keypad->mmio_base + KPSR); reg_val |= KBD_STAT_KPKR | KBD_STAT_KRSS; writew(reg_val, keypad->mmio_base + KPSR); reg_val = readw(keypad->mmio_base + KPSR); reg_val |= KBD_STAT_KRIE; reg_val &= ~KBD_STAT_KDIE; writew(reg_val, keypad->mmio_base + KPSR); } } static irqreturn_t imx_keypad_irq_handler(int irq, void *dev_id) { struct imx_keypad *keypad = dev_id; unsigned short reg_val; reg_val = readw(keypad->mmio_base + KPSR); /* Disable both interrupt types */ reg_val &= ~(KBD_STAT_KRIE | KBD_STAT_KDIE); /* Clear interrupts status bits */ reg_val |= KBD_STAT_KPKR | KBD_STAT_KPKD; writew(reg_val, keypad->mmio_base + KPSR); if (keypad->enabled) { /* The matrix is supposed to be changed */ keypad->stable_count = 0; /* Schedule the scanning procedure near in the future */ mod_timer(&keypad->check_matrix_timer, jiffies + msecs_to_jiffies(2)); } return IRQ_HANDLED; } static void imx_keypad_config(struct imx_keypad *keypad) { unsigned short reg_val; /* * Include enabled rows in interrupt generation (KPCR[7:0]) * Configure keypad columns as open-drain (KPCR[15:8]) */ reg_val = readw(keypad->mmio_base + KPCR); reg_val |= keypad->rows_en_mask & 0xff; /* rows */ reg_val |= (keypad->cols_en_mask & 0xff) << 8; /* cols */ writew(reg_val, keypad->mmio_base + KPCR); /* Write 0's to KPDR[15:8] (Colums) */ reg_val = readw(keypad->mmio_base + KPDR); reg_val &= 0x00ff; writew(reg_val, keypad->mmio_base + KPDR); /* Configure columns as output, rows as input (KDDR[15:0]) */ writew(0xff00, keypad->mmio_base + KDDR); /* * Clear Key Depress and Key Release status bit. * Clear both synchronizer chain. */ reg_val = readw(keypad->mmio_base + KPSR); reg_val |= KBD_STAT_KPKR | KBD_STAT_KPKD | KBD_STAT_KDSC | KBD_STAT_KRSS; writew(reg_val, keypad->mmio_base + KPSR); /* Enable KDI and disable KRI (avoid false release events). */ reg_val |= KBD_STAT_KDIE; reg_val &= ~KBD_STAT_KRIE; writew(reg_val, keypad->mmio_base + KPSR); } static void imx_keypad_inhibit(struct imx_keypad *keypad) { unsigned short reg_val; /* Inhibit KDI and KRI interrupts. */ reg_val = readw(keypad->mmio_base + KPSR); reg_val &= ~(KBD_STAT_KRIE | KBD_STAT_KDIE); reg_val |= KBD_STAT_KPKR | KBD_STAT_KPKD; writew(reg_val, keypad->mmio_base + KPSR); /* Colums as open drain and disable all rows */ reg_val = (keypad->cols_en_mask & 0xff) << 8; writew(reg_val, keypad->mmio_base + KPCR); } static void imx_keypad_close(struct input_dev *dev) { struct imx_keypad *keypad = input_get_drvdata(dev); dev_dbg(&dev->dev, ">%s\n", __func__); /* Mark keypad as being inactive */ keypad->enabled = false; synchronize_irq(keypad->irq); del_timer_sync(&keypad->check_matrix_timer); imx_keypad_inhibit(keypad); /* Disable clock unit */ clk_disable_unprepare(keypad->clk); } static int imx_keypad_open(struct input_dev *dev) { struct imx_keypad *keypad = input_get_drvdata(dev); int error; dev_dbg(&dev->dev, ">%s\n", __func__); /* Enable the kpp clock */ error = clk_prepare_enable(keypad->clk); if (error) return error; /* We became active from now */ keypad->enabled = true; imx_keypad_config(keypad); /* Sanity control, not all the rows must be actived now. */ if ((readw(keypad->mmio_base + KPDR) & keypad->rows_en_mask) == 0) { dev_err(&dev->dev, "too many keys pressed, control pins initialisation\n"); goto open_err; } return 0; open_err: imx_keypad_close(dev); return -EIO; } static const struct of_device_id imx_keypad_of_match[] = { { .compatible = "fsl,imx21-kpp", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, imx_keypad_of_match); static int imx_keypad_probe(struct platform_device *pdev) { struct imx_keypad *keypad; struct input_dev *input_dev; int irq, error, i, row, col; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; input_dev = devm_input_allocate_device(&pdev->dev); if (!input_dev) { dev_err(&pdev->dev, "failed to allocate the input device\n"); return -ENOMEM; } keypad = devm_kzalloc(&pdev->dev, sizeof(*keypad), GFP_KERNEL); if (!keypad) { dev_err(&pdev->dev, "not enough memory for driver data\n"); return -ENOMEM; } keypad->input_dev = input_dev; keypad->irq = irq; keypad->stable_count = 0; timer_setup(&keypad->check_matrix_timer, imx_keypad_check_for_events, 0); keypad->mmio_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(keypad->mmio_base)) return PTR_ERR(keypad->mmio_base); keypad->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(keypad->clk)) { dev_err(&pdev->dev, "failed to get keypad clock\n"); return PTR_ERR(keypad->clk); } /* Init the Input device */ input_dev->name = pdev->name; input_dev->id.bustype = BUS_HOST; input_dev->dev.parent = &pdev->dev; input_dev->open = imx_keypad_open; input_dev->close = imx_keypad_close; error = matrix_keypad_build_keymap(NULL, NULL, MAX_MATRIX_KEY_ROWS, MAX_MATRIX_KEY_COLS, keypad->keycodes, input_dev); if (error) { dev_err(&pdev->dev, "failed to build keymap\n"); return error; } /* Search for rows and cols enabled */ for (row = 0; row < MAX_MATRIX_KEY_ROWS; row++) { for (col = 0; col < MAX_MATRIX_KEY_COLS; col++) { i = MATRIX_SCAN_CODE(row, col, MATRIX_ROW_SHIFT); if (keypad->keycodes[i] != KEY_RESERVED) { keypad->rows_en_mask |= 1 << row; keypad->cols_en_mask |= 1 << col; } } } dev_dbg(&pdev->dev, "enabled rows mask: %x\n", keypad->rows_en_mask); dev_dbg(&pdev->dev, "enabled cols mask: %x\n", keypad->cols_en_mask); __set_bit(EV_REP, input_dev->evbit); input_set_capability(input_dev, EV_MSC, MSC_SCAN); input_set_drvdata(input_dev, keypad); /* Ensure that the keypad will stay dormant until opened */ error = clk_prepare_enable(keypad->clk); if (error) return error; imx_keypad_inhibit(keypad); clk_disable_unprepare(keypad->clk); error = devm_request_irq(&pdev->dev, irq, imx_keypad_irq_handler, 0, pdev->name, keypad); if (error) { dev_err(&pdev->dev, "failed to request IRQ\n"); return error; } /* Register the input device */ error = input_register_device(input_dev); if (error) { dev_err(&pdev->dev, "failed to register input device\n"); return error; } platform_set_drvdata(pdev, keypad); device_init_wakeup(&pdev->dev, 1); return 0; } static int __maybe_unused imx_kbd_noirq_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct imx_keypad *kbd = platform_get_drvdata(pdev); struct input_dev *input_dev = kbd->input_dev; unsigned short reg_val = readw(kbd->mmio_base + KPSR); /* imx kbd can wake up system even clock is disabled */ mutex_lock(&input_dev->mutex); if (input_device_enabled(input_dev)) clk_disable_unprepare(kbd->clk); mutex_unlock(&input_dev->mutex); if (device_may_wakeup(&pdev->dev)) { if (reg_val & KBD_STAT_KPKD) reg_val |= KBD_STAT_KRIE; if (reg_val & KBD_STAT_KPKR) reg_val |= KBD_STAT_KDIE; writew(reg_val, kbd->mmio_base + KPSR); enable_irq_wake(kbd->irq); } return 0; } static int __maybe_unused imx_kbd_noirq_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct imx_keypad *kbd = platform_get_drvdata(pdev); struct input_dev *input_dev = kbd->input_dev; int ret = 0; if (device_may_wakeup(&pdev->dev)) disable_irq_wake(kbd->irq); mutex_lock(&input_dev->mutex); if (input_device_enabled(input_dev)) { ret = clk_prepare_enable(kbd->clk); if (ret) goto err_clk; } err_clk: mutex_unlock(&input_dev->mutex); return ret; } static const struct dev_pm_ops imx_kbd_pm_ops = { SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(imx_kbd_noirq_suspend, imx_kbd_noirq_resume) }; static struct platform_driver imx_keypad_driver = { .driver = { .name = "imx-keypad", .pm = &imx_kbd_pm_ops, .of_match_table = imx_keypad_of_match, }, .probe = imx_keypad_probe, }; module_platform_driver(imx_keypad_driver); MODULE_AUTHOR("Alberto Panizzo <maramaopercheseimorto@gmail.com>"); MODULE_DESCRIPTION("IMX Keypad Port Driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:imx-keypad");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1