Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Laurent Pinchart | 1667 | 36.00% | 8 | 8.42% |
Magnus Damm | 1246 | 26.91% | 20 | 21.05% |
Yoshihiro Shimoda | 552 | 11.92% | 14 | 14.74% |
Geert Uytterhoeven | 497 | 10.73% | 12 | 12.63% |
Robin Murphy | 165 | 3.56% | 11 | 11.58% |
Joerg Roedel | 116 | 2.51% | 4 | 4.21% |
Oleksandr Tyshchenko | 86 | 1.86% | 1 | 1.05% |
Lu Baolu | 52 | 1.12% | 1 | 1.05% |
Hai Nguyen Pham | 52 | 1.12% | 2 | 2.11% |
Will Deacon | 48 | 1.04% | 5 | 5.26% |
Simon Horman | 29 | 0.63% | 1 | 1.05% |
Fabrizio Castro | 26 | 0.56% | 2 | 2.11% |
Marian-Cristian Rotariu | 19 | 0.41% | 1 | 1.05% |
Jacopo Mondi | 13 | 0.28% | 1 | 1.05% |
Biju Das | 13 | 0.28% | 1 | 1.05% |
Nikita Yushchenko | 13 | 0.28% | 1 | 1.05% |
Jiasheng Jiang | 9 | 0.19% | 1 | 1.05% |
Arnd Bergmann | 7 | 0.15% | 1 | 1.05% |
Lad Prabhakar | 5 | 0.11% | 1 | 1.05% |
Paul Gortmaker | 4 | 0.09% | 1 | 1.05% |
Rob Herring | 3 | 0.06% | 1 | 1.05% |
tom | 3 | 0.06% | 1 | 1.05% |
Baolin Wang | 2 | 0.04% | 1 | 1.05% |
Bhumika Goyal | 1 | 0.02% | 1 | 1.05% |
Axel Lin | 1 | 0.02% | 1 | 1.05% |
Kuninori Morimoto | 1 | 0.02% | 1 | 1.05% |
Total | 4630 | 95 |
// SPDX-License-Identifier: GPL-2.0 /* * IOMMU API for Renesas VMSA-compatible IPMMU * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> * * Copyright (C) 2014-2020 Renesas Electronics Corporation */ #include <linux/bitmap.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/export.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/io-pgtable.h> #include <linux/iommu.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/sizes.h> #include <linux/slab.h> #include <linux/sys_soc.h> #if defined(CONFIG_ARM) && !defined(CONFIG_IOMMU_DMA) #include <asm/dma-iommu.h> #else #define arm_iommu_create_mapping(...) NULL #define arm_iommu_attach_device(...) -ENODEV #define arm_iommu_release_mapping(...) do {} while (0) #define arm_iommu_detach_device(...) do {} while (0) #endif #define IPMMU_CTX_MAX 16U #define IPMMU_CTX_INVALID -1 #define IPMMU_UTLB_MAX 64U struct ipmmu_features { bool use_ns_alias_offset; bool has_cache_leaf_nodes; unsigned int number_of_contexts; unsigned int num_utlbs; bool setup_imbuscr; bool twobit_imttbcr_sl0; bool reserved_context; bool cache_snoop; unsigned int ctx_offset_base; unsigned int ctx_offset_stride; unsigned int utlb_offset_base; }; struct ipmmu_vmsa_device { struct device *dev; void __iomem *base; struct iommu_device iommu; struct ipmmu_vmsa_device *root; const struct ipmmu_features *features; unsigned int num_ctx; spinlock_t lock; /* Protects ctx and domains[] */ DECLARE_BITMAP(ctx, IPMMU_CTX_MAX); struct ipmmu_vmsa_domain *domains[IPMMU_CTX_MAX]; s8 utlb_ctx[IPMMU_UTLB_MAX]; struct iommu_group *group; struct dma_iommu_mapping *mapping; }; struct ipmmu_vmsa_domain { struct ipmmu_vmsa_device *mmu; struct iommu_domain io_domain; struct io_pgtable_cfg cfg; struct io_pgtable_ops *iop; unsigned int context_id; struct mutex mutex; /* Protects mappings */ }; static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom) { return container_of(dom, struct ipmmu_vmsa_domain, io_domain); } static struct ipmmu_vmsa_device *to_ipmmu(struct device *dev) { return dev_iommu_priv_get(dev); } #define TLB_LOOP_TIMEOUT 100 /* 100us */ /* ----------------------------------------------------------------------------- * Registers Definition */ #define IM_NS_ALIAS_OFFSET 0x800 /* MMU "context" registers */ #define IMCTR 0x0000 /* R-Car Gen2/3 */ #define IMCTR_INTEN (1 << 2) /* R-Car Gen2/3 */ #define IMCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */ #define IMCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */ #define IMTTBCR 0x0008 /* R-Car Gen2/3 */ #define IMTTBCR_EAE (1 << 31) /* R-Car Gen2/3 */ #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) /* R-Car Gen2 only */ #define IMTTBCR_ORGN0_WB_WA (1 << 10) /* R-Car Gen2 only */ #define IMTTBCR_IRGN0_WB_WA (1 << 8) /* R-Car Gen2 only */ #define IMTTBCR_SL0_TWOBIT_LVL_1 (2 << 6) /* R-Car Gen3 only */ #define IMTTBCR_SL0_LVL_1 (1 << 4) /* R-Car Gen2 only */ #define IMBUSCR 0x000c /* R-Car Gen2 only */ #define IMBUSCR_DVM (1 << 2) /* R-Car Gen2 only */ #define IMBUSCR_BUSSEL_MASK (3 << 0) /* R-Car Gen2 only */ #define IMTTLBR0 0x0010 /* R-Car Gen2/3 */ #define IMTTUBR0 0x0014 /* R-Car Gen2/3 */ #define IMSTR 0x0020 /* R-Car Gen2/3 */ #define IMSTR_MHIT (1 << 4) /* R-Car Gen2/3 */ #define IMSTR_ABORT (1 << 2) /* R-Car Gen2/3 */ #define IMSTR_PF (1 << 1) /* R-Car Gen2/3 */ #define IMSTR_TF (1 << 0) /* R-Car Gen2/3 */ #define IMMAIR0 0x0028 /* R-Car Gen2/3 */ #define IMELAR 0x0030 /* R-Car Gen2/3, IMEAR on R-Car Gen2 */ #define IMEUAR 0x0034 /* R-Car Gen3 only */ /* uTLB registers */ #define IMUCTR(n) ((n) < 32 ? IMUCTR0(n) : IMUCTR32(n)) #define IMUCTR0(n) (0x0300 + ((n) * 16)) /* R-Car Gen2/3 */ #define IMUCTR32(n) (0x0600 + (((n) - 32) * 16)) /* R-Car Gen3 only */ #define IMUCTR_TTSEL_MMU(n) ((n) << 4) /* R-Car Gen2/3 */ #define IMUCTR_FLUSH (1 << 1) /* R-Car Gen2/3 */ #define IMUCTR_MMUEN (1 << 0) /* R-Car Gen2/3 */ #define IMUASID(n) ((n) < 32 ? IMUASID0(n) : IMUASID32(n)) #define IMUASID0(n) (0x0308 + ((n) * 16)) /* R-Car Gen2/3 */ #define IMUASID32(n) (0x0608 + (((n) - 32) * 16)) /* R-Car Gen3 only */ /* ----------------------------------------------------------------------------- * Root device handling */ static struct platform_driver ipmmu_driver; static bool ipmmu_is_root(struct ipmmu_vmsa_device *mmu) { return mmu->root == mmu; } static int __ipmmu_check_device(struct device *dev, void *data) { struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev); struct ipmmu_vmsa_device **rootp = data; if (ipmmu_is_root(mmu)) *rootp = mmu; return 0; } static struct ipmmu_vmsa_device *ipmmu_find_root(void) { struct ipmmu_vmsa_device *root = NULL; return driver_for_each_device(&ipmmu_driver.driver, NULL, &root, __ipmmu_check_device) == 0 ? root : NULL; } /* ----------------------------------------------------------------------------- * Read/Write Access */ static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset) { return ioread32(mmu->base + offset); } static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset, u32 data) { iowrite32(data, mmu->base + offset); } static unsigned int ipmmu_ctx_reg(struct ipmmu_vmsa_device *mmu, unsigned int context_id, unsigned int reg) { unsigned int base = mmu->features->ctx_offset_base; if (context_id > 7) base += 0x800 - 8 * 0x40; return base + context_id * mmu->features->ctx_offset_stride + reg; } static u32 ipmmu_ctx_read(struct ipmmu_vmsa_device *mmu, unsigned int context_id, unsigned int reg) { return ipmmu_read(mmu, ipmmu_ctx_reg(mmu, context_id, reg)); } static void ipmmu_ctx_write(struct ipmmu_vmsa_device *mmu, unsigned int context_id, unsigned int reg, u32 data) { ipmmu_write(mmu, ipmmu_ctx_reg(mmu, context_id, reg), data); } static u32 ipmmu_ctx_read_root(struct ipmmu_vmsa_domain *domain, unsigned int reg) { return ipmmu_ctx_read(domain->mmu->root, domain->context_id, reg); } static void ipmmu_ctx_write_root(struct ipmmu_vmsa_domain *domain, unsigned int reg, u32 data) { ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data); } static void ipmmu_ctx_write_all(struct ipmmu_vmsa_domain *domain, unsigned int reg, u32 data) { if (domain->mmu != domain->mmu->root) ipmmu_ctx_write(domain->mmu, domain->context_id, reg, data); ipmmu_ctx_write(domain->mmu->root, domain->context_id, reg, data); } static u32 ipmmu_utlb_reg(struct ipmmu_vmsa_device *mmu, unsigned int reg) { return mmu->features->utlb_offset_base + reg; } static void ipmmu_imuasid_write(struct ipmmu_vmsa_device *mmu, unsigned int utlb, u32 data) { ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUASID(utlb)), data); } static void ipmmu_imuctr_write(struct ipmmu_vmsa_device *mmu, unsigned int utlb, u32 data) { ipmmu_write(mmu, ipmmu_utlb_reg(mmu, IMUCTR(utlb)), data); } /* ----------------------------------------------------------------------------- * TLB and microTLB Management */ /* Wait for any pending TLB invalidations to complete */ static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain) { unsigned int count = 0; while (ipmmu_ctx_read_root(domain, IMCTR) & IMCTR_FLUSH) { cpu_relax(); if (++count == TLB_LOOP_TIMEOUT) { dev_err_ratelimited(domain->mmu->dev, "TLB sync timed out -- MMU may be deadlocked\n"); return; } udelay(1); } } static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain) { u32 reg; reg = ipmmu_ctx_read_root(domain, IMCTR); reg |= IMCTR_FLUSH; ipmmu_ctx_write_all(domain, IMCTR, reg); ipmmu_tlb_sync(domain); } /* * Enable MMU translation for the microTLB. */ static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain, unsigned int utlb) { struct ipmmu_vmsa_device *mmu = domain->mmu; /* * TODO: Reference-count the microTLB as several bus masters can be * connected to the same microTLB. */ /* TODO: What should we set the ASID to ? */ ipmmu_imuasid_write(mmu, utlb, 0); /* TODO: Do we need to flush the microTLB ? */ ipmmu_imuctr_write(mmu, utlb, IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH | IMUCTR_MMUEN); mmu->utlb_ctx[utlb] = domain->context_id; } /* * Disable MMU translation for the microTLB. */ static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain, unsigned int utlb) { struct ipmmu_vmsa_device *mmu = domain->mmu; ipmmu_imuctr_write(mmu, utlb, 0); mmu->utlb_ctx[utlb] = IPMMU_CTX_INVALID; } static void ipmmu_tlb_flush_all(void *cookie) { struct ipmmu_vmsa_domain *domain = cookie; ipmmu_tlb_invalidate(domain); } static void ipmmu_tlb_flush(unsigned long iova, size_t size, size_t granule, void *cookie) { ipmmu_tlb_flush_all(cookie); } static const struct iommu_flush_ops ipmmu_flush_ops = { .tlb_flush_all = ipmmu_tlb_flush_all, .tlb_flush_walk = ipmmu_tlb_flush, }; /* ----------------------------------------------------------------------------- * Domain/Context Management */ static int ipmmu_domain_allocate_context(struct ipmmu_vmsa_device *mmu, struct ipmmu_vmsa_domain *domain) { unsigned long flags; int ret; spin_lock_irqsave(&mmu->lock, flags); ret = find_first_zero_bit(mmu->ctx, mmu->num_ctx); if (ret != mmu->num_ctx) { mmu->domains[ret] = domain; set_bit(ret, mmu->ctx); } else ret = -EBUSY; spin_unlock_irqrestore(&mmu->lock, flags); return ret; } static void ipmmu_domain_free_context(struct ipmmu_vmsa_device *mmu, unsigned int context_id) { unsigned long flags; spin_lock_irqsave(&mmu->lock, flags); clear_bit(context_id, mmu->ctx); mmu->domains[context_id] = NULL; spin_unlock_irqrestore(&mmu->lock, flags); } static void ipmmu_domain_setup_context(struct ipmmu_vmsa_domain *domain) { u64 ttbr; u32 tmp; /* TTBR0 */ ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr; ipmmu_ctx_write_root(domain, IMTTLBR0, ttbr); ipmmu_ctx_write_root(domain, IMTTUBR0, ttbr >> 32); /* * TTBCR * We use long descriptors and allocate the whole 32-bit VA space to * TTBR0. */ if (domain->mmu->features->twobit_imttbcr_sl0) tmp = IMTTBCR_SL0_TWOBIT_LVL_1; else tmp = IMTTBCR_SL0_LVL_1; if (domain->mmu->features->cache_snoop) tmp |= IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA | IMTTBCR_IRGN0_WB_WA; ipmmu_ctx_write_root(domain, IMTTBCR, IMTTBCR_EAE | tmp); /* MAIR0 */ ipmmu_ctx_write_root(domain, IMMAIR0, domain->cfg.arm_lpae_s1_cfg.mair); /* IMBUSCR */ if (domain->mmu->features->setup_imbuscr) ipmmu_ctx_write_root(domain, IMBUSCR, ipmmu_ctx_read_root(domain, IMBUSCR) & ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK)); /* * IMSTR * Clear all interrupt flags. */ ipmmu_ctx_write_root(domain, IMSTR, ipmmu_ctx_read_root(domain, IMSTR)); /* * IMCTR * Enable the MMU and interrupt generation. The long-descriptor * translation table format doesn't use TEX remapping. Don't enable AF * software management as we have no use for it. Flush the TLB as * required when modifying the context registers. */ ipmmu_ctx_write_all(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN); } static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain) { int ret; /* * Allocate the page table operations. * * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory * access, Long-descriptor format" that the NStable bit being set in a * table descriptor will result in the NStable and NS bits of all child * entries being ignored and considered as being set. The IPMMU seems * not to comply with this, as it generates a secure access page fault * if any of the NStable and NS bits isn't set when running in * non-secure mode. */ domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS; domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K; domain->cfg.ias = 32; domain->cfg.oas = 40; domain->cfg.tlb = &ipmmu_flush_ops; domain->io_domain.geometry.aperture_end = DMA_BIT_MASK(32); domain->io_domain.geometry.force_aperture = true; /* * TODO: Add support for coherent walk through CCI with DVM and remove * cache handling. For now, delegate it to the io-pgtable code. */ domain->cfg.coherent_walk = false; domain->cfg.iommu_dev = domain->mmu->root->dev; /* * Find an unused context. */ ret = ipmmu_domain_allocate_context(domain->mmu->root, domain); if (ret < 0) return ret; domain->context_id = ret; domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg, domain); if (!domain->iop) { ipmmu_domain_free_context(domain->mmu->root, domain->context_id); return -EINVAL; } ipmmu_domain_setup_context(domain); return 0; } static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain) { if (!domain->mmu) return; /* * Disable the context. Flush the TLB as required when modifying the * context registers. * * TODO: Is TLB flush really needed ? */ ipmmu_ctx_write_all(domain, IMCTR, IMCTR_FLUSH); ipmmu_tlb_sync(domain); ipmmu_domain_free_context(domain->mmu->root, domain->context_id); } /* ----------------------------------------------------------------------------- * Fault Handling */ static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain) { const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF; struct ipmmu_vmsa_device *mmu = domain->mmu; unsigned long iova; u32 status; status = ipmmu_ctx_read_root(domain, IMSTR); if (!(status & err_mask)) return IRQ_NONE; iova = ipmmu_ctx_read_root(domain, IMELAR); if (IS_ENABLED(CONFIG_64BIT)) iova |= (u64)ipmmu_ctx_read_root(domain, IMEUAR) << 32; /* * Clear the error status flags. Unlike traditional interrupt flag * registers that must be cleared by writing 1, this status register * seems to require 0. The error address register must be read before, * otherwise its value will be 0. */ ipmmu_ctx_write_root(domain, IMSTR, 0); /* Log fatal errors. */ if (status & IMSTR_MHIT) dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%lx\n", iova); if (status & IMSTR_ABORT) dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%lx\n", iova); if (!(status & (IMSTR_PF | IMSTR_TF))) return IRQ_NONE; /* * Try to handle page faults and translation faults. * * TODO: We need to look up the faulty device based on the I/O VA. Use * the IOMMU device for now. */ if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0)) return IRQ_HANDLED; dev_err_ratelimited(mmu->dev, "Unhandled fault: status 0x%08x iova 0x%lx\n", status, iova); return IRQ_HANDLED; } static irqreturn_t ipmmu_irq(int irq, void *dev) { struct ipmmu_vmsa_device *mmu = dev; irqreturn_t status = IRQ_NONE; unsigned int i; unsigned long flags; spin_lock_irqsave(&mmu->lock, flags); /* * Check interrupts for all active contexts. */ for (i = 0; i < mmu->num_ctx; i++) { if (!mmu->domains[i]) continue; if (ipmmu_domain_irq(mmu->domains[i]) == IRQ_HANDLED) status = IRQ_HANDLED; } spin_unlock_irqrestore(&mmu->lock, flags); return status; } /* ----------------------------------------------------------------------------- * IOMMU Operations */ static struct iommu_domain *ipmmu_domain_alloc(unsigned type) { struct ipmmu_vmsa_domain *domain; if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA) return NULL; domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!domain) return NULL; mutex_init(&domain->mutex); return &domain->io_domain; } static void ipmmu_domain_free(struct iommu_domain *io_domain) { struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); /* * Free the domain resources. We assume that all devices have already * been detached. */ ipmmu_domain_destroy_context(domain); free_io_pgtable_ops(domain->iop); kfree(domain); } static int ipmmu_attach_device(struct iommu_domain *io_domain, struct device *dev) { struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); unsigned int i; int ret = 0; if (!mmu) { dev_err(dev, "Cannot attach to IPMMU\n"); return -ENXIO; } mutex_lock(&domain->mutex); if (!domain->mmu) { /* The domain hasn't been used yet, initialize it. */ domain->mmu = mmu; ret = ipmmu_domain_init_context(domain); if (ret < 0) { dev_err(dev, "Unable to initialize IPMMU context\n"); domain->mmu = NULL; } else { dev_info(dev, "Using IPMMU context %u\n", domain->context_id); } } else if (domain->mmu != mmu) { /* * Something is wrong, we can't attach two devices using * different IOMMUs to the same domain. */ dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n", dev_name(mmu->dev), dev_name(domain->mmu->dev)); ret = -EINVAL; } else dev_info(dev, "Reusing IPMMU context %u\n", domain->context_id); mutex_unlock(&domain->mutex); if (ret < 0) return ret; for (i = 0; i < fwspec->num_ids; ++i) ipmmu_utlb_enable(domain, fwspec->ids[i]); return 0; } static void ipmmu_detach_device(struct iommu_domain *io_domain, struct device *dev) { struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); unsigned int i; for (i = 0; i < fwspec->num_ids; ++i) ipmmu_utlb_disable(domain, fwspec->ids[i]); /* * TODO: Optimize by disabling the context when no device is attached. */ } static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova, phys_addr_t paddr, size_t size, int prot, gfp_t gfp) { struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); if (!domain) return -ENODEV; return domain->iop->map(domain->iop, iova, paddr, size, prot, gfp); } static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova, size_t size, struct iommu_iotlb_gather *gather) { struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); return domain->iop->unmap(domain->iop, iova, size, gather); } static void ipmmu_flush_iotlb_all(struct iommu_domain *io_domain) { struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); if (domain->mmu) ipmmu_tlb_flush_all(domain); } static void ipmmu_iotlb_sync(struct iommu_domain *io_domain, struct iommu_iotlb_gather *gather) { ipmmu_flush_iotlb_all(io_domain); } static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain, dma_addr_t iova) { struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain); /* TODO: Is locking needed ? */ return domain->iop->iova_to_phys(domain->iop, iova); } static int ipmmu_init_platform_device(struct device *dev, struct of_phandle_args *args) { struct platform_device *ipmmu_pdev; ipmmu_pdev = of_find_device_by_node(args->np); if (!ipmmu_pdev) return -ENODEV; dev_iommu_priv_set(dev, platform_get_drvdata(ipmmu_pdev)); return 0; } static const struct soc_device_attribute soc_needs_opt_in[] = { { .family = "R-Car Gen3", }, { .family = "R-Car Gen4", }, { .family = "RZ/G2", }, { /* sentinel */ } }; static const struct soc_device_attribute soc_denylist[] = { { .soc_id = "r8a774a1", }, { .soc_id = "r8a7795", .revision = "ES1.*" }, { .soc_id = "r8a7795", .revision = "ES2.*" }, { .soc_id = "r8a7796", }, { /* sentinel */ } }; static const char * const devices_allowlist[] = { "ee100000.mmc", "ee120000.mmc", "ee140000.mmc", "ee160000.mmc" }; static bool ipmmu_device_is_allowed(struct device *dev) { unsigned int i; /* * R-Car Gen3/4 and RZ/G2 use the allow list to opt-in devices. * For Other SoCs, this returns true anyway. */ if (!soc_device_match(soc_needs_opt_in)) return true; /* Check whether this SoC can use the IPMMU correctly or not */ if (soc_device_match(soc_denylist)) return false; /* Check whether this device can work with the IPMMU */ for (i = 0; i < ARRAY_SIZE(devices_allowlist); i++) { if (!strcmp(dev_name(dev), devices_allowlist[i])) return true; } /* Otherwise, do not allow use of IPMMU */ return false; } static int ipmmu_of_xlate(struct device *dev, struct of_phandle_args *spec) { if (!ipmmu_device_is_allowed(dev)) return -ENODEV; iommu_fwspec_add_ids(dev, spec->args, 1); /* Initialize once - xlate() will call multiple times */ if (to_ipmmu(dev)) return 0; return ipmmu_init_platform_device(dev, spec); } static int ipmmu_init_arm_mapping(struct device *dev) { struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); int ret; /* * Create the ARM mapping, used by the ARM DMA mapping core to allocate * VAs. This will allocate a corresponding IOMMU domain. * * TODO: * - Create one mapping per context (TLB). * - Make the mapping size configurable ? We currently use a 2GB mapping * at a 1GB offset to ensure that NULL VAs will fault. */ if (!mmu->mapping) { struct dma_iommu_mapping *mapping; mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G); if (IS_ERR(mapping)) { dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n"); ret = PTR_ERR(mapping); goto error; } mmu->mapping = mapping; } /* Attach the ARM VA mapping to the device. */ ret = arm_iommu_attach_device(dev, mmu->mapping); if (ret < 0) { dev_err(dev, "Failed to attach device to VA mapping\n"); goto error; } return 0; error: if (mmu->mapping) arm_iommu_release_mapping(mmu->mapping); return ret; } static struct iommu_device *ipmmu_probe_device(struct device *dev) { struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); /* * Only let through devices that have been verified in xlate() */ if (!mmu) return ERR_PTR(-ENODEV); return &mmu->iommu; } static void ipmmu_probe_finalize(struct device *dev) { int ret = 0; if (IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA)) ret = ipmmu_init_arm_mapping(dev); if (ret) dev_err(dev, "Can't create IOMMU mapping - DMA-OPS will not work\n"); } static void ipmmu_release_device(struct device *dev) { arm_iommu_detach_device(dev); } static struct iommu_group *ipmmu_find_group(struct device *dev) { struct ipmmu_vmsa_device *mmu = to_ipmmu(dev); struct iommu_group *group; if (mmu->group) return iommu_group_ref_get(mmu->group); group = iommu_group_alloc(); if (!IS_ERR(group)) mmu->group = group; return group; } static const struct iommu_ops ipmmu_ops = { .domain_alloc = ipmmu_domain_alloc, .probe_device = ipmmu_probe_device, .release_device = ipmmu_release_device, .probe_finalize = ipmmu_probe_finalize, .device_group = IS_ENABLED(CONFIG_ARM) && !IS_ENABLED(CONFIG_IOMMU_DMA) ? generic_device_group : ipmmu_find_group, .pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K, .of_xlate = ipmmu_of_xlate, .default_domain_ops = &(const struct iommu_domain_ops) { .attach_dev = ipmmu_attach_device, .detach_dev = ipmmu_detach_device, .map = ipmmu_map, .unmap = ipmmu_unmap, .flush_iotlb_all = ipmmu_flush_iotlb_all, .iotlb_sync = ipmmu_iotlb_sync, .iova_to_phys = ipmmu_iova_to_phys, .free = ipmmu_domain_free, } }; /* ----------------------------------------------------------------------------- * Probe/remove and init */ static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu) { unsigned int i; /* Disable all contexts. */ for (i = 0; i < mmu->num_ctx; ++i) ipmmu_ctx_write(mmu, i, IMCTR, 0); } static const struct ipmmu_features ipmmu_features_default = { .use_ns_alias_offset = true, .has_cache_leaf_nodes = false, .number_of_contexts = 1, /* software only tested with one context */ .num_utlbs = 32, .setup_imbuscr = true, .twobit_imttbcr_sl0 = false, .reserved_context = false, .cache_snoop = true, .ctx_offset_base = 0, .ctx_offset_stride = 0x40, .utlb_offset_base = 0, }; static const struct ipmmu_features ipmmu_features_rcar_gen3 = { .use_ns_alias_offset = false, .has_cache_leaf_nodes = true, .number_of_contexts = 8, .num_utlbs = 48, .setup_imbuscr = false, .twobit_imttbcr_sl0 = true, .reserved_context = true, .cache_snoop = false, .ctx_offset_base = 0, .ctx_offset_stride = 0x40, .utlb_offset_base = 0, }; static const struct ipmmu_features ipmmu_features_rcar_gen4 = { .use_ns_alias_offset = false, .has_cache_leaf_nodes = true, .number_of_contexts = 16, .num_utlbs = 64, .setup_imbuscr = false, .twobit_imttbcr_sl0 = true, .reserved_context = true, .cache_snoop = false, .ctx_offset_base = 0x10000, .ctx_offset_stride = 0x1040, .utlb_offset_base = 0x3000, }; static const struct of_device_id ipmmu_of_ids[] = { { .compatible = "renesas,ipmmu-vmsa", .data = &ipmmu_features_default, }, { .compatible = "renesas,ipmmu-r8a774a1", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a774b1", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a774c0", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a774e1", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a7795", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a7796", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a77961", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a77965", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a77970", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a77980", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a77990", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a77995", .data = &ipmmu_features_rcar_gen3, }, { .compatible = "renesas,ipmmu-r8a779a0", .data = &ipmmu_features_rcar_gen4, }, { .compatible = "renesas,rcar-gen4-ipmmu-vmsa", .data = &ipmmu_features_rcar_gen4, }, { /* Terminator */ }, }; static int ipmmu_probe(struct platform_device *pdev) { struct ipmmu_vmsa_device *mmu; struct resource *res; int irq; int ret; mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL); if (!mmu) { dev_err(&pdev->dev, "cannot allocate device data\n"); return -ENOMEM; } mmu->dev = &pdev->dev; spin_lock_init(&mmu->lock); bitmap_zero(mmu->ctx, IPMMU_CTX_MAX); mmu->features = of_device_get_match_data(&pdev->dev); memset(mmu->utlb_ctx, IPMMU_CTX_INVALID, mmu->features->num_utlbs); ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); if (ret) return ret; /* Map I/O memory and request IRQ. */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); mmu->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mmu->base)) return PTR_ERR(mmu->base); /* * The IPMMU has two register banks, for secure and non-secure modes. * The bank mapped at the beginning of the IPMMU address space * corresponds to the running mode of the CPU. When running in secure * mode the non-secure register bank is also available at an offset. * * Secure mode operation isn't clearly documented and is thus currently * not implemented in the driver. Furthermore, preliminary tests of * non-secure operation with the main register bank were not successful. * Offset the registers base unconditionally to point to the non-secure * alias space for now. */ if (mmu->features->use_ns_alias_offset) mmu->base += IM_NS_ALIAS_OFFSET; mmu->num_ctx = min(IPMMU_CTX_MAX, mmu->features->number_of_contexts); /* * Determine if this IPMMU instance is a root device by checking for * the lack of has_cache_leaf_nodes flag or renesas,ipmmu-main property. */ if (!mmu->features->has_cache_leaf_nodes || !of_find_property(pdev->dev.of_node, "renesas,ipmmu-main", NULL)) mmu->root = mmu; else mmu->root = ipmmu_find_root(); /* * Wait until the root device has been registered for sure. */ if (!mmu->root) return -EPROBE_DEFER; /* Root devices have mandatory IRQs */ if (ipmmu_is_root(mmu)) { irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0, dev_name(&pdev->dev), mmu); if (ret < 0) { dev_err(&pdev->dev, "failed to request IRQ %d\n", irq); return ret; } ipmmu_device_reset(mmu); if (mmu->features->reserved_context) { dev_info(&pdev->dev, "IPMMU context 0 is reserved\n"); set_bit(0, mmu->ctx); } } /* * Register the IPMMU to the IOMMU subsystem in the following cases: * - R-Car Gen2 IPMMU (all devices registered) * - R-Car Gen3 IPMMU (leaf devices only - skip root IPMMU-MM device) */ if (!mmu->features->has_cache_leaf_nodes || !ipmmu_is_root(mmu)) { ret = iommu_device_sysfs_add(&mmu->iommu, &pdev->dev, NULL, dev_name(&pdev->dev)); if (ret) return ret; ret = iommu_device_register(&mmu->iommu, &ipmmu_ops, &pdev->dev); if (ret) return ret; } /* * We can't create the ARM mapping here as it requires the bus to have * an IOMMU, which only happens when bus_set_iommu() is called in * ipmmu_init() after the probe function returns. */ platform_set_drvdata(pdev, mmu); return 0; } static int ipmmu_remove(struct platform_device *pdev) { struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev); iommu_device_sysfs_remove(&mmu->iommu); iommu_device_unregister(&mmu->iommu); arm_iommu_release_mapping(mmu->mapping); ipmmu_device_reset(mmu); return 0; } #ifdef CONFIG_PM_SLEEP static int ipmmu_resume_noirq(struct device *dev) { struct ipmmu_vmsa_device *mmu = dev_get_drvdata(dev); unsigned int i; /* Reset root MMU and restore contexts */ if (ipmmu_is_root(mmu)) { ipmmu_device_reset(mmu); for (i = 0; i < mmu->num_ctx; i++) { if (!mmu->domains[i]) continue; ipmmu_domain_setup_context(mmu->domains[i]); } } /* Re-enable active micro-TLBs */ for (i = 0; i < mmu->features->num_utlbs; i++) { if (mmu->utlb_ctx[i] == IPMMU_CTX_INVALID) continue; ipmmu_utlb_enable(mmu->root->domains[mmu->utlb_ctx[i]], i); } return 0; } static const struct dev_pm_ops ipmmu_pm = { SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(NULL, ipmmu_resume_noirq) }; #define DEV_PM_OPS &ipmmu_pm #else #define DEV_PM_OPS NULL #endif /* CONFIG_PM_SLEEP */ static struct platform_driver ipmmu_driver = { .driver = { .name = "ipmmu-vmsa", .of_match_table = of_match_ptr(ipmmu_of_ids), .pm = DEV_PM_OPS, }, .probe = ipmmu_probe, .remove = ipmmu_remove, }; builtin_platform_driver(ipmmu_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1