Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gerald Schaefer | 1330 | 76.70% | 1 | 5.26% |
Joerg Roedel | 125 | 7.21% | 3 | 15.79% |
Sebastian Ott | 98 | 5.65% | 3 | 15.79% |
Matthew Rosato | 89 | 5.13% | 2 | 10.53% |
Niklas Schnelle | 36 | 2.08% | 2 | 10.53% |
Lu Baolu | 31 | 1.79% | 1 | 5.26% |
Robin Murphy | 10 | 0.58% | 2 | 10.53% |
Will Deacon | 5 | 0.29% | 1 | 5.26% |
Pierre Morel | 4 | 0.23% | 1 | 5.26% |
tom | 3 | 0.17% | 1 | 5.26% |
Arvind Yadav | 2 | 0.12% | 1 | 5.26% |
Greg Kroah-Hartman | 1 | 0.06% | 1 | 5.26% |
Total | 1734 | 19 |
// SPDX-License-Identifier: GPL-2.0 /* * IOMMU API for s390 PCI devices * * Copyright IBM Corp. 2015 * Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com> */ #include <linux/pci.h> #include <linux/iommu.h> #include <linux/iommu-helper.h> #include <linux/sizes.h> #include <asm/pci_dma.h> /* * Physically contiguous memory regions can be mapped with 4 KiB alignment, * we allow all page sizes that are an order of 4KiB (no special large page * support so far). */ #define S390_IOMMU_PGSIZES (~0xFFFUL) static const struct iommu_ops s390_iommu_ops; struct s390_domain { struct iommu_domain domain; struct list_head devices; unsigned long *dma_table; spinlock_t dma_table_lock; spinlock_t list_lock; }; struct s390_domain_device { struct list_head list; struct zpci_dev *zdev; }; static struct s390_domain *to_s390_domain(struct iommu_domain *dom) { return container_of(dom, struct s390_domain, domain); } static bool s390_iommu_capable(struct device *dev, enum iommu_cap cap) { switch (cap) { case IOMMU_CAP_CACHE_COHERENCY: return true; case IOMMU_CAP_INTR_REMAP: return true; default: return false; } } static struct iommu_domain *s390_domain_alloc(unsigned domain_type) { struct s390_domain *s390_domain; if (domain_type != IOMMU_DOMAIN_UNMANAGED) return NULL; s390_domain = kzalloc(sizeof(*s390_domain), GFP_KERNEL); if (!s390_domain) return NULL; s390_domain->dma_table = dma_alloc_cpu_table(); if (!s390_domain->dma_table) { kfree(s390_domain); return NULL; } spin_lock_init(&s390_domain->dma_table_lock); spin_lock_init(&s390_domain->list_lock); INIT_LIST_HEAD(&s390_domain->devices); return &s390_domain->domain; } static void s390_domain_free(struct iommu_domain *domain) { struct s390_domain *s390_domain = to_s390_domain(domain); dma_cleanup_tables(s390_domain->dma_table); kfree(s390_domain); } static int s390_iommu_attach_device(struct iommu_domain *domain, struct device *dev) { struct s390_domain *s390_domain = to_s390_domain(domain); struct zpci_dev *zdev = to_zpci_dev(dev); struct s390_domain_device *domain_device; unsigned long flags; int cc, rc; if (!zdev) return -ENODEV; domain_device = kzalloc(sizeof(*domain_device), GFP_KERNEL); if (!domain_device) return -ENOMEM; if (zdev->dma_table && !zdev->s390_domain) { cc = zpci_dma_exit_device(zdev); if (cc) { rc = -EIO; goto out_free; } } if (zdev->s390_domain) zpci_unregister_ioat(zdev, 0); zdev->dma_table = s390_domain->dma_table; cc = zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, virt_to_phys(zdev->dma_table)); if (cc) { rc = -EIO; goto out_restore; } spin_lock_irqsave(&s390_domain->list_lock, flags); /* First device defines the DMA range limits */ if (list_empty(&s390_domain->devices)) { domain->geometry.aperture_start = zdev->start_dma; domain->geometry.aperture_end = zdev->end_dma; domain->geometry.force_aperture = true; /* Allow only devices with identical DMA range limits */ } else if (domain->geometry.aperture_start != zdev->start_dma || domain->geometry.aperture_end != zdev->end_dma) { rc = -EINVAL; spin_unlock_irqrestore(&s390_domain->list_lock, flags); goto out_restore; } domain_device->zdev = zdev; zdev->s390_domain = s390_domain; list_add(&domain_device->list, &s390_domain->devices); spin_unlock_irqrestore(&s390_domain->list_lock, flags); return 0; out_restore: if (!zdev->s390_domain) { zpci_dma_init_device(zdev); } else { zdev->dma_table = zdev->s390_domain->dma_table; zpci_register_ioat(zdev, 0, zdev->start_dma, zdev->end_dma, virt_to_phys(zdev->dma_table)); } out_free: kfree(domain_device); return rc; } static void s390_iommu_detach_device(struct iommu_domain *domain, struct device *dev) { struct s390_domain *s390_domain = to_s390_domain(domain); struct zpci_dev *zdev = to_zpci_dev(dev); struct s390_domain_device *domain_device, *tmp; unsigned long flags; int found = 0; if (!zdev) return; spin_lock_irqsave(&s390_domain->list_lock, flags); list_for_each_entry_safe(domain_device, tmp, &s390_domain->devices, list) { if (domain_device->zdev == zdev) { list_del(&domain_device->list); kfree(domain_device); found = 1; break; } } spin_unlock_irqrestore(&s390_domain->list_lock, flags); if (found && (zdev->s390_domain == s390_domain)) { zdev->s390_domain = NULL; zpci_unregister_ioat(zdev, 0); zpci_dma_init_device(zdev); } } static struct iommu_device *s390_iommu_probe_device(struct device *dev) { struct zpci_dev *zdev; if (!dev_is_pci(dev)) return ERR_PTR(-ENODEV); zdev = to_zpci_dev(dev); return &zdev->iommu_dev; } static void s390_iommu_release_device(struct device *dev) { struct zpci_dev *zdev = to_zpci_dev(dev); struct iommu_domain *domain; /* * This is a workaround for a scenario where the IOMMU API common code * "forgets" to call the detach_dev callback: After binding a device * to vfio-pci and completing the VFIO_SET_IOMMU ioctl (which triggers * the attach_dev), removing the device via * "echo 1 > /sys/bus/pci/devices/.../remove" won't trigger detach_dev, * only release_device will be called via the BUS_NOTIFY_REMOVED_DEVICE * notifier. * * So let's call detach_dev from here if it hasn't been called before. */ if (zdev && zdev->s390_domain) { domain = iommu_get_domain_for_dev(dev); if (domain) s390_iommu_detach_device(domain, dev); } } static int s390_iommu_update_trans(struct s390_domain *s390_domain, phys_addr_t pa, dma_addr_t dma_addr, size_t size, int flags) { struct s390_domain_device *domain_device; phys_addr_t page_addr = pa & PAGE_MASK; dma_addr_t start_dma_addr = dma_addr; unsigned long irq_flags, nr_pages, i; unsigned long *entry; int rc = 0; if (dma_addr < s390_domain->domain.geometry.aperture_start || dma_addr + size > s390_domain->domain.geometry.aperture_end) return -EINVAL; nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; if (!nr_pages) return 0; spin_lock_irqsave(&s390_domain->dma_table_lock, irq_flags); for (i = 0; i < nr_pages; i++) { entry = dma_walk_cpu_trans(s390_domain->dma_table, dma_addr); if (!entry) { rc = -ENOMEM; goto undo_cpu_trans; } dma_update_cpu_trans(entry, page_addr, flags); page_addr += PAGE_SIZE; dma_addr += PAGE_SIZE; } spin_lock(&s390_domain->list_lock); list_for_each_entry(domain_device, &s390_domain->devices, list) { rc = zpci_refresh_trans((u64) domain_device->zdev->fh << 32, start_dma_addr, nr_pages * PAGE_SIZE); if (rc) break; } spin_unlock(&s390_domain->list_lock); undo_cpu_trans: if (rc && ((flags & ZPCI_PTE_VALID_MASK) == ZPCI_PTE_VALID)) { flags = ZPCI_PTE_INVALID; while (i-- > 0) { page_addr -= PAGE_SIZE; dma_addr -= PAGE_SIZE; entry = dma_walk_cpu_trans(s390_domain->dma_table, dma_addr); if (!entry) break; dma_update_cpu_trans(entry, page_addr, flags); } } spin_unlock_irqrestore(&s390_domain->dma_table_lock, irq_flags); return rc; } static int s390_iommu_map(struct iommu_domain *domain, unsigned long iova, phys_addr_t paddr, size_t size, int prot, gfp_t gfp) { struct s390_domain *s390_domain = to_s390_domain(domain); int flags = ZPCI_PTE_VALID, rc = 0; if (!(prot & IOMMU_READ)) return -EINVAL; if (!(prot & IOMMU_WRITE)) flags |= ZPCI_TABLE_PROTECTED; rc = s390_iommu_update_trans(s390_domain, paddr, iova, size, flags); return rc; } static phys_addr_t s390_iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) { struct s390_domain *s390_domain = to_s390_domain(domain); unsigned long *sto, *pto, *rto, flags; unsigned int rtx, sx, px; phys_addr_t phys = 0; if (iova < domain->geometry.aperture_start || iova > domain->geometry.aperture_end) return 0; rtx = calc_rtx(iova); sx = calc_sx(iova); px = calc_px(iova); rto = s390_domain->dma_table; spin_lock_irqsave(&s390_domain->dma_table_lock, flags); if (rto && reg_entry_isvalid(rto[rtx])) { sto = get_rt_sto(rto[rtx]); if (sto && reg_entry_isvalid(sto[sx])) { pto = get_st_pto(sto[sx]); if (pto && pt_entry_isvalid(pto[px])) phys = pto[px] & ZPCI_PTE_ADDR_MASK; } } spin_unlock_irqrestore(&s390_domain->dma_table_lock, flags); return phys; } static size_t s390_iommu_unmap(struct iommu_domain *domain, unsigned long iova, size_t size, struct iommu_iotlb_gather *gather) { struct s390_domain *s390_domain = to_s390_domain(domain); int flags = ZPCI_PTE_INVALID; phys_addr_t paddr; int rc; paddr = s390_iommu_iova_to_phys(domain, iova); if (!paddr) return 0; rc = s390_iommu_update_trans(s390_domain, paddr, iova, size, flags); if (rc) return 0; return size; } int zpci_init_iommu(struct zpci_dev *zdev) { int rc = 0; rc = iommu_device_sysfs_add(&zdev->iommu_dev, NULL, NULL, "s390-iommu.%08x", zdev->fid); if (rc) goto out_err; rc = iommu_device_register(&zdev->iommu_dev, &s390_iommu_ops, NULL); if (rc) goto out_sysfs; return 0; out_sysfs: iommu_device_sysfs_remove(&zdev->iommu_dev); out_err: return rc; } void zpci_destroy_iommu(struct zpci_dev *zdev) { iommu_device_unregister(&zdev->iommu_dev); iommu_device_sysfs_remove(&zdev->iommu_dev); } static const struct iommu_ops s390_iommu_ops = { .capable = s390_iommu_capable, .domain_alloc = s390_domain_alloc, .probe_device = s390_iommu_probe_device, .release_device = s390_iommu_release_device, .device_group = generic_device_group, .pgsize_bitmap = S390_IOMMU_PGSIZES, .default_domain_ops = &(const struct iommu_domain_ops) { .attach_dev = s390_iommu_attach_device, .detach_dev = s390_iommu_detach_device, .map = s390_iommu_map, .unmap = s390_iommu_unmap, .iova_to_phys = s390_iommu_iova_to_phys, .free = s390_domain_free, } };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1