Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Antti Palosaari | 5133 | 86.17% | 43 | 66.15% |
Gianluca Gennari | 426 | 7.15% | 2 | 3.08% |
Mauro Carvalho Chehab | 163 | 2.74% | 6 | 9.23% |
Hans-Frieder Vogt | 68 | 1.14% | 3 | 4.62% |
Jose Alberto Reguero | 61 | 1.02% | 1 | 1.54% |
Bimow Chen | 57 | 0.96% | 2 | 3.08% |
Olliver Schinagl | 15 | 0.25% | 1 | 1.54% |
Michael Buesch | 15 | 0.25% | 1 | 1.54% |
Hans Verkuil | 12 | 0.20% | 2 | 3.08% |
Victor Toso | 3 | 0.05% | 1 | 1.54% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.54% |
Max Kellermann | 1 | 0.02% | 1 | 1.54% |
Uwe Kleine-König | 1 | 0.02% | 1 | 1.54% |
Total | 5957 | 65 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Afatech AF9033 demodulator driver * * Copyright (C) 2009 Antti Palosaari <crope@iki.fi> * Copyright (C) 2012 Antti Palosaari <crope@iki.fi> */ #include "af9033_priv.h" struct af9033_dev { struct i2c_client *client; struct regmap *regmap; struct dvb_frontend fe; struct af9033_config cfg; bool is_af9035; bool is_it9135; u32 bandwidth_hz; bool ts_mode_parallel; bool ts_mode_serial; enum fe_status fe_status; u64 post_bit_error_prev; /* for old read_ber we return (curr - prev) */ u64 post_bit_error; u64 post_bit_count; u64 error_block_count; u64 total_block_count; }; /* Write reg val table using reg addr auto increment */ static int af9033_wr_reg_val_tab(struct af9033_dev *dev, const struct reg_val *tab, int tab_len) { struct i2c_client *client = dev->client; #define MAX_TAB_LEN 212 int ret, i, j; u8 buf[1 + MAX_TAB_LEN]; dev_dbg(&client->dev, "tab_len=%d\n", tab_len); if (tab_len > sizeof(buf)) { dev_warn(&client->dev, "tab len %d is too big\n", tab_len); return -EINVAL; } for (i = 0, j = 0; i < tab_len; i++) { buf[j] = tab[i].val; if (i == tab_len - 1 || tab[i].reg != tab[i + 1].reg - 1) { ret = regmap_bulk_write(dev->regmap, tab[i].reg - j, buf, j + 1); if (ret) goto err; j = 0; } else { j++; } } return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int af9033_init(struct dvb_frontend *fe) { struct af9033_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret, i, len; unsigned int utmp; const struct reg_val *init; u8 buf[4]; struct reg_val_mask tab[] = { { 0x80fb24, 0x00, 0x08 }, { 0x80004c, 0x00, 0xff }, { 0x00f641, dev->cfg.tuner, 0xff }, { 0x80f5ca, 0x01, 0x01 }, { 0x80f715, 0x01, 0x01 }, { 0x00f41f, 0x04, 0x04 }, { 0x00f41a, 0x01, 0x01 }, { 0x80f731, 0x00, 0x01 }, { 0x00d91e, 0x00, 0x01 }, { 0x00d919, 0x00, 0x01 }, { 0x80f732, 0x00, 0x01 }, { 0x00d91f, 0x00, 0x01 }, { 0x00d91a, 0x00, 0x01 }, { 0x80f730, 0x00, 0x01 }, { 0x80f778, 0x00, 0xff }, { 0x80f73c, 0x01, 0x01 }, { 0x80f776, 0x00, 0x01 }, { 0x00d8fd, 0x01, 0xff }, { 0x00d830, 0x01, 0xff }, { 0x00d831, 0x00, 0xff }, { 0x00d832, 0x00, 0xff }, { 0x80f985, dev->ts_mode_serial, 0x01 }, { 0x80f986, dev->ts_mode_parallel, 0x01 }, { 0x00d827, 0x00, 0xff }, { 0x00d829, 0x00, 0xff }, { 0x800045, dev->cfg.adc_multiplier, 0xff }, }; dev_dbg(&client->dev, "\n"); /* Main clk control */ utmp = div_u64((u64)dev->cfg.clock * 0x80000, 1000000); buf[0] = (utmp >> 0) & 0xff; buf[1] = (utmp >> 8) & 0xff; buf[2] = (utmp >> 16) & 0xff; buf[3] = (utmp >> 24) & 0xff; ret = regmap_bulk_write(dev->regmap, 0x800025, buf, 4); if (ret) goto err; dev_dbg(&client->dev, "clk=%u clk_cw=%08x\n", dev->cfg.clock, utmp); /* ADC clk control */ for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) { if (clock_adc_lut[i].clock == dev->cfg.clock) break; } if (i == ARRAY_SIZE(clock_adc_lut)) { dev_err(&client->dev, "Couldn't find ADC config for clock %d\n", dev->cfg.clock); ret = -ENODEV; goto err; } utmp = div_u64((u64)clock_adc_lut[i].adc * 0x80000, 1000000); buf[0] = (utmp >> 0) & 0xff; buf[1] = (utmp >> 8) & 0xff; buf[2] = (utmp >> 16) & 0xff; ret = regmap_bulk_write(dev->regmap, 0x80f1cd, buf, 3); if (ret) goto err; dev_dbg(&client->dev, "adc=%u adc_cw=%06x\n", clock_adc_lut[i].adc, utmp); /* Config register table */ for (i = 0; i < ARRAY_SIZE(tab); i++) { ret = regmap_update_bits(dev->regmap, tab[i].reg, tab[i].mask, tab[i].val); if (ret) goto err; } /* Demod clk output */ if (dev->cfg.dyn0_clk) { ret = regmap_write(dev->regmap, 0x80fba8, 0x00); if (ret) goto err; } /* TS interface */ if (dev->cfg.ts_mode == AF9033_TS_MODE_USB) { ret = regmap_update_bits(dev->regmap, 0x80f9a5, 0x01, 0x00); if (ret) goto err; ret = regmap_update_bits(dev->regmap, 0x80f9b5, 0x01, 0x01); if (ret) goto err; } else { ret = regmap_update_bits(dev->regmap, 0x80f990, 0x01, 0x00); if (ret) goto err; ret = regmap_update_bits(dev->regmap, 0x80f9b5, 0x01, 0x00); if (ret) goto err; } /* Demod core settings */ dev_dbg(&client->dev, "load ofsm settings\n"); switch (dev->cfg.tuner) { case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: len = ARRAY_SIZE(ofsm_init_it9135_v1); init = ofsm_init_it9135_v1; break; case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: len = ARRAY_SIZE(ofsm_init_it9135_v2); init = ofsm_init_it9135_v2; break; default: len = ARRAY_SIZE(ofsm_init); init = ofsm_init; break; } ret = af9033_wr_reg_val_tab(dev, init, len); if (ret) goto err; /* Demod tuner specific settings */ dev_dbg(&client->dev, "load tuner specific settings\n"); switch (dev->cfg.tuner) { case AF9033_TUNER_TUA9001: len = ARRAY_SIZE(tuner_init_tua9001); init = tuner_init_tua9001; break; case AF9033_TUNER_FC0011: len = ARRAY_SIZE(tuner_init_fc0011); init = tuner_init_fc0011; break; case AF9033_TUNER_MXL5007T: len = ARRAY_SIZE(tuner_init_mxl5007t); init = tuner_init_mxl5007t; break; case AF9033_TUNER_TDA18218: len = ARRAY_SIZE(tuner_init_tda18218); init = tuner_init_tda18218; break; case AF9033_TUNER_FC2580: len = ARRAY_SIZE(tuner_init_fc2580); init = tuner_init_fc2580; break; case AF9033_TUNER_FC0012: len = ARRAY_SIZE(tuner_init_fc0012); init = tuner_init_fc0012; break; case AF9033_TUNER_IT9135_38: len = ARRAY_SIZE(tuner_init_it9135_38); init = tuner_init_it9135_38; break; case AF9033_TUNER_IT9135_51: len = ARRAY_SIZE(tuner_init_it9135_51); init = tuner_init_it9135_51; break; case AF9033_TUNER_IT9135_52: len = ARRAY_SIZE(tuner_init_it9135_52); init = tuner_init_it9135_52; break; case AF9033_TUNER_IT9135_60: len = ARRAY_SIZE(tuner_init_it9135_60); init = tuner_init_it9135_60; break; case AF9033_TUNER_IT9135_61: len = ARRAY_SIZE(tuner_init_it9135_61); init = tuner_init_it9135_61; break; case AF9033_TUNER_IT9135_62: len = ARRAY_SIZE(tuner_init_it9135_62); init = tuner_init_it9135_62; break; default: dev_dbg(&client->dev, "unsupported tuner ID=%d\n", dev->cfg.tuner); ret = -ENODEV; goto err; } ret = af9033_wr_reg_val_tab(dev, init, len); if (ret) goto err; if (dev->cfg.ts_mode == AF9033_TS_MODE_SERIAL) { ret = regmap_update_bits(dev->regmap, 0x00d91c, 0x01, 0x01); if (ret) goto err; ret = regmap_update_bits(dev->regmap, 0x00d917, 0x01, 0x00); if (ret) goto err; ret = regmap_update_bits(dev->regmap, 0x00d916, 0x01, 0x00); if (ret) goto err; } switch (dev->cfg.tuner) { case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: ret = regmap_write(dev->regmap, 0x800000, 0x01); if (ret) goto err; } dev->bandwidth_hz = 0; /* Force to program all parameters */ /* Init stats here in order signal app which stats are supported */ c->strength.len = 1; c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->cnr.len = 1; c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_count.len = 1; c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->block_error.len = 1; c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_count.len = 1; c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; c->post_bit_error.len = 1; c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int af9033_sleep(struct dvb_frontend *fe) { struct af9033_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; int ret; unsigned int utmp; dev_dbg(&client->dev, "\n"); ret = regmap_write(dev->regmap, 0x80004c, 0x01); if (ret) goto err; ret = regmap_write(dev->regmap, 0x800000, 0x00); if (ret) goto err; ret = regmap_read_poll_timeout(dev->regmap, 0x80004c, utmp, utmp == 0, 5000, 1000000); if (ret) goto err; ret = regmap_update_bits(dev->regmap, 0x80fb24, 0x08, 0x08); if (ret) goto err; /* Prevent current leak by setting TS interface to parallel mode */ if (dev->cfg.ts_mode == AF9033_TS_MODE_SERIAL) { /* Enable parallel TS */ ret = regmap_update_bits(dev->regmap, 0x00d917, 0x01, 0x00); if (ret) goto err; ret = regmap_update_bits(dev->regmap, 0x00d916, 0x01, 0x01); if (ret) goto err; } return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int af9033_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *fesettings) { /* 800 => 2000 because IT9135 v2 is slow to gain lock */ fesettings->min_delay_ms = 2000; fesettings->step_size = 0; fesettings->max_drift = 0; return 0; } static int af9033_set_frontend(struct dvb_frontend *fe) { struct af9033_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret, i; unsigned int utmp, adc_freq; u8 tmp, buf[3], bandwidth_reg_val; u32 if_frequency; dev_dbg(&client->dev, "frequency=%u bandwidth_hz=%u\n", c->frequency, c->bandwidth_hz); /* Check bandwidth */ switch (c->bandwidth_hz) { case 6000000: bandwidth_reg_val = 0x00; break; case 7000000: bandwidth_reg_val = 0x01; break; case 8000000: bandwidth_reg_val = 0x02; break; default: dev_dbg(&client->dev, "invalid bandwidth_hz\n"); ret = -EINVAL; goto err; } /* Program tuner */ if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe); /* Coefficients */ if (c->bandwidth_hz != dev->bandwidth_hz) { for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) { if (coeff_lut[i].clock == dev->cfg.clock && coeff_lut[i].bandwidth_hz == c->bandwidth_hz) { break; } } if (i == ARRAY_SIZE(coeff_lut)) { dev_err(&client->dev, "Couldn't find config for clock %u\n", dev->cfg.clock); ret = -EINVAL; goto err; } ret = regmap_bulk_write(dev->regmap, 0x800001, coeff_lut[i].val, sizeof(coeff_lut[i].val)); if (ret) goto err; } /* IF frequency control */ if (c->bandwidth_hz != dev->bandwidth_hz) { for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) { if (clock_adc_lut[i].clock == dev->cfg.clock) break; } if (i == ARRAY_SIZE(clock_adc_lut)) { dev_err(&client->dev, "Couldn't find ADC clock for clock %u\n", dev->cfg.clock); ret = -EINVAL; goto err; } adc_freq = clock_adc_lut[i].adc; if (dev->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X) adc_freq = 2 * adc_freq; /* Get used IF frequency */ if (fe->ops.tuner_ops.get_if_frequency) fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency); else if_frequency = 0; utmp = DIV_ROUND_CLOSEST_ULL((u64)if_frequency * 0x800000, adc_freq); if (!dev->cfg.spec_inv && if_frequency) utmp = 0x800000 - utmp; buf[0] = (utmp >> 0) & 0xff; buf[1] = (utmp >> 8) & 0xff; buf[2] = (utmp >> 16) & 0xff; ret = regmap_bulk_write(dev->regmap, 0x800029, buf, 3); if (ret) goto err; dev_dbg(&client->dev, "if_frequency_cw=%06x\n", utmp); dev->bandwidth_hz = c->bandwidth_hz; } ret = regmap_update_bits(dev->regmap, 0x80f904, 0x03, bandwidth_reg_val); if (ret) goto err; ret = regmap_write(dev->regmap, 0x800040, 0x00); if (ret) goto err; ret = regmap_write(dev->regmap, 0x800047, 0x00); if (ret) goto err; ret = regmap_update_bits(dev->regmap, 0x80f999, 0x01, 0x00); if (ret) goto err; if (c->frequency <= 230000000) tmp = 0x00; /* VHF */ else tmp = 0x01; /* UHF */ ret = regmap_write(dev->regmap, 0x80004b, tmp); if (ret) goto err; /* Reset FSM */ ret = regmap_write(dev->regmap, 0x800000, 0x00); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int af9033_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct af9033_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; int ret; u8 buf[8]; dev_dbg(&client->dev, "\n"); /* Read all needed TPS registers */ ret = regmap_bulk_read(dev->regmap, 0x80f900, buf, 8); if (ret) goto err; switch ((buf[0] >> 0) & 3) { case 0: c->transmission_mode = TRANSMISSION_MODE_2K; break; case 1: c->transmission_mode = TRANSMISSION_MODE_8K; break; } switch ((buf[1] >> 0) & 3) { case 0: c->guard_interval = GUARD_INTERVAL_1_32; break; case 1: c->guard_interval = GUARD_INTERVAL_1_16; break; case 2: c->guard_interval = GUARD_INTERVAL_1_8; break; case 3: c->guard_interval = GUARD_INTERVAL_1_4; break; } switch ((buf[2] >> 0) & 7) { case 0: c->hierarchy = HIERARCHY_NONE; break; case 1: c->hierarchy = HIERARCHY_1; break; case 2: c->hierarchy = HIERARCHY_2; break; case 3: c->hierarchy = HIERARCHY_4; break; } switch ((buf[3] >> 0) & 3) { case 0: c->modulation = QPSK; break; case 1: c->modulation = QAM_16; break; case 2: c->modulation = QAM_64; break; } switch ((buf[4] >> 0) & 3) { case 0: c->bandwidth_hz = 6000000; break; case 1: c->bandwidth_hz = 7000000; break; case 2: c->bandwidth_hz = 8000000; break; } switch ((buf[6] >> 0) & 7) { case 0: c->code_rate_HP = FEC_1_2; break; case 1: c->code_rate_HP = FEC_2_3; break; case 2: c->code_rate_HP = FEC_3_4; break; case 3: c->code_rate_HP = FEC_5_6; break; case 4: c->code_rate_HP = FEC_7_8; break; case 5: c->code_rate_HP = FEC_NONE; break; } switch ((buf[7] >> 0) & 7) { case 0: c->code_rate_LP = FEC_1_2; break; case 1: c->code_rate_LP = FEC_2_3; break; case 2: c->code_rate_LP = FEC_3_4; break; case 3: c->code_rate_LP = FEC_5_6; break; case 4: c->code_rate_LP = FEC_7_8; break; case 5: c->code_rate_LP = FEC_NONE; break; } return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int af9033_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct af9033_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct dtv_frontend_properties *c = &fe->dtv_property_cache; int ret, tmp = 0; u8 buf[7]; unsigned int utmp, utmp1; dev_dbg(&client->dev, "\n"); *status = 0; /* Radio channel status: 0=no result, 1=has signal, 2=no signal */ ret = regmap_read(dev->regmap, 0x800047, &utmp); if (ret) goto err; /* Has signal */ if (utmp == 0x01) *status |= FE_HAS_SIGNAL; if (utmp != 0x02) { /* TPS lock */ ret = regmap_read(dev->regmap, 0x80f5a9, &utmp); if (ret) goto err; if ((utmp >> 0) & 0x01) *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI; /* Full lock */ ret = regmap_read(dev->regmap, 0x80f999, &utmp); if (ret) goto err; if ((utmp >> 0) & 0x01) *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; } dev->fe_status = *status; /* Signal strength */ if (dev->fe_status & FE_HAS_SIGNAL) { if (dev->is_af9035) { ret = regmap_read(dev->regmap, 0x80004a, &utmp); if (ret) goto err; tmp = -utmp * 1000; } else { ret = regmap_read(dev->regmap, 0x8000f7, &utmp); if (ret) goto err; tmp = (utmp - 100) * 1000; } c->strength.len = 1; c->strength.stat[0].scale = FE_SCALE_DECIBEL; c->strength.stat[0].svalue = tmp; } else { c->strength.len = 1; c->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } /* CNR */ if (dev->fe_status & FE_HAS_VITERBI) { /* Read raw SNR value */ ret = regmap_bulk_read(dev->regmap, 0x80002c, buf, 3); if (ret) goto err; utmp1 = buf[2] << 16 | buf[1] << 8 | buf[0] << 0; /* Read superframe number */ ret = regmap_read(dev->regmap, 0x80f78b, &utmp); if (ret) goto err; if (utmp) utmp1 /= utmp; /* Read current transmission mode */ ret = regmap_read(dev->regmap, 0x80f900, &utmp); if (ret) goto err; switch ((utmp >> 0) & 3) { case 0: /* 2k */ utmp1 *= 4; break; case 1: /* 8k */ utmp1 *= 1; break; case 2: /* 4k */ utmp1 *= 2; break; default: utmp1 *= 0; break; } /* Read current modulation */ ret = regmap_read(dev->regmap, 0x80f903, &utmp); if (ret) goto err; switch ((utmp >> 0) & 3) { case 0: /* * QPSK * CNR[dB] 13 * -log10((1690000 - value) / value) + 2.6 * value [653799, 1689999], 2.6 / 13 = 3355443 */ utmp1 = clamp(utmp1, 653799U, 1689999U); utmp1 = ((u64)(intlog10(utmp1) - intlog10(1690000 - utmp1) + 3355443) * 13 * 1000) >> 24; break; case 1: /* * QAM-16 * CNR[dB] 6 * log10((value - 370000) / (828000 - value)) + 15.7 * value [371105, 827999], 15.7 / 6 = 43900382 */ utmp1 = clamp(utmp1, 371105U, 827999U); utmp1 = ((u64)(intlog10(utmp1 - 370000) - intlog10(828000 - utmp1) + 43900382) * 6 * 1000) >> 24; break; case 2: /* * QAM-64 * CNR[dB] 8 * log10((value - 193000) / (425000 - value)) + 23.8 * value [193246, 424999], 23.8 / 8 = 49912218 */ utmp1 = clamp(utmp1, 193246U, 424999U); utmp1 = ((u64)(intlog10(utmp1 - 193000) - intlog10(425000 - utmp1) + 49912218) * 8 * 1000) >> 24; break; default: utmp1 = 0; break; } dev_dbg(&client->dev, "cnr=%u\n", utmp1); c->cnr.stat[0].scale = FE_SCALE_DECIBEL; c->cnr.stat[0].svalue = utmp1; } else { c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } /* UCB/PER/BER */ if (dev->fe_status & FE_HAS_LOCK) { /* Outer FEC, 204 byte packets */ u16 abort_packet_count, rsd_packet_count; /* Inner FEC, bits */ u32 rsd_bit_err_count; /* * Packet count used for measurement is 10000 * (rsd_packet_count). Maybe it should be increased? */ ret = regmap_bulk_read(dev->regmap, 0x800032, buf, 7); if (ret) goto err; abort_packet_count = (buf[1] << 8) | (buf[0] << 0); rsd_bit_err_count = (buf[4] << 16) | (buf[3] << 8) | buf[2]; rsd_packet_count = (buf[6] << 8) | (buf[5] << 0); dev->error_block_count += abort_packet_count; dev->total_block_count += rsd_packet_count; dev->post_bit_error += rsd_bit_err_count; dev->post_bit_count += rsd_packet_count * 204 * 8; c->block_count.len = 1; c->block_count.stat[0].scale = FE_SCALE_COUNTER; c->block_count.stat[0].uvalue = dev->total_block_count; c->block_error.len = 1; c->block_error.stat[0].scale = FE_SCALE_COUNTER; c->block_error.stat[0].uvalue = dev->error_block_count; c->post_bit_count.len = 1; c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_count.stat[0].uvalue = dev->post_bit_count; c->post_bit_error.len = 1; c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; c->post_bit_error.stat[0].uvalue = dev->post_bit_error; } return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr) { struct af9033_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache; int ret; unsigned int utmp; dev_dbg(&client->dev, "\n"); /* Use DVBv5 CNR */ if (c->cnr.stat[0].scale == FE_SCALE_DECIBEL) { /* Return 0.1 dB for AF9030 and 0-0xffff for IT9130. */ if (dev->is_af9035) { /* 1000x => 10x (0.1 dB) */ *snr = div_s64(c->cnr.stat[0].svalue, 100); } else { /* 1000x => 1x (1 dB) */ *snr = div_s64(c->cnr.stat[0].svalue, 1000); /* Read current modulation */ ret = regmap_read(dev->regmap, 0x80f903, &utmp); if (ret) goto err; /* scale value to 0x0000-0xffff */ switch ((utmp >> 0) & 3) { case 0: *snr = *snr * 0xffff / 23; break; case 1: *snr = *snr * 0xffff / 26; break; case 2: *snr = *snr * 0xffff / 32; break; default: ret = -EINVAL; goto err; } } } else { *snr = 0; } return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct af9033_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; struct dtv_frontend_properties *c = &dev->fe.dtv_property_cache; int ret, tmp, power_real; unsigned int utmp; u8 gain_offset, buf[7]; dev_dbg(&client->dev, "\n"); if (dev->is_af9035) { /* Read signal strength of 0-100 scale */ ret = regmap_read(dev->regmap, 0x800048, &utmp); if (ret) goto err; /* Scale value to 0x0000-0xffff */ *strength = utmp * 0xffff / 100; } else { ret = regmap_read(dev->regmap, 0x8000f7, &utmp); if (ret) goto err; ret = regmap_bulk_read(dev->regmap, 0x80f900, buf, 7); if (ret) goto err; if (c->frequency <= 300000000) gain_offset = 7; /* VHF */ else gain_offset = 4; /* UHF */ power_real = (utmp - 100 - gain_offset) - power_reference[((buf[3] >> 0) & 3)][((buf[6] >> 0) & 7)]; if (power_real < -15) tmp = 0; else if ((power_real >= -15) && (power_real < 0)) tmp = (2 * (power_real + 15)) / 3; else if ((power_real >= 0) && (power_real < 20)) tmp = 4 * power_real + 10; else if ((power_real >= 20) && (power_real < 35)) tmp = (2 * (power_real - 20)) / 3 + 90; else tmp = 100; /* Scale value to 0x0000-0xffff */ *strength = tmp * 0xffff / 100; } return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber) { struct af9033_dev *dev = fe->demodulator_priv; *ber = (dev->post_bit_error - dev->post_bit_error_prev); dev->post_bit_error_prev = dev->post_bit_error; return 0; } static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks) { struct af9033_dev *dev = fe->demodulator_priv; *ucblocks = dev->error_block_count; return 0; } static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable) { struct af9033_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; int ret; dev_dbg(&client->dev, "enable=%d\n", enable); ret = regmap_update_bits(dev->regmap, 0x00fa04, 0x01, enable); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int af9033_pid_filter_ctrl(struct dvb_frontend *fe, int onoff) { struct af9033_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; int ret; dev_dbg(&client->dev, "onoff=%d\n", onoff); ret = regmap_update_bits(dev->regmap, 0x80f993, 0x01, onoff); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static int af9033_pid_filter(struct dvb_frontend *fe, int index, u16 pid, int onoff) { struct af9033_dev *dev = fe->demodulator_priv; struct i2c_client *client = dev->client; int ret; u8 wbuf[2] = {(pid >> 0) & 0xff, (pid >> 8) & 0xff}; dev_dbg(&client->dev, "index=%d pid=%04x onoff=%d\n", index, pid, onoff); if (pid > 0x1fff) return 0; ret = regmap_bulk_write(dev->regmap, 0x80f996, wbuf, 2); if (ret) goto err; ret = regmap_write(dev->regmap, 0x80f994, onoff); if (ret) goto err; ret = regmap_write(dev->regmap, 0x80f995, index); if (ret) goto err; return 0; err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static const struct dvb_frontend_ops af9033_ops = { .delsys = {SYS_DVBT}, .info = { .name = "Afatech AF9033 (DVB-T)", .frequency_min_hz = 174 * MHz, .frequency_max_hz = 862 * MHz, .frequency_stepsize_hz = 250 * kHz, .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS }, .init = af9033_init, .sleep = af9033_sleep, .get_tune_settings = af9033_get_tune_settings, .set_frontend = af9033_set_frontend, .get_frontend = af9033_get_frontend, .read_status = af9033_read_status, .read_snr = af9033_read_snr, .read_signal_strength = af9033_read_signal_strength, .read_ber = af9033_read_ber, .read_ucblocks = af9033_read_ucblocks, .i2c_gate_ctrl = af9033_i2c_gate_ctrl, }; static int af9033_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct af9033_config *cfg = client->dev.platform_data; struct af9033_dev *dev; int ret; u8 buf[8]; u32 reg; static const struct regmap_config regmap_config = { .reg_bits = 24, .val_bits = 8, }; /* Allocate memory for the internal state */ dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err; } /* Setup the state */ dev->client = client; memcpy(&dev->cfg, cfg, sizeof(dev->cfg)); switch (dev->cfg.ts_mode) { case AF9033_TS_MODE_PARALLEL: dev->ts_mode_parallel = true; break; case AF9033_TS_MODE_SERIAL: dev->ts_mode_serial = true; break; case AF9033_TS_MODE_USB: /* USB mode for AF9035 */ default: break; } if (dev->cfg.clock != 12000000) { ret = -ENODEV; dev_err(&client->dev, "Unsupported clock %u Hz. Only 12000000 Hz is supported currently\n", dev->cfg.clock); goto err_kfree; } /* Create regmap */ dev->regmap = regmap_init_i2c(client, ®map_config); if (IS_ERR(dev->regmap)) { ret = PTR_ERR(dev->regmap); goto err_kfree; } /* Firmware version */ switch (dev->cfg.tuner) { case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: dev->is_it9135 = true; reg = 0x004bfc; break; default: dev->is_af9035 = true; reg = 0x0083e9; break; } ret = regmap_bulk_read(dev->regmap, reg, &buf[0], 4); if (ret) goto err_regmap_exit; ret = regmap_bulk_read(dev->regmap, 0x804191, &buf[4], 4); if (ret) goto err_regmap_exit; dev_info(&client->dev, "firmware version: LINK %d.%d.%d.%d - OFDM %d.%d.%d.%d\n", buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]); /* Sleep as chip seems to be partly active by default */ /* IT9135 did not like to sleep at that early */ if (dev->is_af9035) { ret = regmap_write(dev->regmap, 0x80004c, 0x01); if (ret) goto err_regmap_exit; ret = regmap_write(dev->regmap, 0x800000, 0x00); if (ret) goto err_regmap_exit; } /* Create dvb frontend */ memcpy(&dev->fe.ops, &af9033_ops, sizeof(dev->fe.ops)); dev->fe.demodulator_priv = dev; *cfg->fe = &dev->fe; if (cfg->ops) { cfg->ops->pid_filter = af9033_pid_filter; cfg->ops->pid_filter_ctrl = af9033_pid_filter_ctrl; } cfg->regmap = dev->regmap; i2c_set_clientdata(client, dev); dev_info(&client->dev, "Afatech AF9033 successfully attached\n"); return 0; err_regmap_exit: regmap_exit(dev->regmap); err_kfree: kfree(dev); err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static void af9033_remove(struct i2c_client *client) { struct af9033_dev *dev = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); regmap_exit(dev->regmap); kfree(dev); } static const struct i2c_device_id af9033_id_table[] = { {"af9033", 0}, {} }; MODULE_DEVICE_TABLE(i2c, af9033_id_table); static struct i2c_driver af9033_driver = { .driver = { .name = "af9033", .suppress_bind_attrs = true, }, .probe = af9033_probe, .remove = af9033_remove, .id_table = af9033_id_table, }; module_i2c_driver(af9033_driver); MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1