Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Patrick Boettcher | 7330 | 93.41% | 8 | 32.00% |
Olivier Grenie | 338 | 4.31% | 2 | 8.00% |
Mauro Carvalho Chehab | 145 | 1.85% | 9 | 36.00% |
Soeren Moch | 17 | 0.22% | 1 | 4.00% |
Hans Verkuil | 9 | 0.11% | 1 | 4.00% |
Tejun Heo | 3 | 0.04% | 1 | 4.00% |
Thomas Gleixner | 2 | 0.03% | 1 | 4.00% |
Max Kellermann | 2 | 0.03% | 1 | 4.00% |
Sean Young | 1 | 0.01% | 1 | 4.00% |
Total | 7847 | 25 |
// SPDX-License-Identifier: GPL-2.0-only /* * Linux-DVB Driver for DiBcom's DiB7000M and * first generation DiB7000P-demodulator-family. * * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/mutex.h> #include <media/dvb_frontend.h> #include "dib7000m.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(fmt, arg...) do { \ if (debug) \ printk(KERN_DEBUG pr_fmt("%s: " fmt), \ __func__, ##arg); \ } while (0) struct dib7000m_state { struct dvb_frontend demod; struct dib7000m_config cfg; u8 i2c_addr; struct i2c_adapter *i2c_adap; struct dibx000_i2c_master i2c_master; /* offset is 1 in case of the 7000MC */ u8 reg_offs; u16 wbd_ref; u8 current_band; u32 current_bandwidth; struct dibx000_agc_config *current_agc; u32 timf; u32 timf_default; u32 internal_clk; u8 div_force_off : 1; u8 div_state : 1; u16 div_sync_wait; u16 revision; u8 agc_state; /* for the I2C transfer */ struct i2c_msg msg[2]; u8 i2c_write_buffer[4]; u8 i2c_read_buffer[2]; struct mutex i2c_buffer_lock; }; enum dib7000m_power_mode { DIB7000M_POWER_ALL = 0, DIB7000M_POWER_NO, DIB7000M_POWER_INTERF_ANALOG_AGC, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD, DIB7000M_POWER_INTERFACE_ONLY, }; static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg) { u16 ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return 0; } state->i2c_write_buffer[0] = (reg >> 8) | 0x80; state->i2c_write_buffer[1] = reg & 0xff; memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c_addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 2; state->msg[1].addr = state->i2c_addr >> 1; state->msg[1].flags = I2C_M_RD; state->msg[1].buf = state->i2c_read_buffer; state->msg[1].len = 2; if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2) dprintk("i2c read error on %d\n", reg); ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; mutex_unlock(&state->i2c_buffer_lock); return ret; } static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val) { int ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return -EINVAL; } state->i2c_write_buffer[0] = (reg >> 8) & 0xff; state->i2c_write_buffer[1] = reg & 0xff; state->i2c_write_buffer[2] = (val >> 8) & 0xff; state->i2c_write_buffer[3] = val & 0xff; memset(&state->msg[0], 0, sizeof(struct i2c_msg)); state->msg[0].addr = state->i2c_addr >> 1; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 4; ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0); mutex_unlock(&state->i2c_buffer_lock); return ret; } static void dib7000m_write_tab(struct dib7000m_state *state, u16 *buf) { u16 l = 0, r, *n; n = buf; l = *n++; while (l) { r = *n++; if (state->reg_offs && (r >= 112 && r <= 331)) // compensate for 7000MC r++; do { dib7000m_write_word(state, r, *n++); r++; } while (--l); l = *n++; } } static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode) { int ret = 0; u16 outreg, fifo_threshold, smo_mode, sram = 0x0005; /* by default SRAM output is disabled */ outreg = 0; fifo_threshold = 1792; smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1); dprintk("setting output mode for demod %p to %d\n", &state->demod, mode); switch (mode) { case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock outreg = (1 << 10); /* 0x0400 */ break; case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock outreg = (1 << 10) | (1 << 6); /* 0x0440 */ break; case OUTMODE_MPEG2_SERIAL: // STBs with serial input outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ break; case OUTMODE_DIVERSITY: if (state->cfg.hostbus_diversity) outreg = (1 << 10) | (4 << 6); /* 0x0500 */ else sram |= 0x0c00; break; case OUTMODE_MPEG2_FIFO: // e.g. USB feeding smo_mode |= (3 << 1); fifo_threshold = 512; outreg = (1 << 10) | (5 << 6); break; case OUTMODE_HIGH_Z: // disable outreg = 0; break; default: dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->demod); break; } if (state->cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5) ; ret |= dib7000m_write_word(state, 294 + state->reg_offs, smo_mode); ret |= dib7000m_write_word(state, 295 + state->reg_offs, fifo_threshold); /* synchronous fread */ ret |= dib7000m_write_word(state, 1795, outreg); ret |= dib7000m_write_word(state, 1805, sram); if (state->revision == 0x4003) { u16 clk_cfg1 = dib7000m_read_word(state, 909) & 0xfffd; if (mode == OUTMODE_DIVERSITY) clk_cfg1 |= (1 << 1); // P_O_CLK_en dib7000m_write_word(state, 909, clk_cfg1); } return ret; } static void dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode) { /* by default everything is going to be powered off */ u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906 = 0x3fff; u8 offset = 0; /* now, depending on the requested mode, we power on */ switch (mode) { /* power up everything in the demod */ case DIB7000M_POWER_ALL: reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000; break; /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */ case DIB7000M_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */ reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2)); break; case DIB7000M_POWER_INTERF_ANALOG_AGC: reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10)); reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2)); reg_906 &= ~((1 << 0)); break; case DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD: reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 = 0x0000; break; case DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD: reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 = 0x0000; break; case DIB7000M_POWER_NO: break; } /* always power down unused parts */ if (!state->cfg.mobile_mode) reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); /* P_sdio_select_clk = 0 on MC and after*/ if (state->revision != 0x4000) reg_906 <<= 1; if (state->revision == 0x4003) offset = 1; dib7000m_write_word(state, 903 + offset, reg_903); dib7000m_write_word(state, 904 + offset, reg_904); dib7000m_write_word(state, 905 + offset, reg_905); dib7000m_write_word(state, 906 + offset, reg_906); } static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no) { int ret = 0; u16 reg_913 = dib7000m_read_word(state, 913), reg_914 = dib7000m_read_word(state, 914); switch (no) { case DIBX000_SLOW_ADC_ON: reg_914 |= (1 << 1) | (1 << 0); ret |= dib7000m_write_word(state, 914, reg_914); reg_914 &= ~(1 << 1); break; case DIBX000_SLOW_ADC_OFF: reg_914 |= (1 << 1) | (1 << 0); break; case DIBX000_ADC_ON: if (state->revision == 0x4000) { // workaround for PA/MA // power-up ADC dib7000m_write_word(state, 913, 0); dib7000m_write_word(state, 914, reg_914 & 0x3); // power-down bandgag dib7000m_write_word(state, 913, (1 << 15)); dib7000m_write_word(state, 914, reg_914 & 0x3); } reg_913 &= 0x0fff; reg_914 &= 0x0003; break; case DIBX000_ADC_OFF: // leave the VBG voltage on reg_913 |= (1 << 14) | (1 << 13) | (1 << 12); reg_914 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); break; case DIBX000_VBG_ENABLE: reg_913 &= ~(1 << 15); break; case DIBX000_VBG_DISABLE: reg_913 |= (1 << 15); break; default: break; } // dprintk("913: %x, 914: %x\n", reg_913, reg_914); ret |= dib7000m_write_word(state, 913, reg_913); ret |= dib7000m_write_word(state, 914, reg_914); return ret; } static int dib7000m_set_bandwidth(struct dib7000m_state *state, u32 bw) { u32 timf; if (!bw) bw = 8000; // store the current bandwidth for later use state->current_bandwidth = bw; if (state->timf == 0) { dprintk("using default timf\n"); timf = state->timf_default; } else { dprintk("using updated timf\n"); timf = state->timf; } timf = timf * (bw / 50) / 160; dib7000m_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); dib7000m_write_word(state, 24, (u16) ((timf ) & 0xffff)); return 0; } static int dib7000m_set_diversity_in(struct dvb_frontend *demod, int onoff) { struct dib7000m_state *state = demod->demodulator_priv; if (state->div_force_off) { dprintk("diversity combination deactivated - forced by COFDM parameters\n"); onoff = 0; } state->div_state = (u8)onoff; if (onoff) { dib7000m_write_word(state, 263 + state->reg_offs, 6); dib7000m_write_word(state, 264 + state->reg_offs, 6); dib7000m_write_word(state, 266 + state->reg_offs, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); } else { dib7000m_write_word(state, 263 + state->reg_offs, 1); dib7000m_write_word(state, 264 + state->reg_offs, 0); dib7000m_write_word(state, 266 + state->reg_offs, 0); } return 0; } static int dib7000m_sad_calib(struct dib7000m_state *state) { /* internal */ // dib7000m_write_word(state, 928, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writing in set_bandwidth dib7000m_write_word(state, 929, (0 << 1) | (0 << 0)); dib7000m_write_word(state, 930, 776); // 0.625*3.3 / 4096 /* do the calibration */ dib7000m_write_word(state, 929, (1 << 0)); dib7000m_write_word(state, 929, (0 << 0)); msleep(1); return 0; } static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw) { dib7000m_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff)); dib7000m_write_word(state, 19, (u16) ( (bw->internal*1000) & 0xffff)); dib7000m_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff)); dib7000m_write_word(state, 22, (u16) ( bw->ifreq & 0xffff)); dib7000m_write_word(state, 928, bw->sad_cfg); } static void dib7000m_reset_pll(struct dib7000m_state *state) { const struct dibx000_bandwidth_config *bw = state->cfg.bw; u16 reg_907,reg_910; /* default */ reg_907 = (bw->pll_bypass << 15) | (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0); reg_910 = (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset; // for this oscillator frequency should be 30 MHz for the Master (default values in the board_parameters give that value) // this is only working only for 30 MHz crystals if (!state->cfg.quartz_direct) { reg_910 |= (1 << 5); // forcing the predivider to 1 // if the previous front-end is baseband, its output frequency is 15 MHz (prev freq divided by 2) if(state->cfg.input_clk_is_div_2) reg_907 |= (16 << 9); else // otherwise the previous front-end puts out its input (default 30MHz) - no extra division necessary reg_907 |= (8 << 9); } else { reg_907 |= (bw->pll_ratio & 0x3f) << 9; reg_910 |= (bw->pll_prediv << 5); } dib7000m_write_word(state, 910, reg_910); // pll cfg dib7000m_write_word(state, 907, reg_907); // clk cfg0 dib7000m_write_word(state, 908, 0x0006); // clk_cfg1 dib7000m_reset_pll_common(state, bw); } static void dib7000mc_reset_pll(struct dib7000m_state *state) { const struct dibx000_bandwidth_config *bw = state->cfg.bw; u16 clk_cfg1; // clk_cfg0 dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0)); // clk_cfg1 //dib7000m_write_word(state, 908, (1 << 14) | (3 << 12) |(0 << 11) | clk_cfg1 = (0 << 14) | (3 << 12) |(0 << 11) | (bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) | (1 << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0); dib7000m_write_word(state, 908, clk_cfg1); clk_cfg1 = (clk_cfg1 & 0xfff7) | (bw->pll_bypass << 3); dib7000m_write_word(state, 908, clk_cfg1); // smpl_cfg dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7)); dib7000m_reset_pll_common(state, bw); } static int dib7000m_reset_gpio(struct dib7000m_state *st) { /* reset the GPIOs */ dib7000m_write_word(st, 773, st->cfg.gpio_dir); dib7000m_write_word(st, 774, st->cfg.gpio_val); /* TODO 782 is P_gpio_od */ dib7000m_write_word(st, 775, st->cfg.gpio_pwm_pos); dib7000m_write_word(st, 780, st->cfg.pwm_freq_div); return 0; } static u16 dib7000m_defaults_common[] = { // auto search configuration 3, 2, 0x0004, 0x1000, 0x0814, 12, 6, 0x001b, 0x7740, 0x005b, 0x8d80, 0x01c9, 0xc380, 0x0000, 0x0080, 0x0000, 0x0090, 0x0001, 0xd4c0, 1, 26, 0x6680, // P_corm_thres Lock algorithms configuration 1, 170, 0x0410, // P_palf_alpha_regul, P_palf_filter_freeze, P_palf_filter_on 8, 173, 0, 0, 0, 0, 0, 0, 0, 0, 1, 182, 8192, // P_fft_nb_to_cut 2, 195, 0x0ccd, // P_pha3_thres 0, // P_cti_use_cpe, P_cti_use_prog 1, 205, 0x200f, // P_cspu_regul, P_cspu_win_cut 5, 214, 0x023d, // P_adp_regul_cnt 0x00a4, // P_adp_noise_cnt 0x00a4, // P_adp_regul_ext 0x7ff0, // P_adp_noise_ext 0x3ccc, // P_adp_fil 1, 226, 0, // P_2d_byp_ti_num 1, 255, 0x800, // P_equal_thres_wgn 1, 263, 0x0001, 1, 281, 0x0010, // P_fec_* 1, 294, 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard 0 }; static u16 dib7000m_defaults[] = { /* set ADC level to -16 */ 11, 76, (1 << 13) - 825 - 117, (1 << 13) - 837 - 117, (1 << 13) - 811 - 117, (1 << 13) - 766 - 117, (1 << 13) - 737 - 117, (1 << 13) - 693 - 117, (1 << 13) - 648 - 117, (1 << 13) - 619 - 117, (1 << 13) - 575 - 117, (1 << 13) - 531 - 117, (1 << 13) - 501 - 117, // Tuner IO bank: max drive (14mA) 1, 912, 0x2c8a, 1, 1817, 1, 0, }; static int dib7000m_demod_reset(struct dib7000m_state *state) { dib7000m_set_power_mode(state, DIB7000M_POWER_ALL); /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */ dib7000m_set_adc_state(state, DIBX000_VBG_ENABLE); /* restart all parts */ dib7000m_write_word(state, 898, 0xffff); dib7000m_write_word(state, 899, 0xffff); dib7000m_write_word(state, 900, 0xff0f); dib7000m_write_word(state, 901, 0xfffc); dib7000m_write_word(state, 898, 0); dib7000m_write_word(state, 899, 0); dib7000m_write_word(state, 900, 0); dib7000m_write_word(state, 901, 0); if (state->revision == 0x4000) dib7000m_reset_pll(state); else dib7000mc_reset_pll(state); if (dib7000m_reset_gpio(state) != 0) dprintk("GPIO reset was not successful.\n"); if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0) dprintk("OUTPUT_MODE could not be reset.\n"); /* unforce divstr regardless whether i2c enumeration was done or not */ dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) ); dib7000m_set_bandwidth(state, 8000); dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON); dib7000m_sad_calib(state); dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF); if (state->cfg.dvbt_mode) dib7000m_write_word(state, 1796, 0x0); // select DVB-T output if (state->cfg.mobile_mode) dib7000m_write_word(state, 261 + state->reg_offs, 2); else dib7000m_write_word(state, 224 + state->reg_offs, 1); // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ... if(state->cfg.tuner_is_baseband) dib7000m_write_word(state, 36, 0x0755); else dib7000m_write_word(state, 36, 0x1f55); // P_divclksel=3 P_divbitsel=1 if (state->revision == 0x4000) dib7000m_write_word(state, 909, (3 << 10) | (1 << 6)); else dib7000m_write_word(state, 909, (3 << 4) | 1); dib7000m_write_tab(state, dib7000m_defaults_common); dib7000m_write_tab(state, dib7000m_defaults); dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY); state->internal_clk = state->cfg.bw->internal; return 0; } static void dib7000m_restart_agc(struct dib7000m_state *state) { // P_restart_iqc & P_restart_agc dib7000m_write_word(state, 898, 0x0c00); dib7000m_write_word(state, 898, 0x0000); } static int dib7000m_agc_soft_split(struct dib7000m_state *state) { u16 agc,split_offset; if(!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0) return 0; // n_agc_global agc = dib7000m_read_word(state, 390); if (agc > state->current_agc->split.min_thres) split_offset = state->current_agc->split.min; else if (agc < state->current_agc->split.max_thres) split_offset = state->current_agc->split.max; else split_offset = state->current_agc->split.max * (agc - state->current_agc->split.min_thres) / (state->current_agc->split.max_thres - state->current_agc->split.min_thres); dprintk("AGC split_offset: %d\n", split_offset); // P_agc_force_split and P_agc_split_offset return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset); } static int dib7000m_update_lna(struct dib7000m_state *state) { u16 dyn_gain; if (state->cfg.update_lna) { // read dyn_gain here (because it is demod-dependent and not fe) dyn_gain = dib7000m_read_word(state, 390); if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed dib7000m_restart_agc(state); return 1; } } return 0; } static int dib7000m_set_agc_config(struct dib7000m_state *state, u8 band) { struct dibx000_agc_config *agc = NULL; int i; if (state->current_band == band && state->current_agc != NULL) return 0; state->current_band = band; for (i = 0; i < state->cfg.agc_config_count; i++) if (state->cfg.agc[i].band_caps & band) { agc = &state->cfg.agc[i]; break; } if (agc == NULL) { dprintk("no valid AGC configuration found for band 0x%02x\n", band); return -EINVAL; } state->current_agc = agc; /* AGC */ dib7000m_write_word(state, 72 , agc->setup); dib7000m_write_word(state, 73 , agc->inv_gain); dib7000m_write_word(state, 74 , agc->time_stabiliz); dib7000m_write_word(state, 97 , (agc->alpha_level << 12) | agc->thlock); // Demod AGC loop configuration dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp); dib7000m_write_word(state, 99, (agc->beta_mant << 6) | agc->beta_exp); dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); /* AGC continued */ if (state->wbd_ref != 0) dib7000m_write_word(state, 102, state->wbd_ref); else // use default dib7000m_write_word(state, 102, agc->wbd_ref); dib7000m_write_word(state, 103, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) ); dib7000m_write_word(state, 104, agc->agc1_max); dib7000m_write_word(state, 105, agc->agc1_min); dib7000m_write_word(state, 106, agc->agc2_max); dib7000m_write_word(state, 107, agc->agc2_min); dib7000m_write_word(state, 108, (agc->agc1_pt1 << 8) | agc->agc1_pt2 ); dib7000m_write_word(state, 109, (agc->agc1_slope1 << 8) | agc->agc1_slope2); dib7000m_write_word(state, 110, (agc->agc2_pt1 << 8) | agc->agc2_pt2); dib7000m_write_word(state, 111, (agc->agc2_slope1 << 8) | agc->agc2_slope2); if (state->revision > 0x4000) { // settings for the MC dib7000m_write_word(state, 71, agc->agc1_pt3); // dprintk("929: %x %d %d\n", // (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2), agc->wbd_inv, agc->wbd_sel); dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); } else { // wrong default values u16 b[9] = { 676, 696, 717, 737, 758, 778, 799, 819, 840 }; for (i = 0; i < 9; i++) dib7000m_write_word(state, 88 + i, b[i]); } return 0; } static void dib7000m_update_timf(struct dib7000m_state *state) { u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437); state->timf = timf * 160 / (state->current_bandwidth / 50); dib7000m_write_word(state, 23, (u16) (timf >> 16)); dib7000m_write_word(state, 24, (u16) (timf & 0xffff)); dprintk("updated timf_frequency: %d (default: %d)\n", state->timf, state->timf_default); } static int dib7000m_agc_startup(struct dvb_frontend *demod) { struct dtv_frontend_properties *ch = &demod->dtv_property_cache; struct dib7000m_state *state = demod->demodulator_priv; u16 cfg_72 = dib7000m_read_word(state, 72); int ret = -1; u8 *agc_state = &state->agc_state; u8 agc_split; switch (state->agc_state) { case 0: // set power-up level: interf+analog+AGC dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC); dib7000m_set_adc_state(state, DIBX000_ADC_ON); if (dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0) return -1; ret = 7; /* ADC power up */ (*agc_state)++; break; case 1: /* AGC initialization */ if (state->cfg.agc_control) state->cfg.agc_control(&state->demod, 1); dib7000m_write_word(state, 75, 32768); if (!state->current_agc->perform_agc_softsplit) { /* we are using the wbd - so slow AGC startup */ dib7000m_write_word(state, 103, 1 << 8); /* force 0 split on WBD and restart AGC */ (*agc_state)++; ret = 5; } else { /* default AGC startup */ (*agc_state) = 4; /* wait AGC rough lock time */ ret = 7; } dib7000m_restart_agc(state); break; case 2: /* fast split search path after 5sec */ dib7000m_write_word(state, 72, cfg_72 | (1 << 4)); /* freeze AGC loop */ dib7000m_write_word(state, 103, 2 << 9); /* fast split search 0.25kHz */ (*agc_state)++; ret = 14; break; case 3: /* split search ended */ agc_split = (u8)dib7000m_read_word(state, 392); /* store the split value for the next time */ dib7000m_write_word(state, 75, dib7000m_read_word(state, 390)); /* set AGC gain start value */ dib7000m_write_word(state, 72, cfg_72 & ~(1 << 4)); /* std AGC loop */ dib7000m_write_word(state, 103, (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ dib7000m_restart_agc(state); dprintk("SPLIT %p: %u\n", demod, agc_split); (*agc_state)++; ret = 5; break; case 4: /* LNA startup */ /* wait AGC accurate lock time */ ret = 7; if (dib7000m_update_lna(state)) // wait only AGC rough lock time ret = 5; else (*agc_state)++; break; case 5: dib7000m_agc_soft_split(state); if (state->cfg.agc_control) state->cfg.agc_control(&state->demod, 0); (*agc_state)++; break; default: break; } return ret; } static void dib7000m_set_channel(struct dib7000m_state *state, struct dtv_frontend_properties *ch, u8 seq) { u16 value, est[4]; dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); /* nfft, guard, qam, alpha */ value = 0; switch (ch->transmission_mode) { case TRANSMISSION_MODE_2K: value |= (0 << 7); break; case TRANSMISSION_MODE_4K: value |= (2 << 7); break; default: case TRANSMISSION_MODE_8K: value |= (1 << 7); break; } switch (ch->guard_interval) { case GUARD_INTERVAL_1_32: value |= (0 << 5); break; case GUARD_INTERVAL_1_16: value |= (1 << 5); break; case GUARD_INTERVAL_1_4: value |= (3 << 5); break; default: case GUARD_INTERVAL_1_8: value |= (2 << 5); break; } switch (ch->modulation) { case QPSK: value |= (0 << 3); break; case QAM_16: value |= (1 << 3); break; default: case QAM_64: value |= (2 << 3); break; } switch (HIERARCHY_1) { case HIERARCHY_2: value |= 2; break; case HIERARCHY_4: value |= 4; break; default: case HIERARCHY_1: value |= 1; break; } dib7000m_write_word(state, 0, value); dib7000m_write_word(state, 5, (seq << 4)); /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ value = 0; if (1 != 0) value |= (1 << 6); if (ch->hierarchy == 1) value |= (1 << 4); if (1 == 1) value |= 1; switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) { case FEC_2_3: value |= (2 << 1); break; case FEC_3_4: value |= (3 << 1); break; case FEC_5_6: value |= (5 << 1); break; case FEC_7_8: value |= (7 << 1); break; default: case FEC_1_2: value |= (1 << 1); break; } dib7000m_write_word(state, 267 + state->reg_offs, value); /* offset loop parameters */ /* P_timf_alpha = 6, P_corm_alpha=6, P_corm_thres=0x80 */ dib7000m_write_word(state, 26, (6 << 12) | (6 << 8) | 0x80); /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=1, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (1 << 9) | (3 << 5) | (1 << 4) | (0x3)); /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max=3 */ dib7000m_write_word(state, 32, (0 << 4) | 0x3); /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step=5 */ dib7000m_write_word(state, 33, (0 << 4) | 0x5); /* P_dvsy_sync_wait */ switch (ch->transmission_mode) { case TRANSMISSION_MODE_8K: value = 256; break; case TRANSMISSION_MODE_4K: value = 128; break; case TRANSMISSION_MODE_2K: default: value = 64; break; } switch (ch->guard_interval) { case GUARD_INTERVAL_1_16: value *= 2; break; case GUARD_INTERVAL_1_8: value *= 4; break; case GUARD_INTERVAL_1_4: value *= 8; break; default: case GUARD_INTERVAL_1_32: value *= 1; break; } state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO /* deactivate the possibility of diversity reception if extended interleave - not for 7000MC */ /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ if (1 == 1 || state->revision > 0x4000) state->div_force_off = 0; else state->div_force_off = 1; dib7000m_set_diversity_in(&state->demod, state->div_state); /* channel estimation fine configuration */ switch (ch->modulation) { case QAM_64: est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ break; case QAM_16: est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ break; default: est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ break; } for (value = 0; value < 4; value++) dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]); // set power-up level: autosearch dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD); } static int dib7000m_autosearch_start(struct dvb_frontend *demod) { struct dtv_frontend_properties *ch = &demod->dtv_property_cache; struct dib7000m_state *state = demod->demodulator_priv; struct dtv_frontend_properties schan; int ret = 0; u32 value, factor; schan = *ch; schan.modulation = QAM_64; schan.guard_interval = GUARD_INTERVAL_1_32; schan.transmission_mode = TRANSMISSION_MODE_8K; schan.code_rate_HP = FEC_2_3; schan.code_rate_LP = FEC_3_4; schan.hierarchy = 0; dib7000m_set_channel(state, &schan, 7); factor = BANDWIDTH_TO_KHZ(schan.bandwidth_hz); if (factor >= 5000) factor = 1; else factor = 6; // always use the setting for 8MHz here lock_time for 7,6 MHz are longer value = 30 * state->internal_clk * factor; ret |= dib7000m_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time ret |= dib7000m_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time value = 100 * state->internal_clk * factor; ret |= dib7000m_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time ret |= dib7000m_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time value = 500 * state->internal_clk * factor; ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time ret |= dib7000m_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time // start search value = dib7000m_read_word(state, 0); ret |= dib7000m_write_word(state, 0, (u16) (value | (1 << 9))); /* clear n_irq_pending */ if (state->revision == 0x4000) dib7000m_write_word(state, 1793, 0); else dib7000m_read_word(state, 537); ret |= dib7000m_write_word(state, 0, (u16) value); return ret; } static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg) { u16 irq_pending = dib7000m_read_word(state, reg); if (irq_pending & 0x1) { // failed dprintk("autosearch failed\n"); return 1; } if (irq_pending & 0x2) { // succeeded dprintk("autosearch succeeded\n"); return 2; } return 0; // still pending } static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod) { struct dib7000m_state *state = demod->demodulator_priv; if (state->revision == 0x4000) return dib7000m_autosearch_irq(state, 1793); else return dib7000m_autosearch_irq(state, 537); } static int dib7000m_tune(struct dvb_frontend *demod) { struct dtv_frontend_properties *ch = &demod->dtv_property_cache; struct dib7000m_state *state = demod->demodulator_priv; int ret = 0; u16 value; // we are already tuned - just resuming from suspend dib7000m_set_channel(state, ch, 0); // restart demod ret |= dib7000m_write_word(state, 898, 0x4000); ret |= dib7000m_write_word(state, 898, 0x0000); msleep(45); dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD); /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3)); // never achieved a lock before - wait for timfreq to update if (state->timf == 0) msleep(200); //dump_reg(state); /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ value = (6 << 8) | 0x80; switch (ch->transmission_mode) { case TRANSMISSION_MODE_2K: value |= (7 << 12); break; case TRANSMISSION_MODE_4K: value |= (8 << 12); break; default: case TRANSMISSION_MODE_8K: value |= (9 << 12); break; } ret |= dib7000m_write_word(state, 26, value); /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ value = (0 << 4); switch (ch->transmission_mode) { case TRANSMISSION_MODE_2K: value |= 0x6; break; case TRANSMISSION_MODE_4K: value |= 0x7; break; default: case TRANSMISSION_MODE_8K: value |= 0x8; break; } ret |= dib7000m_write_word(state, 32, value); /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ value = (0 << 4); switch (ch->transmission_mode) { case TRANSMISSION_MODE_2K: value |= 0x6; break; case TRANSMISSION_MODE_4K: value |= 0x7; break; default: case TRANSMISSION_MODE_8K: value |= 0x8; break; } ret |= dib7000m_write_word(state, 33, value); // we achieved a lock - it's time to update the timf freq if ((dib7000m_read_word(state, 535) >> 6) & 0x1) dib7000m_update_timf(state); dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); return ret; } static int dib7000m_wakeup(struct dvb_frontend *demod) { struct dib7000m_state *state = demod->demodulator_priv; dib7000m_set_power_mode(state, DIB7000M_POWER_ALL); if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0) dprintk("could not start Slow ADC\n"); return 0; } static int dib7000m_sleep(struct dvb_frontend *demod) { struct dib7000m_state *st = demod->demodulator_priv; dib7000m_set_output_mode(st, OUTMODE_HIGH_Z); dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY); return dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) | dib7000m_set_adc_state(st, DIBX000_ADC_OFF); } static int dib7000m_identify(struct dib7000m_state *state) { u16 value; if ((value = dib7000m_read_word(state, 896)) != 0x01b3) { dprintk("wrong Vendor ID (0x%x)\n", value); return -EREMOTEIO; } state->revision = dib7000m_read_word(state, 897); if (state->revision != 0x4000 && state->revision != 0x4001 && state->revision != 0x4002 && state->revision != 0x4003) { dprintk("wrong Device ID (0x%x)\n", value); return -EREMOTEIO; } /* protect this driver to be used with 7000PC */ if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) { dprintk("this driver does not work with DiB7000PC\n"); return -EREMOTEIO; } switch (state->revision) { case 0x4000: dprintk("found DiB7000MA/PA/MB/PB\n"); break; case 0x4001: state->reg_offs = 1; dprintk("found DiB7000HC\n"); break; case 0x4002: state->reg_offs = 1; dprintk("found DiB7000MC\n"); break; case 0x4003: state->reg_offs = 1; dprintk("found DiB9000\n"); break; } return 0; } static int dib7000m_get_frontend(struct dvb_frontend* fe, struct dtv_frontend_properties *fep) { struct dib7000m_state *state = fe->demodulator_priv; u16 tps = dib7000m_read_word(state,480); fep->inversion = INVERSION_AUTO; fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth); switch ((tps >> 8) & 0x3) { case 0: fep->transmission_mode = TRANSMISSION_MODE_2K; break; case 1: fep->transmission_mode = TRANSMISSION_MODE_8K; break; /* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */ } switch (tps & 0x3) { case 0: fep->guard_interval = GUARD_INTERVAL_1_32; break; case 1: fep->guard_interval = GUARD_INTERVAL_1_16; break; case 2: fep->guard_interval = GUARD_INTERVAL_1_8; break; case 3: fep->guard_interval = GUARD_INTERVAL_1_4; break; } switch ((tps >> 14) & 0x3) { case 0: fep->modulation = QPSK; break; case 1: fep->modulation = QAM_16; break; case 2: default: fep->modulation = QAM_64; break; } /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ fep->hierarchy = HIERARCHY_NONE; switch ((tps >> 5) & 0x7) { case 1: fep->code_rate_HP = FEC_1_2; break; case 2: fep->code_rate_HP = FEC_2_3; break; case 3: fep->code_rate_HP = FEC_3_4; break; case 5: fep->code_rate_HP = FEC_5_6; break; case 7: default: fep->code_rate_HP = FEC_7_8; break; } switch ((tps >> 2) & 0x7) { case 1: fep->code_rate_LP = FEC_1_2; break; case 2: fep->code_rate_LP = FEC_2_3; break; case 3: fep->code_rate_LP = FEC_3_4; break; case 5: fep->code_rate_LP = FEC_5_6; break; case 7: default: fep->code_rate_LP = FEC_7_8; break; } /* native interleaver: (dib7000m_read_word(state, 481) >> 5) & 0x1 */ return 0; } static int dib7000m_set_frontend(struct dvb_frontend *fe) { struct dtv_frontend_properties *fep = &fe->dtv_property_cache; struct dib7000m_state *state = fe->demodulator_priv; int time, ret; dib7000m_set_output_mode(state, OUTMODE_HIGH_Z); dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->bandwidth_hz)); if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe); /* start up the AGC */ state->agc_state = 0; do { time = dib7000m_agc_startup(fe); if (time != -1) msleep(time); } while (time != -1); if (fep->transmission_mode == TRANSMISSION_MODE_AUTO || fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) { int i = 800, found; dib7000m_autosearch_start(fe); do { msleep(1); found = dib7000m_autosearch_is_irq(fe); } while (found == 0 && i--); dprintk("autosearch returns: %d\n", found); if (found == 0 || found == 1) return 0; // no channel found dib7000m_get_frontend(fe, fep); } ret = dib7000m_tune(fe); /* make this a config parameter */ dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO); return ret; } static int dib7000m_read_status(struct dvb_frontend *fe, enum fe_status *stat) { struct dib7000m_state *state = fe->demodulator_priv; u16 lock = dib7000m_read_word(state, 535); *stat = 0; if (lock & 0x8000) *stat |= FE_HAS_SIGNAL; if (lock & 0x3000) *stat |= FE_HAS_CARRIER; if (lock & 0x0100) *stat |= FE_HAS_VITERBI; if (lock & 0x0010) *stat |= FE_HAS_SYNC; if (lock & 0x0008) *stat |= FE_HAS_LOCK; return 0; } static int dib7000m_read_ber(struct dvb_frontend *fe, u32 *ber) { struct dib7000m_state *state = fe->demodulator_priv; *ber = (dib7000m_read_word(state, 526) << 16) | dib7000m_read_word(state, 527); return 0; } static int dib7000m_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) { struct dib7000m_state *state = fe->demodulator_priv; *unc = dib7000m_read_word(state, 534); return 0; } static int dib7000m_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct dib7000m_state *state = fe->demodulator_priv; u16 val = dib7000m_read_word(state, 390); *strength = 65535 - val; return 0; } static int dib7000m_read_snr(struct dvb_frontend* fe, u16 *snr) { *snr = 0x0000; return 0; } static int dib7000m_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static void dib7000m_release(struct dvb_frontend *demod) { struct dib7000m_state *st = demod->demodulator_priv; dibx000_exit_i2c_master(&st->i2c_master); kfree(st); } struct i2c_adapter * dib7000m_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) { struct dib7000m_state *st = demod->demodulator_priv; return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); } EXPORT_SYMBOL(dib7000m_get_i2c_master); int dib7000m_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) { struct dib7000m_state *state = fe->demodulator_priv; u16 val = dib7000m_read_word(state, 294 + state->reg_offs) & 0xffef; val |= (onoff & 0x1) << 4; dprintk("PID filter enabled %d\n", onoff); return dib7000m_write_word(state, 294 + state->reg_offs, val); } EXPORT_SYMBOL(dib7000m_pid_filter_ctrl); int dib7000m_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) { struct dib7000m_state *state = fe->demodulator_priv; dprintk("PID filter: index %x, PID %d, OnOff %d\n", id, pid, onoff); return dib7000m_write_word(state, 300 + state->reg_offs + id, onoff ? (1 << 13) | pid : 0); } EXPORT_SYMBOL(dib7000m_pid_filter); #if 0 /* used with some prototype boards */ int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000m_config cfg[]) { struct dib7000m_state st = { .i2c_adap = i2c }; int k = 0; u8 new_addr = 0; for (k = no_of_demods-1; k >= 0; k--) { st.cfg = cfg[k]; /* designated i2c address */ new_addr = (0x40 + k) << 1; st.i2c_addr = new_addr; if (dib7000m_identify(&st) != 0) { st.i2c_addr = default_addr; if (dib7000m_identify(&st) != 0) { dprintk("DiB7000M #%d: not identified\n", k); return -EIO; } } /* start diversity to pull_down div_str - just for i2c-enumeration */ dib7000m_set_output_mode(&st, OUTMODE_DIVERSITY); dib7000m_write_word(&st, 1796, 0x0); // select DVB-T output /* set new i2c address and force divstart */ dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2); dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); } for (k = 0; k < no_of_demods; k++) { st.cfg = cfg[k]; st.i2c_addr = (0x40 + k) << 1; // unforce divstr dib7000m_write_word(&st,1794, st.i2c_addr << 2); /* deactivate div - it was just for i2c-enumeration */ dib7000m_set_output_mode(&st, OUTMODE_HIGH_Z); } return 0; } EXPORT_SYMBOL(dib7000m_i2c_enumeration); #endif static const struct dvb_frontend_ops dib7000m_ops; struct dvb_frontend * dib7000m_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000m_config *cfg) { struct dvb_frontend *demod; struct dib7000m_state *st; st = kzalloc(sizeof(struct dib7000m_state), GFP_KERNEL); if (st == NULL) return NULL; memcpy(&st->cfg, cfg, sizeof(struct dib7000m_config)); st->i2c_adap = i2c_adap; st->i2c_addr = i2c_addr; demod = &st->demod; demod->demodulator_priv = st; memcpy(&st->demod.ops, &dib7000m_ops, sizeof(struct dvb_frontend_ops)); mutex_init(&st->i2c_buffer_lock); st->timf_default = cfg->bw->timf; if (dib7000m_identify(st) != 0) goto error; if (st->revision == 0x4000) dibx000_init_i2c_master(&st->i2c_master, DIB7000, st->i2c_adap, st->i2c_addr); else dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c_adap, st->i2c_addr); dib7000m_demod_reset(st); return demod; error: kfree(st); return NULL; } EXPORT_SYMBOL(dib7000m_attach); static const struct dvb_frontend_ops dib7000m_ops = { .delsys = { SYS_DVBT }, .info = { .name = "DiBcom 7000MA/MB/PA/PB/MC", .frequency_min_hz = 44250 * kHz, .frequency_max_hz = 867250 * kHz, .frequency_stepsize_hz = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib7000m_release, .init = dib7000m_wakeup, .sleep = dib7000m_sleep, .set_frontend = dib7000m_set_frontend, .get_tune_settings = dib7000m_fe_get_tune_settings, .get_frontend = dib7000m_get_frontend, .read_status = dib7000m_read_status, .read_ber = dib7000m_read_ber, .read_signal_strength = dib7000m_read_signal_strength, .read_snr = dib7000m_read_snr, .read_ucblocks = dib7000m_read_unc_blocks, }; MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>"); MODULE_DESCRIPTION("Driver for the DiBcom 7000MA/MB/PA/PB/MC COFDM demodulator"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1