Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Antti Palosaari | 1780 | 49.69% | 7 | 22.58% |
David Howells | 816 | 22.78% | 5 | 16.13% |
Konstantin Dimitrov | 539 | 15.05% | 1 | 3.23% |
Igor M. Liplianin | 369 | 10.30% | 1 | 3.23% |
Mauro Carvalho Chehab | 34 | 0.95% | 7 | 22.58% |
Ernst Martin Witte | 16 | 0.45% | 1 | 3.23% |
yzhai003 at ucr.edu | 7 | 0.20% | 1 | 3.23% |
John Horan | 6 | 0.17% | 1 | 3.23% |
Julia Lawall | 6 | 0.17% | 2 | 6.45% |
Wolfram Sang | 4 | 0.11% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.06% | 1 | 3.23% |
Max Kellermann | 1 | 0.03% | 1 | 3.23% |
Uwe Kleine-König | 1 | 0.03% | 1 | 3.23% |
Malcolm Priestley | 1 | 0.03% | 1 | 3.23% |
Total | 3582 | 31 |
// SPDX-License-Identifier: GPL-2.0-or-later /* Montage Technology TS2020 - Silicon Tuner driver Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com> Copyright (C) 2009-2012 TurboSight.com */ #include <media/dvb_frontend.h> #include "ts2020.h" #include <linux/regmap.h> #include <linux/math64.h> #define TS2020_XTAL_FREQ 27000 /* in kHz */ #define FREQ_OFFSET_LOW_SYM_RATE 3000 struct ts2020_priv { struct i2c_client *client; struct mutex regmap_mutex; struct regmap_config regmap_config; struct regmap *regmap; struct dvb_frontend *fe; struct delayed_work stat_work; int (*get_agc_pwm)(struct dvb_frontend *fe, u8 *_agc_pwm); /* i2c details */ struct i2c_adapter *i2c; int i2c_address; bool loop_through:1; u8 clk_out:2; u8 clk_out_div:5; bool dont_poll:1; u32 frequency_div; /* LO output divider switch frequency */ u32 frequency_khz; /* actual used LO frequency */ #define TS2020_M88TS2020 0 #define TS2020_M88TS2022 1 u8 tuner; }; struct ts2020_reg_val { u8 reg; u8 val; }; static void ts2020_stat_work(struct work_struct *work); static void ts2020_release(struct dvb_frontend *fe) { struct ts2020_priv *priv = fe->tuner_priv; struct i2c_client *client = priv->client; dev_dbg(&client->dev, "\n"); i2c_unregister_device(client); } static int ts2020_sleep(struct dvb_frontend *fe) { struct ts2020_priv *priv = fe->tuner_priv; int ret; u8 u8tmp; if (priv->tuner == TS2020_M88TS2020) u8tmp = 0x0a; /* XXX: probably wrong */ else u8tmp = 0x00; ret = regmap_write(priv->regmap, u8tmp, 0x00); if (ret < 0) return ret; /* stop statistics polling */ if (!priv->dont_poll) cancel_delayed_work_sync(&priv->stat_work); return 0; } static int ts2020_init(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct ts2020_priv *priv = fe->tuner_priv; int i; u8 u8tmp; if (priv->tuner == TS2020_M88TS2020) { regmap_write(priv->regmap, 0x42, 0x73); regmap_write(priv->regmap, 0x05, priv->clk_out_div); regmap_write(priv->regmap, 0x20, 0x27); regmap_write(priv->regmap, 0x07, 0x02); regmap_write(priv->regmap, 0x11, 0xff); regmap_write(priv->regmap, 0x60, 0xf9); regmap_write(priv->regmap, 0x08, 0x01); regmap_write(priv->regmap, 0x00, 0x41); } else { static const struct ts2020_reg_val reg_vals[] = { {0x7d, 0x9d}, {0x7c, 0x9a}, {0x7a, 0x76}, {0x3b, 0x01}, {0x63, 0x88}, {0x61, 0x85}, {0x22, 0x30}, {0x30, 0x40}, {0x20, 0x23}, {0x24, 0x02}, {0x12, 0xa0}, }; regmap_write(priv->regmap, 0x00, 0x01); regmap_write(priv->regmap, 0x00, 0x03); switch (priv->clk_out) { case TS2020_CLK_OUT_DISABLED: u8tmp = 0x60; break; case TS2020_CLK_OUT_ENABLED: u8tmp = 0x70; regmap_write(priv->regmap, 0x05, priv->clk_out_div); break; case TS2020_CLK_OUT_ENABLED_XTALOUT: u8tmp = 0x6c; break; default: u8tmp = 0x60; break; } regmap_write(priv->regmap, 0x42, u8tmp); if (priv->loop_through) u8tmp = 0xec; else u8tmp = 0x6c; regmap_write(priv->regmap, 0x62, u8tmp); for (i = 0; i < ARRAY_SIZE(reg_vals); i++) regmap_write(priv->regmap, reg_vals[i].reg, reg_vals[i].val); } /* Initialise v5 stats here */ c->strength.len = 1; c->strength.stat[0].scale = FE_SCALE_DECIBEL; c->strength.stat[0].uvalue = 0; /* Start statistics polling by invoking the work function */ ts2020_stat_work(&priv->stat_work.work); return 0; } static int ts2020_tuner_gate_ctrl(struct dvb_frontend *fe, u8 offset) { struct ts2020_priv *priv = fe->tuner_priv; int ret; ret = regmap_write(priv->regmap, 0x51, 0x1f - offset); ret |= regmap_write(priv->regmap, 0x51, 0x1f); ret |= regmap_write(priv->regmap, 0x50, offset); ret |= regmap_write(priv->regmap, 0x50, 0x00); msleep(20); return ret; } static int ts2020_set_tuner_rf(struct dvb_frontend *fe) { struct ts2020_priv *dev = fe->tuner_priv; int ret; unsigned int utmp; ret = regmap_read(dev->regmap, 0x3d, &utmp); if (ret) return ret; utmp &= 0x7f; if (utmp < 0x16) utmp = 0xa1; else if (utmp == 0x16) utmp = 0x99; else utmp = 0xf9; regmap_write(dev->regmap, 0x60, utmp); ret = ts2020_tuner_gate_ctrl(fe, 0x08); return ret; } static int ts2020_set_params(struct dvb_frontend *fe) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct ts2020_priv *priv = fe->tuner_priv; int ret; unsigned int utmp; u32 f3db, gdiv28; u16 u16tmp, value, lpf_coeff; u8 buf[3], reg10, lpf_mxdiv, mlpf_max, mlpf_min, nlpf; unsigned int f_ref_khz, f_vco_khz, div_ref, div_out, pll_n; unsigned int frequency_khz = c->frequency; /* * Integer-N PLL synthesizer * kHz is used for all calculations to keep calculations within 32-bit */ f_ref_khz = TS2020_XTAL_FREQ; div_ref = DIV_ROUND_CLOSEST(f_ref_khz, 2000); /* select LO output divider */ if (frequency_khz < priv->frequency_div) { div_out = 4; reg10 = 0x10; } else { div_out = 2; reg10 = 0x00; } f_vco_khz = frequency_khz * div_out; pll_n = f_vco_khz * div_ref / f_ref_khz; pll_n += pll_n % 2; priv->frequency_khz = pll_n * f_ref_khz / div_ref / div_out; pr_debug("frequency=%u offset=%d f_vco_khz=%u pll_n=%u div_ref=%u div_out=%u\n", priv->frequency_khz, priv->frequency_khz - c->frequency, f_vco_khz, pll_n, div_ref, div_out); if (priv->tuner == TS2020_M88TS2020) { lpf_coeff = 2766; reg10 |= 0x01; ret = regmap_write(priv->regmap, 0x10, reg10); } else { lpf_coeff = 3200; reg10 |= 0x0b; ret = regmap_write(priv->regmap, 0x10, reg10); ret |= regmap_write(priv->regmap, 0x11, 0x40); } u16tmp = pll_n - 1024; buf[0] = (u16tmp >> 8) & 0xff; buf[1] = (u16tmp >> 0) & 0xff; buf[2] = div_ref - 8; ret |= regmap_write(priv->regmap, 0x01, buf[0]); ret |= regmap_write(priv->regmap, 0x02, buf[1]); ret |= regmap_write(priv->regmap, 0x03, buf[2]); ret |= ts2020_tuner_gate_ctrl(fe, 0x10); if (ret < 0) return -ENODEV; ret |= ts2020_tuner_gate_ctrl(fe, 0x08); /* Tuner RF */ if (priv->tuner == TS2020_M88TS2020) ret |= ts2020_set_tuner_rf(fe); gdiv28 = (TS2020_XTAL_FREQ / 1000 * 1694 + 500) / 1000; ret |= regmap_write(priv->regmap, 0x04, gdiv28 & 0xff); ret |= ts2020_tuner_gate_ctrl(fe, 0x04); if (ret < 0) return -ENODEV; if (priv->tuner == TS2020_M88TS2022) { ret = regmap_write(priv->regmap, 0x25, 0x00); ret |= regmap_write(priv->regmap, 0x27, 0x70); ret |= regmap_write(priv->regmap, 0x41, 0x09); ret |= regmap_write(priv->regmap, 0x08, 0x0b); if (ret < 0) return -ENODEV; } regmap_read(priv->regmap, 0x26, &utmp); value = utmp; f3db = (c->bandwidth_hz / 1000 / 2) + 2000; f3db += FREQ_OFFSET_LOW_SYM_RATE; /* FIXME: ~always too wide filter */ f3db = clamp(f3db, 7000U, 40000U); gdiv28 = gdiv28 * 207 / (value * 2 + 151); mlpf_max = gdiv28 * 135 / 100; mlpf_min = gdiv28 * 78 / 100; if (mlpf_max > 63) mlpf_max = 63; nlpf = (f3db * gdiv28 * 2 / lpf_coeff / (TS2020_XTAL_FREQ / 1000) + 1) / 2; if (nlpf > 23) nlpf = 23; if (nlpf < 1) nlpf = 1; lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000) * lpf_coeff * 2 / f3db + 1) / 2; if (lpf_mxdiv < mlpf_min) { nlpf++; lpf_mxdiv = (nlpf * (TS2020_XTAL_FREQ / 1000) * lpf_coeff * 2 / f3db + 1) / 2; } if (lpf_mxdiv > mlpf_max) lpf_mxdiv = mlpf_max; ret = regmap_write(priv->regmap, 0x04, lpf_mxdiv); ret |= regmap_write(priv->regmap, 0x06, nlpf); ret |= ts2020_tuner_gate_ctrl(fe, 0x04); ret |= ts2020_tuner_gate_ctrl(fe, 0x01); msleep(80); return (ret < 0) ? -EINVAL : 0; } static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency) { struct ts2020_priv *priv = fe->tuner_priv; *frequency = priv->frequency_khz; return 0; } static int ts2020_get_if_frequency(struct dvb_frontend *fe, u32 *frequency) { *frequency = 0; /* Zero-IF */ return 0; } /* * Get the tuner gain. * @fe: The front end for which we're determining the gain * @v_agc: The voltage of the AGC from the demodulator (0-2600mV) * @_gain: Where to store the gain (in 0.001dB units) * * Returns 0 or a negative error code. */ static int ts2020_read_tuner_gain(struct dvb_frontend *fe, unsigned v_agc, __s64 *_gain) { struct ts2020_priv *priv = fe->tuner_priv; unsigned long gain1, gain2, gain3; unsigned utmp; int ret; /* Read the RF gain */ ret = regmap_read(priv->regmap, 0x3d, &utmp); if (ret < 0) return ret; gain1 = utmp & 0x1f; /* Read the baseband gain */ ret = regmap_read(priv->regmap, 0x21, &utmp); if (ret < 0) return ret; gain2 = utmp & 0x1f; switch (priv->tuner) { case TS2020_M88TS2020: gain1 = clamp_t(long, gain1, 0, 15); gain2 = clamp_t(long, gain2, 0, 13); v_agc = clamp_t(long, v_agc, 400, 1100); *_gain = -((__s64)gain1 * 2330 + gain2 * 3500 + v_agc * 24 / 10 * 10 + 10000); /* gain in range -19600 to -116850 in units of 0.001dB */ break; case TS2020_M88TS2022: ret = regmap_read(priv->regmap, 0x66, &utmp); if (ret < 0) return ret; gain3 = (utmp >> 3) & 0x07; gain1 = clamp_t(long, gain1, 0, 15); gain2 = clamp_t(long, gain2, 2, 16); gain3 = clamp_t(long, gain3, 0, 6); v_agc = clamp_t(long, v_agc, 600, 1600); *_gain = -((__s64)gain1 * 2650 + gain2 * 3380 + gain3 * 2850 + v_agc * 176 / 100 * 10 - 30000); /* gain in range -47320 to -158950 in units of 0.001dB */ break; } return 0; } /* * Get the AGC information from the demodulator and use that to calculate the * tuner gain. */ static int ts2020_get_tuner_gain(struct dvb_frontend *fe, __s64 *_gain) { struct ts2020_priv *priv = fe->tuner_priv; int v_agc = 0, ret; u8 agc_pwm; /* Read the AGC PWM rate from the demodulator */ if (priv->get_agc_pwm) { ret = priv->get_agc_pwm(fe, &agc_pwm); if (ret < 0) return ret; switch (priv->tuner) { case TS2020_M88TS2020: v_agc = (int)agc_pwm * 20 - 1166; break; case TS2020_M88TS2022: v_agc = (int)agc_pwm * 16 - 670; break; } if (v_agc < 0) v_agc = 0; } return ts2020_read_tuner_gain(fe, v_agc, _gain); } /* * Gather statistics on a regular basis */ static void ts2020_stat_work(struct work_struct *work) { struct ts2020_priv *priv = container_of(work, struct ts2020_priv, stat_work.work); struct i2c_client *client = priv->client; struct dtv_frontend_properties *c = &priv->fe->dtv_property_cache; int ret; dev_dbg(&client->dev, "\n"); ret = ts2020_get_tuner_gain(priv->fe, &c->strength.stat[0].svalue); if (ret < 0) goto err; c->strength.stat[0].scale = FE_SCALE_DECIBEL; if (!priv->dont_poll) schedule_delayed_work(&priv->stat_work, msecs_to_jiffies(2000)); return; err: dev_dbg(&client->dev, "failed=%d\n", ret); } /* * Read TS2020 signal strength in v3 format. */ static int ts2020_read_signal_strength(struct dvb_frontend *fe, u16 *_signal_strength) { struct dtv_frontend_properties *c = &fe->dtv_property_cache; struct ts2020_priv *priv = fe->tuner_priv; unsigned strength; __s64 gain; if (priv->dont_poll) ts2020_stat_work(&priv->stat_work.work); if (c->strength.stat[0].scale == FE_SCALE_NOT_AVAILABLE) { *_signal_strength = 0; return 0; } gain = c->strength.stat[0].svalue; /* Calculate the signal strength based on the total gain of the tuner */ if (gain < -85000) /* 0%: no signal or weak signal */ strength = 0; else if (gain < -65000) /* 0% - 60%: weak signal */ strength = 0 + div64_s64((85000 + gain) * 3, 1000); else if (gain < -45000) /* 60% - 90%: normal signal */ strength = 60 + div64_s64((65000 + gain) * 3, 2000); else /* 90% - 99%: strong signal */ strength = 90 + div64_s64((45000 + gain), 5000); *_signal_strength = strength * 65535 / 100; return 0; } static const struct dvb_tuner_ops ts2020_tuner_ops = { .info = { .name = "TS2020", .frequency_min_hz = 950 * MHz, .frequency_max_hz = 2150 * MHz }, .init = ts2020_init, .release = ts2020_release, .sleep = ts2020_sleep, .set_params = ts2020_set_params, .get_frequency = ts2020_get_frequency, .get_if_frequency = ts2020_get_if_frequency, .get_rf_strength = ts2020_read_signal_strength, }; struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe, const struct ts2020_config *config, struct i2c_adapter *i2c) { struct i2c_client *client; struct i2c_board_info board_info; /* This is only used by ts2020_probe() so can be on the stack */ struct ts2020_config pdata; memcpy(&pdata, config, sizeof(pdata)); pdata.fe = fe; pdata.attach_in_use = true; memset(&board_info, 0, sizeof(board_info)); strscpy(board_info.type, "ts2020", I2C_NAME_SIZE); board_info.addr = config->tuner_address; board_info.platform_data = &pdata; client = i2c_new_client_device(i2c, &board_info); if (!i2c_client_has_driver(client)) return NULL; return fe; } EXPORT_SYMBOL(ts2020_attach); /* * We implement own regmap locking due to legacy DVB attach which uses frontend * gate control callback to control I2C bus access. We can open / close gate and * serialize whole open / I2C-operation / close sequence at the same. */ static void ts2020_regmap_lock(void *__dev) { struct ts2020_priv *dev = __dev; mutex_lock(&dev->regmap_mutex); if (dev->fe->ops.i2c_gate_ctrl) dev->fe->ops.i2c_gate_ctrl(dev->fe, 1); } static void ts2020_regmap_unlock(void *__dev) { struct ts2020_priv *dev = __dev; if (dev->fe->ops.i2c_gate_ctrl) dev->fe->ops.i2c_gate_ctrl(dev->fe, 0); mutex_unlock(&dev->regmap_mutex); } static int ts2020_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct ts2020_config *pdata = client->dev.platform_data; struct dvb_frontend *fe = pdata->fe; struct ts2020_priv *dev; int ret; u8 u8tmp; unsigned int utmp; char *chip_str; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err; } /* create regmap */ mutex_init(&dev->regmap_mutex); dev->regmap_config.reg_bits = 8; dev->regmap_config.val_bits = 8; dev->regmap_config.lock = ts2020_regmap_lock; dev->regmap_config.unlock = ts2020_regmap_unlock; dev->regmap_config.lock_arg = dev; dev->regmap = regmap_init_i2c(client, &dev->regmap_config); if (IS_ERR(dev->regmap)) { ret = PTR_ERR(dev->regmap); goto err_kfree; } dev->i2c = client->adapter; dev->i2c_address = client->addr; dev->loop_through = pdata->loop_through; dev->clk_out = pdata->clk_out; dev->clk_out_div = pdata->clk_out_div; dev->dont_poll = pdata->dont_poll; dev->frequency_div = pdata->frequency_div; dev->fe = fe; dev->get_agc_pwm = pdata->get_agc_pwm; fe->tuner_priv = dev; dev->client = client; INIT_DELAYED_WORK(&dev->stat_work, ts2020_stat_work); /* check if the tuner is there */ ret = regmap_read(dev->regmap, 0x00, &utmp); if (ret) goto err_regmap_exit; if ((utmp & 0x03) == 0x00) { ret = regmap_write(dev->regmap, 0x00, 0x01); if (ret) goto err_regmap_exit; usleep_range(2000, 50000); } ret = regmap_write(dev->regmap, 0x00, 0x03); if (ret) goto err_regmap_exit; usleep_range(2000, 50000); ret = regmap_read(dev->regmap, 0x00, &utmp); if (ret) goto err_regmap_exit; dev_dbg(&client->dev, "chip_id=%02x\n", utmp); switch (utmp) { case 0x01: case 0x41: case 0x81: dev->tuner = TS2020_M88TS2020; chip_str = "TS2020"; if (!dev->frequency_div) dev->frequency_div = 1060000; break; case 0xc3: case 0x83: dev->tuner = TS2020_M88TS2022; chip_str = "TS2022"; if (!dev->frequency_div) dev->frequency_div = 1103000; break; default: ret = -ENODEV; goto err_regmap_exit; } if (dev->tuner == TS2020_M88TS2022) { switch (dev->clk_out) { case TS2020_CLK_OUT_DISABLED: u8tmp = 0x60; break; case TS2020_CLK_OUT_ENABLED: u8tmp = 0x70; ret = regmap_write(dev->regmap, 0x05, dev->clk_out_div); if (ret) goto err_regmap_exit; break; case TS2020_CLK_OUT_ENABLED_XTALOUT: u8tmp = 0x6c; break; default: ret = -EINVAL; goto err_regmap_exit; } ret = regmap_write(dev->regmap, 0x42, u8tmp); if (ret) goto err_regmap_exit; if (dev->loop_through) u8tmp = 0xec; else u8tmp = 0x6c; ret = regmap_write(dev->regmap, 0x62, u8tmp); if (ret) goto err_regmap_exit; } /* sleep */ ret = regmap_write(dev->regmap, 0x00, 0x00); if (ret) goto err_regmap_exit; dev_info(&client->dev, "Montage Technology %s successfully identified\n", chip_str); memcpy(&fe->ops.tuner_ops, &ts2020_tuner_ops, sizeof(struct dvb_tuner_ops)); if (!pdata->attach_in_use) fe->ops.tuner_ops.release = NULL; i2c_set_clientdata(client, dev); return 0; err_regmap_exit: regmap_exit(dev->regmap); err_kfree: kfree(dev); err: dev_dbg(&client->dev, "failed=%d\n", ret); return ret; } static void ts2020_remove(struct i2c_client *client) { struct ts2020_priv *dev = i2c_get_clientdata(client); dev_dbg(&client->dev, "\n"); /* stop statistics polling */ if (!dev->dont_poll) cancel_delayed_work_sync(&dev->stat_work); regmap_exit(dev->regmap); kfree(dev); } static const struct i2c_device_id ts2020_id_table[] = { {"ts2020", 0}, {"ts2022", 0}, {} }; MODULE_DEVICE_TABLE(i2c, ts2020_id_table); static struct i2c_driver ts2020_driver = { .driver = { .name = "ts2020", }, .probe = ts2020_probe, .remove = ts2020_remove, .id_table = ts2020_id_table, }; module_i2c_driver(ts2020_driver); MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>"); MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1