Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Igor M. Liplianin | 3605 | 96.49% | 2 | 18.18% |
Nicholas Mc Guire | 40 | 1.07% | 1 | 9.09% |
Mauro Carvalho Chehab | 34 | 0.91% | 3 | 27.27% |
Abylay Ospan | 33 | 0.88% | 1 | 9.09% |
Anton Nurkin | 19 | 0.51% | 1 | 9.09% |
Hans Verkuil | 2 | 0.05% | 1 | 9.09% |
Thomas Gleixner | 2 | 0.05% | 1 | 9.09% |
Jia-Ju Bai | 1 | 0.03% | 1 | 9.09% |
Total | 3736 | 11 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * altera-ci.c * * CI driver in conjunction with NetUp Dual DVB-T/C RF CI card * * Copyright (C) 2010,2011 NetUP Inc. * Copyright (C) 2010,2011 Igor M. Liplianin <liplianin@netup.ru> */ /* * currently cx23885 GPIO's used. * GPIO-0 ~INT in * GPIO-1 TMS out * GPIO-2 ~reset chips out * GPIO-3 to GPIO-10 data/addr for CA in/out * GPIO-11 ~CS out * GPIO-12 AD_RG out * GPIO-13 ~WR out * GPIO-14 ~RD out * GPIO-15 ~RDY in * GPIO-16 TCK out * GPIO-17 TDO in * GPIO-18 TDI out */ /* * Bit definitions for MC417_RWD and MC417_OEN registers * bits 31-16 * +-----------+ * | Reserved | * +-----------+ * bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 * +-------+-------+-------+-------+-------+-------+-------+-------+ * | TDI | TDO | TCK | RDY# | #RD | #WR | AD_RG | #CS | * +-------+-------+-------+-------+-------+-------+-------+-------+ * bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 * +-------+-------+-------+-------+-------+-------+-------+-------+ * | DATA7| DATA6| DATA5| DATA4| DATA3| DATA2| DATA1| DATA0| * +-------+-------+-------+-------+-------+-------+-------+-------+ */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <media/dvb_demux.h> #include <media/dvb_frontend.h> #include "altera-ci.h" #include <media/dvb_ca_en50221.h> /* FPGA regs */ #define NETUP_CI_INT_CTRL 0x00 #define NETUP_CI_BUSCTRL2 0x01 #define NETUP_CI_ADDR0 0x04 #define NETUP_CI_ADDR1 0x05 #define NETUP_CI_DATA 0x06 #define NETUP_CI_BUSCTRL 0x07 #define NETUP_CI_PID_ADDR0 0x08 #define NETUP_CI_PID_ADDR1 0x09 #define NETUP_CI_PID_DATA 0x0a #define NETUP_CI_TSA_DIV 0x0c #define NETUP_CI_TSB_DIV 0x0d #define NETUP_CI_REVISION 0x0f /* const for ci op */ #define NETUP_CI_FLG_CTL 1 #define NETUP_CI_FLG_RD 1 #define NETUP_CI_FLG_AD 1 static unsigned int ci_dbg; module_param(ci_dbg, int, 0644); MODULE_PARM_DESC(ci_dbg, "Enable CI debugging"); static unsigned int pid_dbg; module_param(pid_dbg, int, 0644); MODULE_PARM_DESC(pid_dbg, "Enable PID filtering debugging"); MODULE_DESCRIPTION("altera FPGA CI module"); MODULE_AUTHOR("Igor M. Liplianin <liplianin@netup.ru>"); MODULE_LICENSE("GPL"); #define ci_dbg_print(fmt, args...) \ do { \ if (ci_dbg) \ printk(KERN_DEBUG pr_fmt("%s: " fmt), \ __func__, ##args); \ } while (0) #define pid_dbg_print(fmt, args...) \ do { \ if (pid_dbg) \ printk(KERN_DEBUG pr_fmt("%s: " fmt), \ __func__, ##args); \ } while (0) struct altera_ci_state; struct netup_hw_pid_filter; struct fpga_internal { void *dev; struct mutex fpga_mutex;/* two CI's on the same fpga */ struct netup_hw_pid_filter *pid_filt[2]; struct altera_ci_state *state[2]; struct work_struct work; int (*fpga_rw) (void *dev, int flag, int data, int rw); int cis_used; int filts_used; int strt_wrk; }; /* stores all private variables for communication with CI */ struct altera_ci_state { struct fpga_internal *internal; struct dvb_ca_en50221 ca; int status; int nr; }; /* stores all private variables for hardware pid filtering */ struct netup_hw_pid_filter { struct fpga_internal *internal; struct dvb_demux *demux; /* save old functions */ int (*start_feed)(struct dvb_demux_feed *feed); int (*stop_feed)(struct dvb_demux_feed *feed); int status; int nr; }; /* internal params node */ struct fpga_inode { /* pointer for internal params, one for each pair of CI's */ struct fpga_internal *internal; struct fpga_inode *next_inode; }; /* first internal params */ static struct fpga_inode *fpga_first_inode; /* find chip by dev */ static struct fpga_inode *find_inode(void *dev) { struct fpga_inode *temp_chip = fpga_first_inode; if (temp_chip == NULL) return temp_chip; /* Search for the last fpga CI chip or find it by dev */ while ((temp_chip != NULL) && (temp_chip->internal->dev != dev)) temp_chip = temp_chip->next_inode; return temp_chip; } /* check demux */ static struct fpga_internal *check_filter(struct fpga_internal *temp_int, void *demux_dev, int filt_nr) { if (temp_int == NULL) return NULL; if ((temp_int->pid_filt[filt_nr]) == NULL) return NULL; if (temp_int->pid_filt[filt_nr]->demux == demux_dev) return temp_int; return NULL; } /* find chip by demux */ static struct fpga_inode *find_dinode(void *demux_dev) { struct fpga_inode *temp_chip = fpga_first_inode; struct fpga_internal *temp_int; /* * Search of the last fpga CI chip or * find it by demux */ while (temp_chip != NULL) { if (temp_chip->internal != NULL) { temp_int = temp_chip->internal; if (check_filter(temp_int, demux_dev, 0)) break; if (check_filter(temp_int, demux_dev, 1)) break; } temp_chip = temp_chip->next_inode; } return temp_chip; } /* deallocating chip */ static void remove_inode(struct fpga_internal *internal) { struct fpga_inode *prev_node = fpga_first_inode; struct fpga_inode *del_node = find_inode(internal->dev); if (del_node != NULL) { if (del_node == fpga_first_inode) { fpga_first_inode = del_node->next_inode; } else { while (prev_node->next_inode != del_node) prev_node = prev_node->next_inode; if (del_node->next_inode == NULL) prev_node->next_inode = NULL; else prev_node->next_inode = prev_node->next_inode->next_inode; } kfree(del_node); } } /* allocating new chip */ static struct fpga_inode *append_internal(struct fpga_internal *internal) { struct fpga_inode *new_node = fpga_first_inode; if (new_node == NULL) { new_node = kmalloc(sizeof(struct fpga_inode), GFP_KERNEL); fpga_first_inode = new_node; } else { while (new_node->next_inode != NULL) new_node = new_node->next_inode; new_node->next_inode = kmalloc(sizeof(struct fpga_inode), GFP_KERNEL); if (new_node->next_inode != NULL) new_node = new_node->next_inode; else new_node = NULL; } if (new_node != NULL) { new_node->internal = internal; new_node->next_inode = NULL; } return new_node; } static int netup_fpga_op_rw(struct fpga_internal *inter, int addr, u8 val, u8 read) { inter->fpga_rw(inter->dev, NETUP_CI_FLG_AD, addr, 0); return inter->fpga_rw(inter->dev, 0, val, read); } /* flag - mem/io, read - read/write */ static int altera_ci_op_cam(struct dvb_ca_en50221 *en50221, int slot, u8 flag, u8 read, int addr, u8 val) { struct altera_ci_state *state = en50221->data; struct fpga_internal *inter = state->internal; u8 store; int mem = 0; if (0 != slot) return -EINVAL; mutex_lock(&inter->fpga_mutex); netup_fpga_op_rw(inter, NETUP_CI_ADDR0, ((addr << 1) & 0xfe), 0); netup_fpga_op_rw(inter, NETUP_CI_ADDR1, ((addr >> 7) & 0x7f), 0); store = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, 0, NETUP_CI_FLG_RD); store &= 0x0f; store |= ((state->nr << 7) | (flag << 6)); netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, store, 0); mem = netup_fpga_op_rw(inter, NETUP_CI_DATA, val, read); mutex_unlock(&inter->fpga_mutex); ci_dbg_print("%s: %s: addr=[0x%02x], %s=%x\n", __func__, (read) ? "read" : "write", addr, (flag == NETUP_CI_FLG_CTL) ? "ctl" : "mem", (read) ? mem : val); return mem; } static int altera_ci_read_attribute_mem(struct dvb_ca_en50221 *en50221, int slot, int addr) { return altera_ci_op_cam(en50221, slot, 0, NETUP_CI_FLG_RD, addr, 0); } static int altera_ci_write_attribute_mem(struct dvb_ca_en50221 *en50221, int slot, int addr, u8 data) { return altera_ci_op_cam(en50221, slot, 0, 0, addr, data); } static int altera_ci_read_cam_ctl(struct dvb_ca_en50221 *en50221, int slot, u8 addr) { return altera_ci_op_cam(en50221, slot, NETUP_CI_FLG_CTL, NETUP_CI_FLG_RD, addr, 0); } static int altera_ci_write_cam_ctl(struct dvb_ca_en50221 *en50221, int slot, u8 addr, u8 data) { return altera_ci_op_cam(en50221, slot, NETUP_CI_FLG_CTL, 0, addr, data); } static int altera_ci_slot_reset(struct dvb_ca_en50221 *en50221, int slot) { struct altera_ci_state *state = en50221->data; struct fpga_internal *inter = state->internal; /* reasonable timeout for CI reset is 10 seconds */ unsigned long t_out = jiffies + msecs_to_jiffies(9999); int ret; ci_dbg_print("%s\n", __func__); if (0 != slot) return -EINVAL; mutex_lock(&inter->fpga_mutex); ret = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, 0, NETUP_CI_FLG_RD); netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, (ret & 0xcf) | (1 << (5 - state->nr)), 0); mutex_unlock(&inter->fpga_mutex); for (;;) { msleep(50); mutex_lock(&inter->fpga_mutex); ret = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, 0, NETUP_CI_FLG_RD); mutex_unlock(&inter->fpga_mutex); if ((ret & (1 << (5 - state->nr))) == 0) break; if (time_after(jiffies, t_out)) break; } ci_dbg_print("%s: %d msecs\n", __func__, jiffies_to_msecs(jiffies + msecs_to_jiffies(9999) - t_out)); return 0; } static int altera_ci_slot_shutdown(struct dvb_ca_en50221 *en50221, int slot) { /* not implemented */ return 0; } static int altera_ci_slot_ts_ctl(struct dvb_ca_en50221 *en50221, int slot) { struct altera_ci_state *state = en50221->data; struct fpga_internal *inter = state->internal; int ret; ci_dbg_print("%s\n", __func__); if (0 != slot) return -EINVAL; mutex_lock(&inter->fpga_mutex); ret = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, 0, NETUP_CI_FLG_RD); netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, (ret & 0x0f) | (1 << (3 - state->nr)), 0); mutex_unlock(&inter->fpga_mutex); return 0; } /* work handler */ static void netup_read_ci_status(struct work_struct *work) { struct fpga_internal *inter = container_of(work, struct fpga_internal, work); int ret; ci_dbg_print("%s\n", __func__); mutex_lock(&inter->fpga_mutex); /* ack' irq */ ret = netup_fpga_op_rw(inter, NETUP_CI_INT_CTRL, 0, NETUP_CI_FLG_RD); ret = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL, 0, NETUP_CI_FLG_RD); mutex_unlock(&inter->fpga_mutex); if (inter->state[1] != NULL) { inter->state[1]->status = ((ret & 1) == 0 ? DVB_CA_EN50221_POLL_CAM_PRESENT | DVB_CA_EN50221_POLL_CAM_READY : 0); ci_dbg_print("%s: setting CI[1] status = 0x%x\n", __func__, inter->state[1]->status); } if (inter->state[0] != NULL) { inter->state[0]->status = ((ret & 2) == 0 ? DVB_CA_EN50221_POLL_CAM_PRESENT | DVB_CA_EN50221_POLL_CAM_READY : 0); ci_dbg_print("%s: setting CI[0] status = 0x%x\n", __func__, inter->state[0]->status); } } /* CI irq handler */ int altera_ci_irq(void *dev) { struct fpga_inode *temp_int = NULL; struct fpga_internal *inter = NULL; ci_dbg_print("%s\n", __func__); if (dev != NULL) { temp_int = find_inode(dev); if (temp_int != NULL) { inter = temp_int->internal; schedule_work(&inter->work); } } return 1; } EXPORT_SYMBOL(altera_ci_irq); static int altera_poll_ci_slot_status(struct dvb_ca_en50221 *en50221, int slot, int open) { struct altera_ci_state *state = en50221->data; if (0 != slot) return -EINVAL; return state->status; } static void altera_hw_filt_release(void *main_dev, int filt_nr) { struct fpga_inode *temp_int = find_inode(main_dev); struct netup_hw_pid_filter *pid_filt = NULL; ci_dbg_print("%s\n", __func__); if (temp_int != NULL) { pid_filt = temp_int->internal->pid_filt[filt_nr - 1]; /* stored old feed controls */ pid_filt->demux->start_feed = pid_filt->start_feed; pid_filt->demux->stop_feed = pid_filt->stop_feed; if (((--(temp_int->internal->filts_used)) <= 0) && ((temp_int->internal->cis_used) <= 0)) { ci_dbg_print("%s: Actually removing\n", __func__); remove_inode(temp_int->internal); kfree(pid_filt->internal); } kfree(pid_filt); } } void altera_ci_release(void *dev, int ci_nr) { struct fpga_inode *temp_int = find_inode(dev); struct altera_ci_state *state = NULL; ci_dbg_print("%s\n", __func__); if (temp_int != NULL) { state = temp_int->internal->state[ci_nr - 1]; altera_hw_filt_release(dev, ci_nr); if (((temp_int->internal->filts_used) <= 0) && ((--(temp_int->internal->cis_used)) <= 0)) { ci_dbg_print("%s: Actually removing\n", __func__); remove_inode(temp_int->internal); kfree(state->internal); } if (state != NULL) { if (state->ca.data != NULL) dvb_ca_en50221_release(&state->ca); kfree(state); } } } EXPORT_SYMBOL(altera_ci_release); static void altera_pid_control(struct netup_hw_pid_filter *pid_filt, u16 pid, int onoff) { struct fpga_internal *inter = pid_filt->internal; u8 store = 0; /* pid 0-0x1f always enabled, don't touch them */ if ((pid == 0x2000) || (pid < 0x20)) return; mutex_lock(&inter->fpga_mutex); netup_fpga_op_rw(inter, NETUP_CI_PID_ADDR0, (pid >> 3) & 0xff, 0); netup_fpga_op_rw(inter, NETUP_CI_PID_ADDR1, ((pid >> 11) & 0x03) | (pid_filt->nr << 2), 0); store = netup_fpga_op_rw(inter, NETUP_CI_PID_DATA, 0, NETUP_CI_FLG_RD); if (onoff)/* 0 - on, 1 - off */ store |= (1 << (pid & 7)); else store &= ~(1 << (pid & 7)); netup_fpga_op_rw(inter, NETUP_CI_PID_DATA, store, 0); mutex_unlock(&inter->fpga_mutex); pid_dbg_print("%s: (%d) set pid: %5d 0x%04x '%s'\n", __func__, pid_filt->nr, pid, pid, onoff ? "off" : "on"); } static void altera_toggle_fullts_streaming(struct netup_hw_pid_filter *pid_filt, int filt_nr, int onoff) { struct fpga_internal *inter = pid_filt->internal; u8 store = 0; int i; pid_dbg_print("%s: pid_filt->nr[%d] now %s\n", __func__, pid_filt->nr, onoff ? "off" : "on"); if (onoff)/* 0 - on, 1 - off */ store = 0xff;/* ignore pid */ else store = 0;/* enable pid */ mutex_lock(&inter->fpga_mutex); for (i = 0; i < 1024; i++) { netup_fpga_op_rw(inter, NETUP_CI_PID_ADDR0, i & 0xff, 0); netup_fpga_op_rw(inter, NETUP_CI_PID_ADDR1, ((i >> 8) & 0x03) | (pid_filt->nr << 2), 0); /* pid 0-0x1f always enabled */ netup_fpga_op_rw(inter, NETUP_CI_PID_DATA, (i > 3 ? store : 0), 0); } mutex_unlock(&inter->fpga_mutex); } static int altera_pid_feed_control(void *demux_dev, int filt_nr, struct dvb_demux_feed *feed, int onoff) { struct fpga_inode *temp_int = find_dinode(demux_dev); struct fpga_internal *inter = temp_int->internal; struct netup_hw_pid_filter *pid_filt = inter->pid_filt[filt_nr - 1]; altera_pid_control(pid_filt, feed->pid, onoff ? 0 : 1); /* call old feed proc's */ if (onoff) pid_filt->start_feed(feed); else pid_filt->stop_feed(feed); if (feed->pid == 0x2000) altera_toggle_fullts_streaming(pid_filt, filt_nr, onoff ? 0 : 1); return 0; } static int altera_ci_start_feed(struct dvb_demux_feed *feed, int num) { altera_pid_feed_control(feed->demux, num, feed, 1); return 0; } static int altera_ci_stop_feed(struct dvb_demux_feed *feed, int num) { altera_pid_feed_control(feed->demux, num, feed, 0); return 0; } static int altera_ci_start_feed_1(struct dvb_demux_feed *feed) { return altera_ci_start_feed(feed, 1); } static int altera_ci_stop_feed_1(struct dvb_demux_feed *feed) { return altera_ci_stop_feed(feed, 1); } static int altera_ci_start_feed_2(struct dvb_demux_feed *feed) { return altera_ci_start_feed(feed, 2); } static int altera_ci_stop_feed_2(struct dvb_demux_feed *feed) { return altera_ci_stop_feed(feed, 2); } static int altera_hw_filt_init(struct altera_ci_config *config, int hw_filt_nr) { struct netup_hw_pid_filter *pid_filt = NULL; struct fpga_inode *temp_int = find_inode(config->dev); struct fpga_internal *inter = NULL; int ret = 0; pid_filt = kzalloc(sizeof(struct netup_hw_pid_filter), GFP_KERNEL); ci_dbg_print("%s\n", __func__); if (!pid_filt) { ret = -ENOMEM; goto err; } if (temp_int != NULL) { inter = temp_int->internal; (inter->filts_used)++; ci_dbg_print("%s: Find Internal Structure!\n", __func__); } else { inter = kzalloc(sizeof(struct fpga_internal), GFP_KERNEL); if (!inter) { ret = -ENOMEM; goto err; } temp_int = append_internal(inter); if (!temp_int) { ret = -ENOMEM; goto err; } inter->filts_used = 1; inter->dev = config->dev; inter->fpga_rw = config->fpga_rw; mutex_init(&inter->fpga_mutex); inter->strt_wrk = 1; ci_dbg_print("%s: Create New Internal Structure!\n", __func__); } ci_dbg_print("%s: setting hw pid filter = %p for ci = %d\n", __func__, pid_filt, hw_filt_nr - 1); inter->pid_filt[hw_filt_nr - 1] = pid_filt; pid_filt->demux = config->demux; pid_filt->internal = inter; pid_filt->nr = hw_filt_nr - 1; /* store old feed controls */ pid_filt->start_feed = config->demux->start_feed; pid_filt->stop_feed = config->demux->stop_feed; /* replace with new feed controls */ if (hw_filt_nr == 1) { pid_filt->demux->start_feed = altera_ci_start_feed_1; pid_filt->demux->stop_feed = altera_ci_stop_feed_1; } else if (hw_filt_nr == 2) { pid_filt->demux->start_feed = altera_ci_start_feed_2; pid_filt->demux->stop_feed = altera_ci_stop_feed_2; } altera_toggle_fullts_streaming(pid_filt, 0, 1); return 0; err: ci_dbg_print("%s: Can't init hardware filter: Error %d\n", __func__, ret); kfree(pid_filt); kfree(inter); return ret; } int altera_ci_init(struct altera_ci_config *config, int ci_nr) { struct altera_ci_state *state; struct fpga_inode *temp_int = find_inode(config->dev); struct fpga_internal *inter = NULL; int ret = 0; u8 store = 0; state = kzalloc(sizeof(struct altera_ci_state), GFP_KERNEL); ci_dbg_print("%s\n", __func__); if (!state) { ret = -ENOMEM; goto err; } if (temp_int != NULL) { inter = temp_int->internal; (inter->cis_used)++; inter->fpga_rw = config->fpga_rw; ci_dbg_print("%s: Find Internal Structure!\n", __func__); } else { inter = kzalloc(sizeof(struct fpga_internal), GFP_KERNEL); if (!inter) { ret = -ENOMEM; goto err; } temp_int = append_internal(inter); if (!temp_int) { ret = -ENOMEM; goto err; } inter->cis_used = 1; inter->dev = config->dev; inter->fpga_rw = config->fpga_rw; mutex_init(&inter->fpga_mutex); inter->strt_wrk = 1; ci_dbg_print("%s: Create New Internal Structure!\n", __func__); } ci_dbg_print("%s: setting state = %p for ci = %d\n", __func__, state, ci_nr - 1); state->internal = inter; state->nr = ci_nr - 1; state->ca.owner = THIS_MODULE; state->ca.read_attribute_mem = altera_ci_read_attribute_mem; state->ca.write_attribute_mem = altera_ci_write_attribute_mem; state->ca.read_cam_control = altera_ci_read_cam_ctl; state->ca.write_cam_control = altera_ci_write_cam_ctl; state->ca.slot_reset = altera_ci_slot_reset; state->ca.slot_shutdown = altera_ci_slot_shutdown; state->ca.slot_ts_enable = altera_ci_slot_ts_ctl; state->ca.poll_slot_status = altera_poll_ci_slot_status; state->ca.data = state; ret = dvb_ca_en50221_init(config->adapter, &state->ca, /* flags */ 0, /* n_slots */ 1); if (0 != ret) goto err; inter->state[ci_nr - 1] = state; altera_hw_filt_init(config, ci_nr); if (inter->strt_wrk) { INIT_WORK(&inter->work, netup_read_ci_status); inter->strt_wrk = 0; } ci_dbg_print("%s: CI initialized!\n", __func__); mutex_lock(&inter->fpga_mutex); /* Enable div */ netup_fpga_op_rw(inter, NETUP_CI_TSA_DIV, 0x0, 0); netup_fpga_op_rw(inter, NETUP_CI_TSB_DIV, 0x0, 0); /* enable TS out */ store = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL2, 0, NETUP_CI_FLG_RD); store |= (3 << 4); netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL2, store, 0); ret = netup_fpga_op_rw(inter, NETUP_CI_REVISION, 0, NETUP_CI_FLG_RD); /* enable irq */ netup_fpga_op_rw(inter, NETUP_CI_INT_CTRL, 0x44, 0); mutex_unlock(&inter->fpga_mutex); ci_dbg_print("%s: NetUP CI Revision = 0x%x\n", __func__, ret); schedule_work(&inter->work); return 0; err: ci_dbg_print("%s: Cannot initialize CI: Error %d.\n", __func__, ret); kfree(state); kfree(inter); return ret; } EXPORT_SYMBOL(altera_ci_init); int altera_ci_tuner_reset(void *dev, int ci_nr) { struct fpga_inode *temp_int = find_inode(dev); struct fpga_internal *inter = NULL; u8 store; ci_dbg_print("%s\n", __func__); if (temp_int == NULL) return -1; if (temp_int->internal == NULL) return -1; inter = temp_int->internal; mutex_lock(&inter->fpga_mutex); store = netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL2, 0, NETUP_CI_FLG_RD); store &= ~(4 << (2 - ci_nr)); netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL2, store, 0); msleep(100); store |= (4 << (2 - ci_nr)); netup_fpga_op_rw(inter, NETUP_CI_BUSCTRL2, store, 0); mutex_unlock(&inter->fpga_mutex); return 0; } EXPORT_SYMBOL(altera_ci_tuner_reset);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1