Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Kocialkowski | 3069 | 98.21% | 1 | 33.33% |
Christophe Jaillet | 45 | 1.44% | 1 | 33.33% |
Hans Verkuil | 11 | 0.35% | 1 | 33.33% |
Total | 3125 | 3 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2020 Kévin L'hôpital <kevin.lhopital@bootlin.com> * Copyright 2020-2022 Bootlin * Author: Paul Kocialkowski <paul.kocialkowski@bootlin.com> */ #include <linux/clk.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/reset.h> #include <media/mipi-csi2.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-fwnode.h> #include "sun8i_a83t_dphy.h" #include "sun8i_a83t_mipi_csi2.h" #include "sun8i_a83t_mipi_csi2_reg.h" /* Format */ static const struct sun8i_a83t_mipi_csi2_format sun8i_a83t_mipi_csi2_formats[] = { { .mbus_code = MEDIA_BUS_FMT_SBGGR8_1X8, .data_type = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .mbus_code = MEDIA_BUS_FMT_SGBRG8_1X8, .data_type = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .mbus_code = MEDIA_BUS_FMT_SGRBG8_1X8, .data_type = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .mbus_code = MEDIA_BUS_FMT_SRGGB8_1X8, .data_type = MIPI_CSI2_DT_RAW8, .bpp = 8, }, { .mbus_code = MEDIA_BUS_FMT_SBGGR10_1X10, .data_type = MIPI_CSI2_DT_RAW10, .bpp = 10, }, { .mbus_code = MEDIA_BUS_FMT_SGBRG10_1X10, .data_type = MIPI_CSI2_DT_RAW10, .bpp = 10, }, { .mbus_code = MEDIA_BUS_FMT_SGRBG10_1X10, .data_type = MIPI_CSI2_DT_RAW10, .bpp = 10, }, { .mbus_code = MEDIA_BUS_FMT_SRGGB10_1X10, .data_type = MIPI_CSI2_DT_RAW10, .bpp = 10, }, }; static const struct sun8i_a83t_mipi_csi2_format * sun8i_a83t_mipi_csi2_format_find(u32 mbus_code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(sun8i_a83t_mipi_csi2_formats); i++) if (sun8i_a83t_mipi_csi2_formats[i].mbus_code == mbus_code) return &sun8i_a83t_mipi_csi2_formats[i]; return NULL; } /* Controller */ static void sun8i_a83t_mipi_csi2_init(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct regmap *regmap = csi2_dev->regmap; /* * The Allwinner BSP sets various magic values on a bunch of registers. * This is apparently a necessary initialization process that will cause * the capture to fail with unsolicited interrupts hitting if skipped. * * Most of the registers are set to proper values later, except for the * two reserved registers. They are said to hold a "hardware lock" * value, without more information available. */ regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG, SUN8I_A83T_MIPI_CSI2_CTRL_INIT_VALUE); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RX_PKT_NUM_REG, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RX_PKT_NUM_REG, SUN8I_A83T_MIPI_CSI2_RX_PKT_NUM_INIT_VALUE); regmap_write(regmap, SUN8I_A83T_DPHY_CTRL_REG, 0); regmap_write(regmap, SUN8I_A83T_DPHY_CTRL_REG, SUN8I_A83T_DPHY_CTRL_INIT_VALUE); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD1_REG, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD1_REG, SUN8I_A83T_MIPI_CSI2_RSVD1_HW_LOCK_VALUE); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD2_REG, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_RSVD2_REG, SUN8I_A83T_MIPI_CSI2_RSVD2_HW_LOCK_VALUE); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, SUN8I_A83T_MIPI_CSI2_CFG_INIT_VALUE); } static void sun8i_a83t_mipi_csi2_enable(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct regmap *regmap = csi2_dev->regmap; regmap_update_bits(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, SUN8I_A83T_MIPI_CSI2_CFG_SYNC_EN, SUN8I_A83T_MIPI_CSI2_CFG_SYNC_EN); } static void sun8i_a83t_mipi_csi2_disable(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct regmap *regmap = csi2_dev->regmap; regmap_update_bits(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, SUN8I_A83T_MIPI_CSI2_CFG_SYNC_EN, 0); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG, 0); } static void sun8i_a83t_mipi_csi2_configure(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct regmap *regmap = csi2_dev->regmap; unsigned int lanes_count = csi2_dev->bridge.endpoint.bus.mipi_csi2.num_data_lanes; struct v4l2_mbus_framefmt *mbus_format = &csi2_dev->bridge.mbus_format; const struct sun8i_a83t_mipi_csi2_format *format; struct device *dev = csi2_dev->dev; u32 version = 0; format = sun8i_a83t_mipi_csi2_format_find(mbus_format->code); if (WARN_ON(!format)) return; regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CTRL_REG, SUN8I_A83T_MIPI_CSI2_CTRL_RESET_N); regmap_read(regmap, SUN8I_A83T_MIPI_CSI2_VERSION_REG, &version); dev_dbg(dev, "A83T MIPI CSI-2 version: %04x\n", version); regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_CFG_REG, SUN8I_A83T_MIPI_CSI2_CFG_UNPKT_EN | SUN8I_A83T_MIPI_CSI2_CFG_SYNC_DLY_CYCLE(8) | SUN8I_A83T_MIPI_CSI2_CFG_N_CHANNEL(1) | SUN8I_A83T_MIPI_CSI2_CFG_N_LANE(lanes_count)); /* * Only a single virtual channel (index 0) is currently supported. * While the registers do mention multiple physical channels being * available (which can be configured to match a specific virtual * channel or data type), it's unclear whether channels > 0 are actually * connected and available and the reference source code only makes use * of channel 0. * * Using extra channels would also require matching channels to be * available on the CSI (and ISP) side, which is also unsure although * some CSI implementations are said to support multiple channels for * BT656 time-sharing. * * We still configure virtual channel numbers to ensure that virtual * channel 0 only goes to channel 0. */ regmap_write(regmap, SUN8I_A83T_MIPI_CSI2_VCDT0_REG, SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(3, 3) | SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(2, 2) | SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(1, 1) | SUN8I_A83T_MIPI_CSI2_VCDT0_CH_VC(0, 0) | SUN8I_A83T_MIPI_CSI2_VCDT0_CH_DT(0, format->data_type)); } /* V4L2 Subdev */ static int sun8i_a83t_mipi_csi2_s_stream(struct v4l2_subdev *subdev, int on) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = v4l2_get_subdevdata(subdev); struct v4l2_subdev *source_subdev = csi2_dev->bridge.source_subdev; union phy_configure_opts dphy_opts = { 0 }; struct phy_configure_opts_mipi_dphy *dphy_cfg = &dphy_opts.mipi_dphy; struct v4l2_mbus_framefmt *mbus_format = &csi2_dev->bridge.mbus_format; const struct sun8i_a83t_mipi_csi2_format *format; struct phy *dphy = csi2_dev->dphy; struct device *dev = csi2_dev->dev; struct v4l2_ctrl *ctrl; unsigned int lanes_count = csi2_dev->bridge.endpoint.bus.mipi_csi2.num_data_lanes; unsigned long pixel_rate; int ret; if (!source_subdev) return -ENODEV; if (!on) { ret = v4l2_subdev_call(source_subdev, video, s_stream, 0); goto disable; } /* Runtime PM */ ret = pm_runtime_resume_and_get(dev); if (ret < 0) return ret; /* Sensor pixel rate */ ctrl = v4l2_ctrl_find(source_subdev->ctrl_handler, V4L2_CID_PIXEL_RATE); if (!ctrl) { dev_err(dev, "missing sensor pixel rate\n"); ret = -ENODEV; goto error_pm; } pixel_rate = (unsigned long)v4l2_ctrl_g_ctrl_int64(ctrl); if (!pixel_rate) { dev_err(dev, "missing (zero) sensor pixel rate\n"); ret = -ENODEV; goto error_pm; } /* D-PHY */ if (!lanes_count) { dev_err(dev, "missing (zero) MIPI CSI-2 lanes count\n"); ret = -ENODEV; goto error_pm; } format = sun8i_a83t_mipi_csi2_format_find(mbus_format->code); if (WARN_ON(!format)) { ret = -ENODEV; goto error_pm; } phy_mipi_dphy_get_default_config(pixel_rate, format->bpp, lanes_count, dphy_cfg); /* * Note that our hardware is using DDR, which is not taken in account by * phy_mipi_dphy_get_default_config when calculating hs_clk_rate from * the pixel rate, lanes count and bpp. * * The resulting clock rate is basically the symbol rate over the whole * link. The actual clock rate is calculated with division by two since * DDR samples both on rising and falling edges. */ dev_dbg(dev, "A83T MIPI CSI-2 config:\n"); dev_dbg(dev, "%ld pixels/s, %u bits/pixel, %u lanes, %lu Hz clock\n", pixel_rate, format->bpp, lanes_count, dphy_cfg->hs_clk_rate / 2); ret = phy_reset(dphy); if (ret) { dev_err(dev, "failed to reset MIPI D-PHY\n"); goto error_pm; } ret = phy_configure(dphy, &dphy_opts); if (ret) { dev_err(dev, "failed to configure MIPI D-PHY\n"); goto error_pm; } /* Controller */ sun8i_a83t_mipi_csi2_configure(csi2_dev); sun8i_a83t_mipi_csi2_enable(csi2_dev); /* D-PHY */ ret = phy_power_on(dphy); if (ret) { dev_err(dev, "failed to power on MIPI D-PHY\n"); goto error_pm; } /* Source */ ret = v4l2_subdev_call(source_subdev, video, s_stream, 1); if (ret && ret != -ENOIOCTLCMD) goto disable; return 0; disable: if (!on) ret = 0; phy_power_off(dphy); sun8i_a83t_mipi_csi2_disable(csi2_dev); error_pm: pm_runtime_put(dev); return ret; } static const struct v4l2_subdev_video_ops sun8i_a83t_mipi_csi2_video_ops = { .s_stream = sun8i_a83t_mipi_csi2_s_stream, }; static void sun8i_a83t_mipi_csi2_mbus_format_prepare(struct v4l2_mbus_framefmt *mbus_format) { if (!sun8i_a83t_mipi_csi2_format_find(mbus_format->code)) mbus_format->code = sun8i_a83t_mipi_csi2_formats[0].mbus_code; mbus_format->field = V4L2_FIELD_NONE; mbus_format->colorspace = V4L2_COLORSPACE_RAW; mbus_format->quantization = V4L2_QUANTIZATION_DEFAULT; mbus_format->xfer_func = V4L2_XFER_FUNC_DEFAULT; } static int sun8i_a83t_mipi_csi2_init_cfg(struct v4l2_subdev *subdev, struct v4l2_subdev_state *state) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = v4l2_get_subdevdata(subdev); unsigned int pad = SUN8I_A83T_MIPI_CSI2_PAD_SINK; struct v4l2_mbus_framefmt *mbus_format = v4l2_subdev_get_try_format(subdev, state, pad); struct mutex *lock = &csi2_dev->bridge.lock; mutex_lock(lock); mbus_format->code = sun8i_a83t_mipi_csi2_formats[0].mbus_code; mbus_format->width = 640; mbus_format->height = 480; sun8i_a83t_mipi_csi2_mbus_format_prepare(mbus_format); mutex_unlock(lock); return 0; } static int sun8i_a83t_mipi_csi2_enum_mbus_code(struct v4l2_subdev *subdev, struct v4l2_subdev_state *state, struct v4l2_subdev_mbus_code_enum *code_enum) { if (code_enum->index >= ARRAY_SIZE(sun8i_a83t_mipi_csi2_formats)) return -EINVAL; code_enum->code = sun8i_a83t_mipi_csi2_formats[code_enum->index].mbus_code; return 0; } static int sun8i_a83t_mipi_csi2_get_fmt(struct v4l2_subdev *subdev, struct v4l2_subdev_state *state, struct v4l2_subdev_format *format) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = v4l2_get_subdevdata(subdev); struct v4l2_mbus_framefmt *mbus_format = &format->format; struct mutex *lock = &csi2_dev->bridge.lock; mutex_lock(lock); if (format->which == V4L2_SUBDEV_FORMAT_TRY) *mbus_format = *v4l2_subdev_get_try_format(subdev, state, format->pad); else *mbus_format = csi2_dev->bridge.mbus_format; mutex_unlock(lock); return 0; } static int sun8i_a83t_mipi_csi2_set_fmt(struct v4l2_subdev *subdev, struct v4l2_subdev_state *state, struct v4l2_subdev_format *format) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = v4l2_get_subdevdata(subdev); struct v4l2_mbus_framefmt *mbus_format = &format->format; struct mutex *lock = &csi2_dev->bridge.lock; mutex_lock(lock); sun8i_a83t_mipi_csi2_mbus_format_prepare(mbus_format); if (format->which == V4L2_SUBDEV_FORMAT_TRY) *v4l2_subdev_get_try_format(subdev, state, format->pad) = *mbus_format; else csi2_dev->bridge.mbus_format = *mbus_format; mutex_unlock(lock); return 0; } static const struct v4l2_subdev_pad_ops sun8i_a83t_mipi_csi2_pad_ops = { .init_cfg = sun8i_a83t_mipi_csi2_init_cfg, .enum_mbus_code = sun8i_a83t_mipi_csi2_enum_mbus_code, .get_fmt = sun8i_a83t_mipi_csi2_get_fmt, .set_fmt = sun8i_a83t_mipi_csi2_set_fmt, }; static const struct v4l2_subdev_ops sun8i_a83t_mipi_csi2_subdev_ops = { .video = &sun8i_a83t_mipi_csi2_video_ops, .pad = &sun8i_a83t_mipi_csi2_pad_ops, }; /* Media Entity */ static const struct media_entity_operations sun8i_a83t_mipi_csi2_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; /* V4L2 Async */ static int sun8i_a83t_mipi_csi2_notifier_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *remote_subdev, struct v4l2_async_subdev *async_subdev) { struct v4l2_subdev *subdev = notifier->sd; struct sun8i_a83t_mipi_csi2_device *csi2_dev = container_of(notifier, struct sun8i_a83t_mipi_csi2_device, bridge.notifier); struct media_entity *sink_entity = &subdev->entity; struct media_entity *source_entity = &remote_subdev->entity; struct device *dev = csi2_dev->dev; int sink_pad_index = 0; int source_pad_index; int ret; ret = media_entity_get_fwnode_pad(source_entity, remote_subdev->fwnode, MEDIA_PAD_FL_SOURCE); if (ret < 0) { dev_err(dev, "missing source pad in external entity %s\n", source_entity->name); return -EINVAL; } source_pad_index = ret; dev_dbg(dev, "creating %s:%u -> %s:%u link\n", source_entity->name, source_pad_index, sink_entity->name, sink_pad_index); ret = media_create_pad_link(source_entity, source_pad_index, sink_entity, sink_pad_index, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); if (ret) { dev_err(dev, "failed to create %s:%u -> %s:%u link\n", source_entity->name, source_pad_index, sink_entity->name, sink_pad_index); return ret; } csi2_dev->bridge.source_subdev = remote_subdev; return 0; } static const struct v4l2_async_notifier_operations sun8i_a83t_mipi_csi2_notifier_ops = { .bound = sun8i_a83t_mipi_csi2_notifier_bound, }; /* Bridge */ static int sun8i_a83t_mipi_csi2_bridge_source_setup(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct v4l2_async_notifier *notifier = &csi2_dev->bridge.notifier; struct v4l2_fwnode_endpoint *endpoint = &csi2_dev->bridge.endpoint; struct v4l2_async_subdev *subdev_async; struct fwnode_handle *handle; struct device *dev = csi2_dev->dev; int ret; handle = fwnode_graph_get_endpoint_by_id(dev_fwnode(dev), 0, 0, FWNODE_GRAPH_ENDPOINT_NEXT); if (!handle) return -ENODEV; endpoint->bus_type = V4L2_MBUS_CSI2_DPHY; ret = v4l2_fwnode_endpoint_parse(handle, endpoint); if (ret) goto complete; subdev_async = v4l2_async_nf_add_fwnode_remote(notifier, handle, struct v4l2_async_subdev); if (IS_ERR(subdev_async)) ret = PTR_ERR(subdev_async); complete: fwnode_handle_put(handle); return ret; } static int sun8i_a83t_mipi_csi2_bridge_setup(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct sun8i_a83t_mipi_csi2_bridge *bridge = &csi2_dev->bridge; struct v4l2_subdev *subdev = &bridge->subdev; struct v4l2_async_notifier *notifier = &bridge->notifier; struct media_pad *pads = bridge->pads; struct device *dev = csi2_dev->dev; int ret; mutex_init(&bridge->lock); /* V4L2 Subdev */ v4l2_subdev_init(subdev, &sun8i_a83t_mipi_csi2_subdev_ops); strscpy(subdev->name, SUN8I_A83T_MIPI_CSI2_NAME, sizeof(subdev->name)); subdev->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; subdev->owner = THIS_MODULE; subdev->dev = dev; v4l2_set_subdevdata(subdev, csi2_dev); /* Media Entity */ subdev->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; subdev->entity.ops = &sun8i_a83t_mipi_csi2_entity_ops; /* Media Pads */ pads[SUN8I_A83T_MIPI_CSI2_PAD_SINK].flags = MEDIA_PAD_FL_SINK; pads[SUN8I_A83T_MIPI_CSI2_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&subdev->entity, SUN8I_A83T_MIPI_CSI2_PAD_COUNT, pads); if (ret) return ret; /* V4L2 Async */ v4l2_async_nf_init(notifier); notifier->ops = &sun8i_a83t_mipi_csi2_notifier_ops; ret = sun8i_a83t_mipi_csi2_bridge_source_setup(csi2_dev); if (ret) goto error_v4l2_notifier_cleanup; ret = v4l2_async_subdev_nf_register(subdev, notifier); if (ret < 0) goto error_v4l2_notifier_cleanup; /* V4L2 Subdev */ ret = v4l2_async_register_subdev(subdev); if (ret < 0) goto error_v4l2_notifier_unregister; return 0; error_v4l2_notifier_unregister: v4l2_async_nf_unregister(notifier); error_v4l2_notifier_cleanup: v4l2_async_nf_cleanup(notifier); media_entity_cleanup(&subdev->entity); return ret; } static void sun8i_a83t_mipi_csi2_bridge_cleanup(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { struct v4l2_subdev *subdev = &csi2_dev->bridge.subdev; struct v4l2_async_notifier *notifier = &csi2_dev->bridge.notifier; v4l2_async_unregister_subdev(subdev); v4l2_async_nf_unregister(notifier); v4l2_async_nf_cleanup(notifier); media_entity_cleanup(&subdev->entity); } /* Platform */ static int sun8i_a83t_mipi_csi2_suspend(struct device *dev) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = dev_get_drvdata(dev); clk_disable_unprepare(csi2_dev->clock_misc); clk_disable_unprepare(csi2_dev->clock_mipi); clk_disable_unprepare(csi2_dev->clock_mod); reset_control_assert(csi2_dev->reset); return 0; } static int sun8i_a83t_mipi_csi2_resume(struct device *dev) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = dev_get_drvdata(dev); int ret; ret = reset_control_deassert(csi2_dev->reset); if (ret) { dev_err(dev, "failed to deassert reset\n"); return ret; } ret = clk_prepare_enable(csi2_dev->clock_mod); if (ret) { dev_err(dev, "failed to enable module clock\n"); goto error_reset; } ret = clk_prepare_enable(csi2_dev->clock_mipi); if (ret) { dev_err(dev, "failed to enable MIPI clock\n"); goto error_clock_mod; } ret = clk_prepare_enable(csi2_dev->clock_misc); if (ret) { dev_err(dev, "failed to enable CSI misc clock\n"); goto error_clock_mipi; } sun8i_a83t_mipi_csi2_init(csi2_dev); return 0; error_clock_mipi: clk_disable_unprepare(csi2_dev->clock_mipi); error_clock_mod: clk_disable_unprepare(csi2_dev->clock_mod); error_reset: reset_control_assert(csi2_dev->reset); return ret; } static const struct dev_pm_ops sun8i_a83t_mipi_csi2_pm_ops = { .runtime_suspend = sun8i_a83t_mipi_csi2_suspend, .runtime_resume = sun8i_a83t_mipi_csi2_resume, }; static const struct regmap_config sun8i_a83t_mipi_csi2_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x120, }; static int sun8i_a83t_mipi_csi2_resources_setup(struct sun8i_a83t_mipi_csi2_device *csi2_dev, struct platform_device *platform_dev) { struct device *dev = csi2_dev->dev; void __iomem *io_base; int ret; /* Registers */ io_base = devm_platform_ioremap_resource(platform_dev, 0); if (IS_ERR(io_base)) return PTR_ERR(io_base); csi2_dev->regmap = devm_regmap_init_mmio_clk(dev, "bus", io_base, &sun8i_a83t_mipi_csi2_regmap_config); if (IS_ERR(csi2_dev->regmap)) { dev_err(dev, "failed to init register map\n"); return PTR_ERR(csi2_dev->regmap); } /* Clocks */ csi2_dev->clock_mod = devm_clk_get(dev, "mod"); if (IS_ERR(csi2_dev->clock_mod)) { dev_err(dev, "failed to acquire mod clock\n"); return PTR_ERR(csi2_dev->clock_mod); } ret = clk_set_rate_exclusive(csi2_dev->clock_mod, 297000000); if (ret) { dev_err(dev, "failed to set mod clock rate\n"); return ret; } csi2_dev->clock_mipi = devm_clk_get(dev, "mipi"); if (IS_ERR(csi2_dev->clock_mipi)) { dev_err(dev, "failed to acquire mipi clock\n"); ret = PTR_ERR(csi2_dev->clock_mipi); goto error_clock_rate_exclusive; } csi2_dev->clock_misc = devm_clk_get(dev, "misc"); if (IS_ERR(csi2_dev->clock_misc)) { dev_err(dev, "failed to acquire misc clock\n"); ret = PTR_ERR(csi2_dev->clock_misc); goto error_clock_rate_exclusive; } /* Reset */ csi2_dev->reset = devm_reset_control_get_shared(dev, NULL); if (IS_ERR(csi2_dev->reset)) { dev_err(dev, "failed to get reset controller\n"); ret = PTR_ERR(csi2_dev->reset); goto error_clock_rate_exclusive; } /* D-PHY */ ret = sun8i_a83t_dphy_register(csi2_dev); if (ret) { dev_err(dev, "failed to initialize MIPI D-PHY\n"); goto error_clock_rate_exclusive; } /* Runtime PM */ pm_runtime_enable(dev); return 0; error_clock_rate_exclusive: clk_rate_exclusive_put(csi2_dev->clock_mod); return ret; } static void sun8i_a83t_mipi_csi2_resources_cleanup(struct sun8i_a83t_mipi_csi2_device *csi2_dev) { pm_runtime_disable(csi2_dev->dev); phy_exit(csi2_dev->dphy); clk_rate_exclusive_put(csi2_dev->clock_mod); } static int sun8i_a83t_mipi_csi2_probe(struct platform_device *platform_dev) { struct sun8i_a83t_mipi_csi2_device *csi2_dev; struct device *dev = &platform_dev->dev; int ret; csi2_dev = devm_kzalloc(dev, sizeof(*csi2_dev), GFP_KERNEL); if (!csi2_dev) return -ENOMEM; csi2_dev->dev = dev; platform_set_drvdata(platform_dev, csi2_dev); ret = sun8i_a83t_mipi_csi2_resources_setup(csi2_dev, platform_dev); if (ret) return ret; ret = sun8i_a83t_mipi_csi2_bridge_setup(csi2_dev); if (ret) goto error_resources; return 0; error_resources: sun8i_a83t_mipi_csi2_resources_cleanup(csi2_dev); return ret; } static int sun8i_a83t_mipi_csi2_remove(struct platform_device *platform_dev) { struct sun8i_a83t_mipi_csi2_device *csi2_dev = platform_get_drvdata(platform_dev); sun8i_a83t_mipi_csi2_bridge_cleanup(csi2_dev); sun8i_a83t_mipi_csi2_resources_cleanup(csi2_dev); return 0; } static const struct of_device_id sun8i_a83t_mipi_csi2_of_match[] = { { .compatible = "allwinner,sun8i-a83t-mipi-csi2" }, {}, }; MODULE_DEVICE_TABLE(of, sun8i_a83t_mipi_csi2_of_match); static struct platform_driver sun8i_a83t_mipi_csi2_platform_driver = { .probe = sun8i_a83t_mipi_csi2_probe, .remove = sun8i_a83t_mipi_csi2_remove, .driver = { .name = SUN8I_A83T_MIPI_CSI2_NAME, .of_match_table = of_match_ptr(sun8i_a83t_mipi_csi2_of_match), .pm = &sun8i_a83t_mipi_csi2_pm_ops, }, }; module_platform_driver(sun8i_a83t_mipi_csi2_platform_driver); MODULE_DESCRIPTION("Allwinner A83T MIPI CSI-2 and D-PHY Controller Driver"); MODULE_AUTHOR("Paul Kocialkowski <paul.kocialkowski@bootlin.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1