Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Härdeman | 4084 | 76.59% | 9 | 21.43% |
Sean Young | 1004 | 18.83% | 17 | 40.48% |
Luis Henriques | 172 | 3.23% | 1 | 2.38% |
Matthijs Kooijman | 26 | 0.49% | 1 | 2.38% |
Anton Blanchard | 13 | 0.24% | 2 | 4.76% |
Joe Perches | 10 | 0.19% | 1 | 2.38% |
Wei Yongjun | 6 | 0.11% | 1 | 2.38% |
Andi Shyti | 3 | 0.06% | 1 | 2.38% |
Mauro Carvalho Chehab | 2 | 0.04% | 2 | 4.76% |
Rusty Russell | 2 | 0.04% | 1 | 2.38% |
SF Markus Elfring | 2 | 0.04% | 1 | 2.38% |
Tejun Heo | 2 | 0.04% | 1 | 2.38% |
Arvind Yadav | 2 | 0.04% | 1 | 2.38% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.38% |
Al Viro | 1 | 0.02% | 1 | 2.38% |
Michael Opdenacker | 1 | 0.02% | 1 | 2.38% |
Total | 5332 | 42 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * winbond-cir.c - Driver for the Consumer IR functionality of Winbond * SuperI/O chips. * * Currently supports the Winbond WPCD376i chip (PNP id WEC1022), but * could probably support others (Winbond WEC102X, NatSemi, etc) * with minor modifications. * * Original Author: David Härdeman <david@hardeman.nu> * Copyright (C) 2012 Sean Young <sean@mess.org> * Copyright (C) 2009 - 2011 David Härdeman <david@hardeman.nu> * * Dedicated to my daughter Matilda, without whose loving attention this * driver would have been finished in half the time and with a fraction * of the bugs. * * Written using: * o Winbond WPCD376I datasheet helpfully provided by Jesse Barnes at Intel * o NatSemi PC87338/PC97338 datasheet (for the serial port stuff) * o DSDT dumps * * Supported features: * o IR Receive * o IR Transmit * o Wake-On-CIR functionality * o Carrier detection */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/pnp.h> #include <linux/interrupt.h> #include <linux/timer.h> #include <linux/leds.h> #include <linux/spinlock.h> #include <linux/pci_ids.h> #include <linux/io.h> #include <linux/bitrev.h> #include <linux/slab.h> #include <linux/wait.h> #include <linux/sched.h> #include <media/rc-core.h> #define DRVNAME "winbond-cir" /* CEIR Wake-Up Registers, relative to data->wbase */ #define WBCIR_REG_WCEIR_CTL 0x03 /* CEIR Receiver Control */ #define WBCIR_REG_WCEIR_STS 0x04 /* CEIR Receiver Status */ #define WBCIR_REG_WCEIR_EV_EN 0x05 /* CEIR Receiver Event Enable */ #define WBCIR_REG_WCEIR_CNTL 0x06 /* CEIR Receiver Counter Low */ #define WBCIR_REG_WCEIR_CNTH 0x07 /* CEIR Receiver Counter High */ #define WBCIR_REG_WCEIR_INDEX 0x08 /* CEIR Receiver Index */ #define WBCIR_REG_WCEIR_DATA 0x09 /* CEIR Receiver Data */ #define WBCIR_REG_WCEIR_CSL 0x0A /* CEIR Re. Compare Strlen */ #define WBCIR_REG_WCEIR_CFG1 0x0B /* CEIR Re. Configuration 1 */ #define WBCIR_REG_WCEIR_CFG2 0x0C /* CEIR Re. Configuration 2 */ /* CEIR Enhanced Functionality Registers, relative to data->ebase */ #define WBCIR_REG_ECEIR_CTS 0x00 /* Enhanced IR Control Status */ #define WBCIR_REG_ECEIR_CCTL 0x01 /* Infrared Counter Control */ #define WBCIR_REG_ECEIR_CNT_LO 0x02 /* Infrared Counter LSB */ #define WBCIR_REG_ECEIR_CNT_HI 0x03 /* Infrared Counter MSB */ #define WBCIR_REG_ECEIR_IREM 0x04 /* Infrared Emitter Status */ /* SP3 Banked Registers, relative to data->sbase */ #define WBCIR_REG_SP3_BSR 0x03 /* Bank Select, all banks */ /* Bank 0 */ #define WBCIR_REG_SP3_RXDATA 0x00 /* FIFO RX data (r) */ #define WBCIR_REG_SP3_TXDATA 0x00 /* FIFO TX data (w) */ #define WBCIR_REG_SP3_IER 0x01 /* Interrupt Enable */ #define WBCIR_REG_SP3_EIR 0x02 /* Event Identification (r) */ #define WBCIR_REG_SP3_FCR 0x02 /* FIFO Control (w) */ #define WBCIR_REG_SP3_MCR 0x04 /* Mode Control */ #define WBCIR_REG_SP3_LSR 0x05 /* Link Status */ #define WBCIR_REG_SP3_MSR 0x06 /* Modem Status */ #define WBCIR_REG_SP3_ASCR 0x07 /* Aux Status and Control */ /* Bank 2 */ #define WBCIR_REG_SP3_BGDL 0x00 /* Baud Divisor LSB */ #define WBCIR_REG_SP3_BGDH 0x01 /* Baud Divisor MSB */ #define WBCIR_REG_SP3_EXCR1 0x02 /* Extended Control 1 */ #define WBCIR_REG_SP3_EXCR2 0x04 /* Extended Control 2 */ #define WBCIR_REG_SP3_TXFLV 0x06 /* TX FIFO Level */ #define WBCIR_REG_SP3_RXFLV 0x07 /* RX FIFO Level */ /* Bank 3 */ #define WBCIR_REG_SP3_MRID 0x00 /* Module Identification */ #define WBCIR_REG_SP3_SH_LCR 0x01 /* LCR Shadow */ #define WBCIR_REG_SP3_SH_FCR 0x02 /* FCR Shadow */ /* Bank 4 */ #define WBCIR_REG_SP3_IRCR1 0x02 /* Infrared Control 1 */ /* Bank 5 */ #define WBCIR_REG_SP3_IRCR2 0x04 /* Infrared Control 2 */ /* Bank 6 */ #define WBCIR_REG_SP3_IRCR3 0x00 /* Infrared Control 3 */ #define WBCIR_REG_SP3_SIR_PW 0x02 /* SIR Pulse Width */ /* Bank 7 */ #define WBCIR_REG_SP3_IRRXDC 0x00 /* IR RX Demod Control */ #define WBCIR_REG_SP3_IRTXMC 0x01 /* IR TX Mod Control */ #define WBCIR_REG_SP3_RCCFG 0x02 /* CEIR Config */ #define WBCIR_REG_SP3_IRCFG1 0x04 /* Infrared Config 1 */ #define WBCIR_REG_SP3_IRCFG4 0x07 /* Infrared Config 4 */ /* * Magic values follow */ /* No interrupts for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */ #define WBCIR_IRQ_NONE 0x00 /* RX data bit for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */ #define WBCIR_IRQ_RX 0x01 /* TX data low bit for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */ #define WBCIR_IRQ_TX_LOW 0x02 /* Over/Under-flow bit for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */ #define WBCIR_IRQ_ERR 0x04 /* TX data empty bit for WBCEIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */ #define WBCIR_IRQ_TX_EMPTY 0x20 /* Led enable/disable bit for WBCIR_REG_ECEIR_CTS */ #define WBCIR_LED_ENABLE 0x80 /* RX data available bit for WBCIR_REG_SP3_LSR */ #define WBCIR_RX_AVAIL 0x01 /* RX data overrun error bit for WBCIR_REG_SP3_LSR */ #define WBCIR_RX_OVERRUN 0x02 /* TX End-Of-Transmission bit for WBCIR_REG_SP3_ASCR */ #define WBCIR_TX_EOT 0x04 /* RX disable bit for WBCIR_REG_SP3_ASCR */ #define WBCIR_RX_DISABLE 0x20 /* TX data underrun error bit for WBCIR_REG_SP3_ASCR */ #define WBCIR_TX_UNDERRUN 0x40 /* Extended mode enable bit for WBCIR_REG_SP3_EXCR1 */ #define WBCIR_EXT_ENABLE 0x01 /* Select compare register in WBCIR_REG_WCEIR_INDEX (bits 5 & 6) */ #define WBCIR_REGSEL_COMPARE 0x10 /* Select mask register in WBCIR_REG_WCEIR_INDEX (bits 5 & 6) */ #define WBCIR_REGSEL_MASK 0x20 /* Starting address of selected register in WBCIR_REG_WCEIR_INDEX */ #define WBCIR_REG_ADDR0 0x00 /* Enable carrier counter */ #define WBCIR_CNTR_EN 0x01 /* Reset carrier counter */ #define WBCIR_CNTR_R 0x02 /* Invert TX */ #define WBCIR_IRTX_INV 0x04 /* Receiver oversampling */ #define WBCIR_RX_T_OV 0x40 /* Valid banks for the SP3 UART */ enum wbcir_bank { WBCIR_BANK_0 = 0x00, WBCIR_BANK_1 = 0x80, WBCIR_BANK_2 = 0xE0, WBCIR_BANK_3 = 0xE4, WBCIR_BANK_4 = 0xE8, WBCIR_BANK_5 = 0xEC, WBCIR_BANK_6 = 0xF0, WBCIR_BANK_7 = 0xF4, }; /* Supported power-on IR Protocols */ enum wbcir_protocol { IR_PROTOCOL_RC5 = 0x0, IR_PROTOCOL_NEC = 0x1, IR_PROTOCOL_RC6 = 0x2, }; /* Possible states for IR reception */ enum wbcir_rxstate { WBCIR_RXSTATE_INACTIVE = 0, WBCIR_RXSTATE_ACTIVE, WBCIR_RXSTATE_ERROR }; /* Possible states for IR transmission */ enum wbcir_txstate { WBCIR_TXSTATE_INACTIVE = 0, WBCIR_TXSTATE_ACTIVE, WBCIR_TXSTATE_ERROR }; /* Misc */ #define WBCIR_NAME "Winbond CIR" #define WBCIR_ID_FAMILY 0xF1 /* Family ID for the WPCD376I */ #define WBCIR_ID_CHIP 0x04 /* Chip ID for the WPCD376I */ #define WAKEUP_IOMEM_LEN 0x10 /* Wake-Up I/O Reg Len */ #define EHFUNC_IOMEM_LEN 0x10 /* Enhanced Func I/O Reg Len */ #define SP_IOMEM_LEN 0x08 /* Serial Port 3 (IR) Reg Len */ /* Per-device data */ struct wbcir_data { spinlock_t spinlock; struct rc_dev *dev; struct led_classdev led; unsigned long wbase; /* Wake-Up Baseaddr */ unsigned long ebase; /* Enhanced Func. Baseaddr */ unsigned long sbase; /* Serial Port Baseaddr */ unsigned int irq; /* Serial Port IRQ */ u8 irqmask; /* RX state */ enum wbcir_rxstate rxstate; int carrier_report_enabled; u32 pulse_duration; /* TX state */ enum wbcir_txstate txstate; u32 txlen; u32 txoff; u32 *txbuf; u8 txmask; u32 txcarrier; }; static bool invert; /* default = 0 */ module_param(invert, bool, 0444); MODULE_PARM_DESC(invert, "Invert the signal from the IR receiver"); static bool txandrx; /* default = 0 */ module_param(txandrx, bool, 0444); MODULE_PARM_DESC(txandrx, "Allow simultaneous TX and RX"); /***************************************************************************** * * UTILITY FUNCTIONS * *****************************************************************************/ /* Caller needs to hold wbcir_lock */ static void wbcir_set_bits(unsigned long addr, u8 bits, u8 mask) { u8 val; val = inb(addr); val = ((val & ~mask) | (bits & mask)); outb(val, addr); } /* Selects the register bank for the serial port */ static inline void wbcir_select_bank(struct wbcir_data *data, enum wbcir_bank bank) { outb(bank, data->sbase + WBCIR_REG_SP3_BSR); } static inline void wbcir_set_irqmask(struct wbcir_data *data, u8 irqmask) { if (data->irqmask == irqmask) return; wbcir_select_bank(data, WBCIR_BANK_0); outb(irqmask, data->sbase + WBCIR_REG_SP3_IER); data->irqmask = irqmask; } static enum led_brightness wbcir_led_brightness_get(struct led_classdev *led_cdev) { struct wbcir_data *data = container_of(led_cdev, struct wbcir_data, led); if (inb(data->ebase + WBCIR_REG_ECEIR_CTS) & WBCIR_LED_ENABLE) return LED_FULL; else return LED_OFF; } static void wbcir_led_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness) { struct wbcir_data *data = container_of(led_cdev, struct wbcir_data, led); wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CTS, brightness == LED_OFF ? 0x00 : WBCIR_LED_ENABLE, WBCIR_LED_ENABLE); } /* Manchester encodes bits to RC6 message cells (see wbcir_shutdown) */ static u8 wbcir_to_rc6cells(u8 val) { u8 coded = 0x00; int i; val &= 0x0F; for (i = 0; i < 4; i++) { if (val & 0x01) coded |= 0x02 << (i * 2); else coded |= 0x01 << (i * 2); val >>= 1; } return coded; } /***************************************************************************** * * INTERRUPT FUNCTIONS * *****************************************************************************/ static void wbcir_carrier_report(struct wbcir_data *data) { unsigned counter = inb(data->ebase + WBCIR_REG_ECEIR_CNT_LO) | inb(data->ebase + WBCIR_REG_ECEIR_CNT_HI) << 8; if (counter > 0 && counter < 0xffff) { struct ir_raw_event ev = { .carrier_report = 1, .carrier = DIV_ROUND_CLOSEST(counter * 1000000u, data->pulse_duration) }; ir_raw_event_store(data->dev, &ev); } /* reset and restart the counter */ data->pulse_duration = 0; wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CCTL, WBCIR_CNTR_R, WBCIR_CNTR_EN | WBCIR_CNTR_R); wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CCTL, WBCIR_CNTR_EN, WBCIR_CNTR_EN | WBCIR_CNTR_R); } static void wbcir_idle_rx(struct rc_dev *dev, bool idle) { struct wbcir_data *data = dev->priv; if (!idle && data->rxstate == WBCIR_RXSTATE_INACTIVE) data->rxstate = WBCIR_RXSTATE_ACTIVE; if (idle && data->rxstate != WBCIR_RXSTATE_INACTIVE) { data->rxstate = WBCIR_RXSTATE_INACTIVE; if (data->carrier_report_enabled) wbcir_carrier_report(data); /* Tell hardware to go idle by setting RXINACTIVE */ outb(WBCIR_RX_DISABLE, data->sbase + WBCIR_REG_SP3_ASCR); } } static void wbcir_irq_rx(struct wbcir_data *data, struct pnp_dev *device) { u8 irdata; struct ir_raw_event rawir = {}; /* Since RXHDLEV is set, at least 8 bytes are in the FIFO */ while (inb(data->sbase + WBCIR_REG_SP3_LSR) & WBCIR_RX_AVAIL) { irdata = inb(data->sbase + WBCIR_REG_SP3_RXDATA); if (data->rxstate == WBCIR_RXSTATE_ERROR) continue; rawir.duration = ((irdata & 0x7F) + 1) * (data->carrier_report_enabled ? 2 : 10); rawir.pulse = irdata & 0x80 ? false : true; if (rawir.pulse) data->pulse_duration += rawir.duration; ir_raw_event_store_with_filter(data->dev, &rawir); } ir_raw_event_handle(data->dev); } static void wbcir_irq_tx(struct wbcir_data *data) { unsigned int space; unsigned int used; u8 bytes[16]; u8 byte; if (!data->txbuf) return; switch (data->txstate) { case WBCIR_TXSTATE_INACTIVE: /* TX FIFO empty */ space = 16; break; case WBCIR_TXSTATE_ACTIVE: /* TX FIFO low (3 bytes or less) */ space = 13; break; case WBCIR_TXSTATE_ERROR: space = 0; break; default: return; } /* * TX data is run-length coded in bytes: YXXXXXXX * Y = space (1) or pulse (0) * X = duration, encoded as (X + 1) * 10us (i.e 10 to 1280 us) */ for (used = 0; used < space && data->txoff != data->txlen; used++) { if (data->txbuf[data->txoff] == 0) { data->txoff++; continue; } byte = min((u32)0x80, data->txbuf[data->txoff]); data->txbuf[data->txoff] -= byte; byte--; byte |= (data->txoff % 2 ? 0x80 : 0x00); /* pulse/space */ bytes[used] = byte; } while (data->txoff != data->txlen && data->txbuf[data->txoff] == 0) data->txoff++; if (used == 0) { /* Finished */ if (data->txstate == WBCIR_TXSTATE_ERROR) /* Clear TX underrun bit */ outb(WBCIR_TX_UNDERRUN, data->sbase + WBCIR_REG_SP3_ASCR); wbcir_set_irqmask(data, WBCIR_IRQ_RX | WBCIR_IRQ_ERR); kfree(data->txbuf); data->txbuf = NULL; data->txstate = WBCIR_TXSTATE_INACTIVE; } else if (data->txoff == data->txlen) { /* At the end of transmission, tell the hw before last byte */ outsb(data->sbase + WBCIR_REG_SP3_TXDATA, bytes, used - 1); outb(WBCIR_TX_EOT, data->sbase + WBCIR_REG_SP3_ASCR); outb(bytes[used - 1], data->sbase + WBCIR_REG_SP3_TXDATA); wbcir_set_irqmask(data, WBCIR_IRQ_RX | WBCIR_IRQ_ERR | WBCIR_IRQ_TX_EMPTY); } else { /* More data to follow... */ outsb(data->sbase + WBCIR_REG_SP3_RXDATA, bytes, used); if (data->txstate == WBCIR_TXSTATE_INACTIVE) { wbcir_set_irqmask(data, WBCIR_IRQ_RX | WBCIR_IRQ_ERR | WBCIR_IRQ_TX_LOW); data->txstate = WBCIR_TXSTATE_ACTIVE; } } } static irqreturn_t wbcir_irq_handler(int irqno, void *cookie) { struct pnp_dev *device = cookie; struct wbcir_data *data = pnp_get_drvdata(device); unsigned long flags; u8 status; spin_lock_irqsave(&data->spinlock, flags); wbcir_select_bank(data, WBCIR_BANK_0); status = inb(data->sbase + WBCIR_REG_SP3_EIR); status &= data->irqmask; if (!status) { spin_unlock_irqrestore(&data->spinlock, flags); return IRQ_NONE; } if (status & WBCIR_IRQ_ERR) { /* RX overflow? (read clears bit) */ if (inb(data->sbase + WBCIR_REG_SP3_LSR) & WBCIR_RX_OVERRUN) { data->rxstate = WBCIR_RXSTATE_ERROR; ir_raw_event_overflow(data->dev); } /* TX underflow? */ if (inb(data->sbase + WBCIR_REG_SP3_ASCR) & WBCIR_TX_UNDERRUN) data->txstate = WBCIR_TXSTATE_ERROR; } if (status & WBCIR_IRQ_RX) wbcir_irq_rx(data, device); if (status & (WBCIR_IRQ_TX_LOW | WBCIR_IRQ_TX_EMPTY)) wbcir_irq_tx(data); spin_unlock_irqrestore(&data->spinlock, flags); return IRQ_HANDLED; } /***************************************************************************** * * RC-CORE INTERFACE FUNCTIONS * *****************************************************************************/ static int wbcir_set_carrier_report(struct rc_dev *dev, int enable) { struct wbcir_data *data = dev->priv; unsigned long flags; spin_lock_irqsave(&data->spinlock, flags); if (data->carrier_report_enabled == enable) { spin_unlock_irqrestore(&data->spinlock, flags); return 0; } data->pulse_duration = 0; wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CCTL, WBCIR_CNTR_R, WBCIR_CNTR_EN | WBCIR_CNTR_R); if (enable && data->dev->idle) wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CCTL, WBCIR_CNTR_EN, WBCIR_CNTR_EN | WBCIR_CNTR_R); /* Set a higher sampling resolution if carrier reports are enabled */ wbcir_select_bank(data, WBCIR_BANK_2); data->dev->rx_resolution = enable ? 2 : 10; outb(enable ? 0x03 : 0x0f, data->sbase + WBCIR_REG_SP3_BGDL); outb(0x00, data->sbase + WBCIR_REG_SP3_BGDH); /* Enable oversampling if carrier reports are enabled */ wbcir_select_bank(data, WBCIR_BANK_7); wbcir_set_bits(data->sbase + WBCIR_REG_SP3_RCCFG, enable ? WBCIR_RX_T_OV : 0, WBCIR_RX_T_OV); data->carrier_report_enabled = enable; spin_unlock_irqrestore(&data->spinlock, flags); return 0; } static int wbcir_txcarrier(struct rc_dev *dev, u32 carrier) { struct wbcir_data *data = dev->priv; unsigned long flags; u8 val; u32 freq; freq = DIV_ROUND_CLOSEST(carrier, 1000); if (freq < 30 || freq > 60) return -EINVAL; switch (freq) { case 58: case 59: case 60: val = freq - 58; freq *= 1000; break; case 57: val = freq - 27; freq = 56900; break; default: val = freq - 27; freq *= 1000; break; } spin_lock_irqsave(&data->spinlock, flags); if (data->txstate != WBCIR_TXSTATE_INACTIVE) { spin_unlock_irqrestore(&data->spinlock, flags); return -EBUSY; } if (data->txcarrier != freq) { wbcir_select_bank(data, WBCIR_BANK_7); wbcir_set_bits(data->sbase + WBCIR_REG_SP3_IRTXMC, val, 0x1F); data->txcarrier = freq; } spin_unlock_irqrestore(&data->spinlock, flags); return 0; } static int wbcir_txmask(struct rc_dev *dev, u32 mask) { struct wbcir_data *data = dev->priv; unsigned long flags; u8 val; /* return the number of transmitters */ if (mask > 15) return 4; /* Four outputs, only one output can be enabled at a time */ switch (mask) { case 0x1: val = 0x0; break; case 0x2: val = 0x1; break; case 0x4: val = 0x2; break; case 0x8: val = 0x3; break; default: return -EINVAL; } spin_lock_irqsave(&data->spinlock, flags); if (data->txstate != WBCIR_TXSTATE_INACTIVE) { spin_unlock_irqrestore(&data->spinlock, flags); return -EBUSY; } if (data->txmask != mask) { wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CTS, val, 0x0c); data->txmask = mask; } spin_unlock_irqrestore(&data->spinlock, flags); return 0; } static int wbcir_tx(struct rc_dev *dev, unsigned *b, unsigned count) { struct wbcir_data *data = dev->priv; unsigned *buf; unsigned i; unsigned long flags; buf = kmalloc_array(count, sizeof(*b), GFP_KERNEL); if (!buf) return -ENOMEM; /* Convert values to multiples of 10us */ for (i = 0; i < count; i++) buf[i] = DIV_ROUND_CLOSEST(b[i], 10); /* Not sure if this is possible, but better safe than sorry */ spin_lock_irqsave(&data->spinlock, flags); if (data->txstate != WBCIR_TXSTATE_INACTIVE) { spin_unlock_irqrestore(&data->spinlock, flags); kfree(buf); return -EBUSY; } /* Fill the TX fifo once, the irq handler will do the rest */ data->txbuf = buf; data->txlen = count; data->txoff = 0; wbcir_irq_tx(data); /* We're done */ spin_unlock_irqrestore(&data->spinlock, flags); return count; } /***************************************************************************** * * SETUP/INIT/SUSPEND/RESUME FUNCTIONS * *****************************************************************************/ static void wbcir_shutdown(struct pnp_dev *device) { struct device *dev = &device->dev; struct wbcir_data *data = pnp_get_drvdata(device); struct rc_dev *rc = data->dev; bool do_wake = true; u8 match[11]; u8 mask[11]; u8 rc6_csl = 0; u8 proto; u32 wake_sc = rc->scancode_wakeup_filter.data; u32 mask_sc = rc->scancode_wakeup_filter.mask; int i; memset(match, 0, sizeof(match)); memset(mask, 0, sizeof(mask)); if (!mask_sc || !device_may_wakeup(dev)) { do_wake = false; goto finish; } switch (rc->wakeup_protocol) { case RC_PROTO_RC5: /* Mask = 13 bits, ex toggle */ mask[0] = (mask_sc & 0x003f); mask[0] |= (mask_sc & 0x0300) >> 2; mask[1] = (mask_sc & 0x1c00) >> 10; if (mask_sc & 0x0040) /* 2nd start bit */ match[1] |= 0x10; match[0] = (wake_sc & 0x003F); /* 6 command bits */ match[0] |= (wake_sc & 0x0300) >> 2; /* 2 address bits */ match[1] = (wake_sc & 0x1c00) >> 10; /* 3 address bits */ if (!(wake_sc & 0x0040)) /* 2nd start bit */ match[1] |= 0x10; proto = IR_PROTOCOL_RC5; break; case RC_PROTO_NEC: mask[1] = bitrev8(mask_sc); mask[0] = mask[1]; mask[3] = bitrev8(mask_sc >> 8); mask[2] = mask[3]; match[1] = bitrev8(wake_sc); match[0] = ~match[1]; match[3] = bitrev8(wake_sc >> 8); match[2] = ~match[3]; proto = IR_PROTOCOL_NEC; break; case RC_PROTO_NECX: mask[1] = bitrev8(mask_sc); mask[0] = mask[1]; mask[2] = bitrev8(mask_sc >> 8); mask[3] = bitrev8(mask_sc >> 16); match[1] = bitrev8(wake_sc); match[0] = ~match[1]; match[2] = bitrev8(wake_sc >> 8); match[3] = bitrev8(wake_sc >> 16); proto = IR_PROTOCOL_NEC; break; case RC_PROTO_NEC32: mask[0] = bitrev8(mask_sc); mask[1] = bitrev8(mask_sc >> 8); mask[2] = bitrev8(mask_sc >> 16); mask[3] = bitrev8(mask_sc >> 24); match[0] = bitrev8(wake_sc); match[1] = bitrev8(wake_sc >> 8); match[2] = bitrev8(wake_sc >> 16); match[3] = bitrev8(wake_sc >> 24); proto = IR_PROTOCOL_NEC; break; case RC_PROTO_RC6_0: /* Command */ match[0] = wbcir_to_rc6cells(wake_sc >> 0); mask[0] = wbcir_to_rc6cells(mask_sc >> 0); match[1] = wbcir_to_rc6cells(wake_sc >> 4); mask[1] = wbcir_to_rc6cells(mask_sc >> 4); /* Address */ match[2] = wbcir_to_rc6cells(wake_sc >> 8); mask[2] = wbcir_to_rc6cells(mask_sc >> 8); match[3] = wbcir_to_rc6cells(wake_sc >> 12); mask[3] = wbcir_to_rc6cells(mask_sc >> 12); /* Header */ match[4] = 0x50; /* mode1 = mode0 = 0, ignore toggle */ mask[4] = 0xF0; match[5] = 0x09; /* start bit = 1, mode2 = 0 */ mask[5] = 0x0F; rc6_csl = 44; proto = IR_PROTOCOL_RC6; break; case RC_PROTO_RC6_6A_24: case RC_PROTO_RC6_6A_32: case RC_PROTO_RC6_MCE: i = 0; /* Command */ match[i] = wbcir_to_rc6cells(wake_sc >> 0); mask[i++] = wbcir_to_rc6cells(mask_sc >> 0); match[i] = wbcir_to_rc6cells(wake_sc >> 4); mask[i++] = wbcir_to_rc6cells(mask_sc >> 4); /* Address + Toggle */ match[i] = wbcir_to_rc6cells(wake_sc >> 8); mask[i++] = wbcir_to_rc6cells(mask_sc >> 8); match[i] = wbcir_to_rc6cells(wake_sc >> 12); mask[i++] = wbcir_to_rc6cells(mask_sc >> 12); /* Customer bits 7 - 0 */ match[i] = wbcir_to_rc6cells(wake_sc >> 16); mask[i++] = wbcir_to_rc6cells(mask_sc >> 16); if (rc->wakeup_protocol == RC_PROTO_RC6_6A_20) { rc6_csl = 52; } else { match[i] = wbcir_to_rc6cells(wake_sc >> 20); mask[i++] = wbcir_to_rc6cells(mask_sc >> 20); if (rc->wakeup_protocol == RC_PROTO_RC6_6A_24) { rc6_csl = 60; } else { /* Customer range bit and bits 15 - 8 */ match[i] = wbcir_to_rc6cells(wake_sc >> 24); mask[i++] = wbcir_to_rc6cells(mask_sc >> 24); match[i] = wbcir_to_rc6cells(wake_sc >> 28); mask[i++] = wbcir_to_rc6cells(mask_sc >> 28); rc6_csl = 76; } } /* Header */ match[i] = 0x93; /* mode1 = mode0 = 1, submode = 0 */ mask[i++] = 0xFF; match[i] = 0x0A; /* start bit = 1, mode2 = 1 */ mask[i++] = 0x0F; proto = IR_PROTOCOL_RC6; break; default: do_wake = false; break; } finish: if (do_wake) { /* Set compare and compare mask */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_INDEX, WBCIR_REGSEL_COMPARE | WBCIR_REG_ADDR0, 0x3F); outsb(data->wbase + WBCIR_REG_WCEIR_DATA, match, 11); wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_INDEX, WBCIR_REGSEL_MASK | WBCIR_REG_ADDR0, 0x3F); outsb(data->wbase + WBCIR_REG_WCEIR_DATA, mask, 11); /* RC6 Compare String Len */ outb(rc6_csl, data->wbase + WBCIR_REG_WCEIR_CSL); /* Clear status bits NEC_REP, BUFF, MSG_END, MATCH */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_STS, 0x17, 0x17); /* Clear BUFF_EN, Clear END_EN, Set MATCH_EN */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x01, 0x07); /* Set CEIR_EN */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL, (proto << 4) | 0x01, 0x31); } else { /* Clear BUFF_EN, Clear END_EN, Clear MATCH_EN */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x00, 0x07); /* Clear CEIR_EN */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL, 0x00, 0x01); } /* * ACPI will set the HW disable bit for SP3 which means that the * output signals are left in an undefined state which may cause * spurious interrupts which we need to ignore until the hardware * is reinitialized. */ wbcir_set_irqmask(data, WBCIR_IRQ_NONE); disable_irq(data->irq); } /* * Wakeup handling is done on shutdown. */ static int wbcir_set_wakeup_filter(struct rc_dev *rc, struct rc_scancode_filter *filter) { return 0; } static int wbcir_suspend(struct pnp_dev *device, pm_message_t state) { struct wbcir_data *data = pnp_get_drvdata(device); led_classdev_suspend(&data->led); wbcir_shutdown(device); return 0; } static void wbcir_init_hw(struct wbcir_data *data) { /* Disable interrupts */ wbcir_set_irqmask(data, WBCIR_IRQ_NONE); /* Set RX_INV, Clear CEIR_EN (needed for the led) */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL, invert ? 8 : 0, 0x09); /* Clear status bits NEC_REP, BUFF, MSG_END, MATCH */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_STS, 0x17, 0x17); /* Clear BUFF_EN, Clear END_EN, Clear MATCH_EN */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x00, 0x07); /* Set RC5 cell time to correspond to 36 kHz */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CFG1, 0x4A, 0x7F); /* Set IRTX_INV */ if (invert) outb(WBCIR_IRTX_INV, data->ebase + WBCIR_REG_ECEIR_CCTL); else outb(0x00, data->ebase + WBCIR_REG_ECEIR_CCTL); /* * Clear IR LED, set SP3 clock to 24Mhz, set TX mask to IRTX1, * set SP3_IRRX_SW to binary 01, helpfully not documented */ outb(0x10, data->ebase + WBCIR_REG_ECEIR_CTS); data->txmask = 0x1; /* Enable extended mode */ wbcir_select_bank(data, WBCIR_BANK_2); outb(WBCIR_EXT_ENABLE, data->sbase + WBCIR_REG_SP3_EXCR1); /* * Configure baud generator, IR data will be sampled at * a bitrate of: (24Mhz * prescaler) / (divisor * 16). * * The ECIR registers include a flag to change the * 24Mhz clock freq to 48Mhz. * * It's not documented in the specs, but fifo levels * other than 16 seems to be unsupported. */ /* prescaler 1.0, tx/rx fifo lvl 16 */ outb(0x30, data->sbase + WBCIR_REG_SP3_EXCR2); /* Set baud divisor to sample every 10 us */ outb(0x0f, data->sbase + WBCIR_REG_SP3_BGDL); outb(0x00, data->sbase + WBCIR_REG_SP3_BGDH); /* Set CEIR mode */ wbcir_select_bank(data, WBCIR_BANK_0); outb(0xC0, data->sbase + WBCIR_REG_SP3_MCR); inb(data->sbase + WBCIR_REG_SP3_LSR); /* Clear LSR */ inb(data->sbase + WBCIR_REG_SP3_MSR); /* Clear MSR */ /* Disable RX demod, enable run-length enc/dec, set freq span */ wbcir_select_bank(data, WBCIR_BANK_7); outb(0x90, data->sbase + WBCIR_REG_SP3_RCCFG); /* Disable timer */ wbcir_select_bank(data, WBCIR_BANK_4); outb(0x00, data->sbase + WBCIR_REG_SP3_IRCR1); /* Disable MSR interrupt, clear AUX_IRX, mask RX during TX? */ wbcir_select_bank(data, WBCIR_BANK_5); outb(txandrx ? 0x03 : 0x02, data->sbase + WBCIR_REG_SP3_IRCR2); /* Disable CRC */ wbcir_select_bank(data, WBCIR_BANK_6); outb(0x20, data->sbase + WBCIR_REG_SP3_IRCR3); /* Set RX demodulation freq, not really used */ wbcir_select_bank(data, WBCIR_BANK_7); outb(0xF2, data->sbase + WBCIR_REG_SP3_IRRXDC); /* Set TX modulation, 36kHz, 7us pulse width */ outb(0x69, data->sbase + WBCIR_REG_SP3_IRTXMC); data->txcarrier = 36000; /* Set invert and pin direction */ if (invert) outb(0x10, data->sbase + WBCIR_REG_SP3_IRCFG4); else outb(0x00, data->sbase + WBCIR_REG_SP3_IRCFG4); /* Set FIFO thresholds (RX = 8, TX = 3), reset RX/TX */ wbcir_select_bank(data, WBCIR_BANK_0); outb(0x97, data->sbase + WBCIR_REG_SP3_FCR); /* Clear AUX status bits */ outb(0xE0, data->sbase + WBCIR_REG_SP3_ASCR); /* Clear RX state */ data->rxstate = WBCIR_RXSTATE_INACTIVE; wbcir_idle_rx(data->dev, true); /* Clear TX state */ if (data->txstate == WBCIR_TXSTATE_ACTIVE) { kfree(data->txbuf); data->txbuf = NULL; data->txstate = WBCIR_TXSTATE_INACTIVE; } /* Enable interrupts */ wbcir_set_irqmask(data, WBCIR_IRQ_RX | WBCIR_IRQ_ERR); } static int wbcir_resume(struct pnp_dev *device) { struct wbcir_data *data = pnp_get_drvdata(device); wbcir_init_hw(data); enable_irq(data->irq); led_classdev_resume(&data->led); return 0; } static int wbcir_probe(struct pnp_dev *device, const struct pnp_device_id *dev_id) { struct device *dev = &device->dev; struct wbcir_data *data; int err; if (!(pnp_port_len(device, 0) == EHFUNC_IOMEM_LEN && pnp_port_len(device, 1) == WAKEUP_IOMEM_LEN && pnp_port_len(device, 2) == SP_IOMEM_LEN)) { dev_err(dev, "Invalid resources\n"); return -ENODEV; } data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) { err = -ENOMEM; goto exit; } pnp_set_drvdata(device, data); spin_lock_init(&data->spinlock); data->ebase = pnp_port_start(device, 0); data->wbase = pnp_port_start(device, 1); data->sbase = pnp_port_start(device, 2); data->irq = pnp_irq(device, 0); if (data->wbase == 0 || data->ebase == 0 || data->sbase == 0 || data->irq == -1) { err = -ENODEV; dev_err(dev, "Invalid resources\n"); goto exit_free_data; } dev_dbg(&device->dev, "Found device (w: 0x%lX, e: 0x%lX, s: 0x%lX, i: %u)\n", data->wbase, data->ebase, data->sbase, data->irq); data->led.name = "cir::activity"; data->led.default_trigger = "rc-feedback"; data->led.brightness_set = wbcir_led_brightness_set; data->led.brightness_get = wbcir_led_brightness_get; err = led_classdev_register(&device->dev, &data->led); if (err) goto exit_free_data; data->dev = rc_allocate_device(RC_DRIVER_IR_RAW); if (!data->dev) { err = -ENOMEM; goto exit_unregister_led; } data->dev->driver_name = DRVNAME; data->dev->device_name = WBCIR_NAME; data->dev->input_phys = "wbcir/cir0"; data->dev->input_id.bustype = BUS_HOST; data->dev->input_id.vendor = PCI_VENDOR_ID_WINBOND; data->dev->input_id.product = WBCIR_ID_FAMILY; data->dev->input_id.version = WBCIR_ID_CHIP; data->dev->map_name = RC_MAP_RC6_MCE; data->dev->s_idle = wbcir_idle_rx; data->dev->s_carrier_report = wbcir_set_carrier_report; data->dev->s_tx_mask = wbcir_txmask; data->dev->s_tx_carrier = wbcir_txcarrier; data->dev->tx_ir = wbcir_tx; data->dev->priv = data; data->dev->dev.parent = &device->dev; data->dev->min_timeout = 1; data->dev->timeout = IR_DEFAULT_TIMEOUT; data->dev->max_timeout = 10 * IR_DEFAULT_TIMEOUT; data->dev->rx_resolution = 2; data->dev->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER; data->dev->allowed_wakeup_protocols = RC_PROTO_BIT_NEC | RC_PROTO_BIT_NECX | RC_PROTO_BIT_NEC32 | RC_PROTO_BIT_RC5 | RC_PROTO_BIT_RC6_0 | RC_PROTO_BIT_RC6_6A_20 | RC_PROTO_BIT_RC6_6A_24 | RC_PROTO_BIT_RC6_6A_32 | RC_PROTO_BIT_RC6_MCE; data->dev->wakeup_protocol = RC_PROTO_RC6_MCE; data->dev->scancode_wakeup_filter.data = 0x800f040c; data->dev->scancode_wakeup_filter.mask = 0xffff7fff; data->dev->s_wakeup_filter = wbcir_set_wakeup_filter; err = rc_register_device(data->dev); if (err) goto exit_free_rc; if (!request_region(data->wbase, WAKEUP_IOMEM_LEN, DRVNAME)) { dev_err(dev, "Region 0x%lx-0x%lx already in use!\n", data->wbase, data->wbase + WAKEUP_IOMEM_LEN - 1); err = -EBUSY; goto exit_unregister_device; } if (!request_region(data->ebase, EHFUNC_IOMEM_LEN, DRVNAME)) { dev_err(dev, "Region 0x%lx-0x%lx already in use!\n", data->ebase, data->ebase + EHFUNC_IOMEM_LEN - 1); err = -EBUSY; goto exit_release_wbase; } if (!request_region(data->sbase, SP_IOMEM_LEN, DRVNAME)) { dev_err(dev, "Region 0x%lx-0x%lx already in use!\n", data->sbase, data->sbase + SP_IOMEM_LEN - 1); err = -EBUSY; goto exit_release_ebase; } err = request_irq(data->irq, wbcir_irq_handler, 0, DRVNAME, device); if (err) { dev_err(dev, "Failed to claim IRQ %u\n", data->irq); err = -EBUSY; goto exit_release_sbase; } device_init_wakeup(&device->dev, 1); wbcir_init_hw(data); return 0; exit_release_sbase: release_region(data->sbase, SP_IOMEM_LEN); exit_release_ebase: release_region(data->ebase, EHFUNC_IOMEM_LEN); exit_release_wbase: release_region(data->wbase, WAKEUP_IOMEM_LEN); exit_unregister_device: rc_unregister_device(data->dev); data->dev = NULL; exit_free_rc: rc_free_device(data->dev); exit_unregister_led: led_classdev_unregister(&data->led); exit_free_data: kfree(data); pnp_set_drvdata(device, NULL); exit: return err; } static void wbcir_remove(struct pnp_dev *device) { struct wbcir_data *data = pnp_get_drvdata(device); /* Disable interrupts */ wbcir_set_irqmask(data, WBCIR_IRQ_NONE); free_irq(data->irq, device); /* Clear status bits NEC_REP, BUFF, MSG_END, MATCH */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_STS, 0x17, 0x17); /* Clear CEIR_EN */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL, 0x00, 0x01); /* Clear BUFF_EN, END_EN, MATCH_EN */ wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x00, 0x07); rc_unregister_device(data->dev); led_classdev_unregister(&data->led); /* This is ok since &data->led isn't actually used */ wbcir_led_brightness_set(&data->led, LED_OFF); release_region(data->wbase, WAKEUP_IOMEM_LEN); release_region(data->ebase, EHFUNC_IOMEM_LEN); release_region(data->sbase, SP_IOMEM_LEN); kfree(data); pnp_set_drvdata(device, NULL); } static const struct pnp_device_id wbcir_ids[] = { { "WEC1022", 0 }, { "", 0 } }; MODULE_DEVICE_TABLE(pnp, wbcir_ids); static struct pnp_driver wbcir_driver = { .name = DRVNAME, .id_table = wbcir_ids, .probe = wbcir_probe, .remove = wbcir_remove, .suspend = wbcir_suspend, .resume = wbcir_resume, .shutdown = wbcir_shutdown }; static int __init wbcir_init(void) { int ret; ret = pnp_register_driver(&wbcir_driver); if (ret) pr_err("Unable to register driver\n"); return ret; } static void __exit wbcir_exit(void) { pnp_unregister_driver(&wbcir_driver); } module_init(wbcir_init); module_exit(wbcir_exit); MODULE_AUTHOR("David Härdeman <david@hardeman.nu>"); MODULE_DESCRIPTION("Winbond SuperI/O Consumer IR Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1