Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hans Verkuil | 6166 | 90.11% | 10 | 52.63% |
Dafna Hirschfeld | 670 | 9.79% | 8 | 42.11% |
Arnd Bergmann | 7 | 0.10% | 1 | 5.26% |
Total | 6843 | 19 |
// SPDX-License-Identifier: LGPL-2.1+ /* * Copyright 2016 Tom aan de Wiel * Copyright 2018 Cisco Systems, Inc. and/or its affiliates. All rights reserved. * * 8x8 Fast Walsh Hadamard Transform in sequency order based on the paper: * * A Recursive Algorithm for Sequency-Ordered Fast Walsh Transforms, * R.D. Brown, 1977 */ #include <linux/string.h> #include <linux/kernel.h> #include <linux/videodev2.h> #include "codec-fwht.h" #define OVERFLOW_BIT BIT(14) /* * Note: bit 0 of the header must always be 0. Otherwise it cannot * be guaranteed that the magic 8 byte sequence (see below) can * never occur in the rlc output. */ #define PFRAME_BIT BIT(15) #define DUPS_MASK 0x1ffe #define PBLOCK 0 #define IBLOCK 1 #define ALL_ZEROS 15 static const uint8_t zigzag[64] = { 0, 1, 8, 2, 9, 16, 3, 10, 17, 24, 4, 11, 18, 25, 32, 5, 12, 19, 26, 33, 40, 6, 13, 20, 27, 34, 41, 48, 7, 14, 21, 28, 35, 42, 49, 56, 15, 22, 29, 36, 43, 50, 57, 23, 30, 37, 44, 51, 58, 31, 38, 45, 52, 59, 39, 46, 53, 60, 47, 54, 61, 55, 62, 63, }; /* * noinline_for_stack to work around * https://bugs.llvm.org/show_bug.cgi?id=38809 */ static int noinline_for_stack rlc(const s16 *in, __be16 *output, int blocktype) { s16 block[8 * 8]; s16 *wp = block; int i = 0; int x, y; int ret = 0; /* read in block from framebuffer */ int lastzero_run = 0; int to_encode; for (y = 0; y < 8; y++) { for (x = 0; x < 8; x++) { *wp = in[x + y * 8]; wp++; } } /* keep track of amount of trailing zeros */ for (i = 63; i >= 0 && !block[zigzag[i]]; i--) lastzero_run++; *output++ = (blocktype == PBLOCK ? htons(PFRAME_BIT) : 0); ret++; to_encode = 8 * 8 - (lastzero_run > 14 ? lastzero_run : 0); i = 0; while (i < to_encode) { int cnt = 0; int tmp; /* count leading zeros */ while ((tmp = block[zigzag[i]]) == 0 && cnt < 14) { cnt++; i++; if (i == to_encode) { cnt--; break; } } /* 4 bits for run, 12 for coefficient (quantization by 4) */ *output++ = htons((cnt | tmp << 4)); i++; ret++; } if (lastzero_run > 14) { *output = htons(ALL_ZEROS | 0); ret++; } return ret; } /* * This function will worst-case increase rlc_in by 65*2 bytes: * one s16 value for the header and 8 * 8 coefficients of type s16. */ static noinline_for_stack u16 derlc(const __be16 **rlc_in, s16 *dwht_out, const __be16 *end_of_input) { /* header */ const __be16 *input = *rlc_in; u16 stat; int dec_count = 0; s16 block[8 * 8 + 16]; s16 *wp = block; int i; if (input > end_of_input) return OVERFLOW_BIT; stat = ntohs(*input++); /* * Now de-compress, it expands one byte to up to 15 bytes * (or fills the remainder of the 64 bytes with zeroes if it * is the last byte to expand). * * So block has to be 8 * 8 + 16 bytes, the '+ 16' is to * allow for overflow if the incoming data was malformed. */ while (dec_count < 8 * 8) { s16 in; int length; int coeff; if (input > end_of_input) return OVERFLOW_BIT; in = ntohs(*input++); length = in & 0xf; coeff = in >> 4; /* fill remainder with zeros */ if (length == 15) { for (i = 0; i < 64 - dec_count; i++) *wp++ = 0; break; } for (i = 0; i < length; i++) *wp++ = 0; *wp++ = coeff; dec_count += length + 1; } wp = block; for (i = 0; i < 64; i++) { int pos = zigzag[i]; int y = pos / 8; int x = pos % 8; dwht_out[x + y * 8] = *wp++; } *rlc_in = input; return stat; } static const int quant_table[] = { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 6, 2, 2, 2, 2, 2, 3, 6, 6, 2, 2, 2, 2, 3, 6, 6, 6, 2, 2, 2, 3, 6, 6, 6, 6, 2, 2, 3, 6, 6, 6, 6, 8, }; static const int quant_table_p[] = { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 3, 3, 3, 3, 3, 3, 6, 6, 3, 3, 3, 3, 3, 6, 6, 9, 3, 3, 3, 3, 6, 6, 9, 9, 3, 3, 3, 6, 6, 9, 9, 10, }; static void quantize_intra(s16 *coeff, s16 *de_coeff, u16 qp) { const int *quant = quant_table; int i, j; for (j = 0; j < 8; j++) { for (i = 0; i < 8; i++, quant++, coeff++, de_coeff++) { *coeff >>= *quant; if (*coeff >= -qp && *coeff <= qp) *coeff = *de_coeff = 0; else *de_coeff = *coeff << *quant; } } } static void dequantize_intra(s16 *coeff) { const int *quant = quant_table; int i, j; for (j = 0; j < 8; j++) for (i = 0; i < 8; i++, quant++, coeff++) *coeff <<= *quant; } static void quantize_inter(s16 *coeff, s16 *de_coeff, u16 qp) { const int *quant = quant_table_p; int i, j; for (j = 0; j < 8; j++) { for (i = 0; i < 8; i++, quant++, coeff++, de_coeff++) { *coeff >>= *quant; if (*coeff >= -qp && *coeff <= qp) *coeff = *de_coeff = 0; else *de_coeff = *coeff << *quant; } } } static void dequantize_inter(s16 *coeff) { const int *quant = quant_table_p; int i, j; for (j = 0; j < 8; j++) for (i = 0; i < 8; i++, quant++, coeff++) *coeff <<= *quant; } static void noinline_for_stack fwht(const u8 *block, s16 *output_block, unsigned int stride, unsigned int input_step, bool intra) { /* we'll need more than 8 bits for the transformed coefficients */ s32 workspace1[8], workspace2[8]; const u8 *tmp = block; s16 *out = output_block; int add = intra ? 256 : 0; unsigned int i; /* stage 1 */ for (i = 0; i < 8; i++, tmp += stride, out += 8) { switch (input_step) { case 1: workspace1[0] = tmp[0] + tmp[1] - add; workspace1[1] = tmp[0] - tmp[1]; workspace1[2] = tmp[2] + tmp[3] - add; workspace1[3] = tmp[2] - tmp[3]; workspace1[4] = tmp[4] + tmp[5] - add; workspace1[5] = tmp[4] - tmp[5]; workspace1[6] = tmp[6] + tmp[7] - add; workspace1[7] = tmp[6] - tmp[7]; break; case 2: workspace1[0] = tmp[0] + tmp[2] - add; workspace1[1] = tmp[0] - tmp[2]; workspace1[2] = tmp[4] + tmp[6] - add; workspace1[3] = tmp[4] - tmp[6]; workspace1[4] = tmp[8] + tmp[10] - add; workspace1[5] = tmp[8] - tmp[10]; workspace1[6] = tmp[12] + tmp[14] - add; workspace1[7] = tmp[12] - tmp[14]; break; case 3: workspace1[0] = tmp[0] + tmp[3] - add; workspace1[1] = tmp[0] - tmp[3]; workspace1[2] = tmp[6] + tmp[9] - add; workspace1[3] = tmp[6] - tmp[9]; workspace1[4] = tmp[12] + tmp[15] - add; workspace1[5] = tmp[12] - tmp[15]; workspace1[6] = tmp[18] + tmp[21] - add; workspace1[7] = tmp[18] - tmp[21]; break; default: workspace1[0] = tmp[0] + tmp[4] - add; workspace1[1] = tmp[0] - tmp[4]; workspace1[2] = tmp[8] + tmp[12] - add; workspace1[3] = tmp[8] - tmp[12]; workspace1[4] = tmp[16] + tmp[20] - add; workspace1[5] = tmp[16] - tmp[20]; workspace1[6] = tmp[24] + tmp[28] - add; workspace1[7] = tmp[24] - tmp[28]; break; } /* stage 2 */ workspace2[0] = workspace1[0] + workspace1[2]; workspace2[1] = workspace1[0] - workspace1[2]; workspace2[2] = workspace1[1] - workspace1[3]; workspace2[3] = workspace1[1] + workspace1[3]; workspace2[4] = workspace1[4] + workspace1[6]; workspace2[5] = workspace1[4] - workspace1[6]; workspace2[6] = workspace1[5] - workspace1[7]; workspace2[7] = workspace1[5] + workspace1[7]; /* stage 3 */ out[0] = workspace2[0] + workspace2[4]; out[1] = workspace2[0] - workspace2[4]; out[2] = workspace2[1] - workspace2[5]; out[3] = workspace2[1] + workspace2[5]; out[4] = workspace2[2] + workspace2[6]; out[5] = workspace2[2] - workspace2[6]; out[6] = workspace2[3] - workspace2[7]; out[7] = workspace2[3] + workspace2[7]; } out = output_block; for (i = 0; i < 8; i++, out++) { /* stage 1 */ workspace1[0] = out[0] + out[1 * 8]; workspace1[1] = out[0] - out[1 * 8]; workspace1[2] = out[2 * 8] + out[3 * 8]; workspace1[3] = out[2 * 8] - out[3 * 8]; workspace1[4] = out[4 * 8] + out[5 * 8]; workspace1[5] = out[4 * 8] - out[5 * 8]; workspace1[6] = out[6 * 8] + out[7 * 8]; workspace1[7] = out[6 * 8] - out[7 * 8]; /* stage 2 */ workspace2[0] = workspace1[0] + workspace1[2]; workspace2[1] = workspace1[0] - workspace1[2]; workspace2[2] = workspace1[1] - workspace1[3]; workspace2[3] = workspace1[1] + workspace1[3]; workspace2[4] = workspace1[4] + workspace1[6]; workspace2[5] = workspace1[4] - workspace1[6]; workspace2[6] = workspace1[5] - workspace1[7]; workspace2[7] = workspace1[5] + workspace1[7]; /* stage 3 */ out[0 * 8] = workspace2[0] + workspace2[4]; out[1 * 8] = workspace2[0] - workspace2[4]; out[2 * 8] = workspace2[1] - workspace2[5]; out[3 * 8] = workspace2[1] + workspace2[5]; out[4 * 8] = workspace2[2] + workspace2[6]; out[5 * 8] = workspace2[2] - workspace2[6]; out[6 * 8] = workspace2[3] - workspace2[7]; out[7 * 8] = workspace2[3] + workspace2[7]; } } /* * Not the nicest way of doing it, but P-blocks get twice the range of * that of the I-blocks. Therefore we need a type bigger than 8 bits. * Furthermore values can be negative... This is just a version that * works with 16 signed data */ static void noinline_for_stack fwht16(const s16 *block, s16 *output_block, int stride, int intra) { /* we'll need more than 8 bits for the transformed coefficients */ s32 workspace1[8], workspace2[8]; const s16 *tmp = block; s16 *out = output_block; int i; for (i = 0; i < 8; i++, tmp += stride, out += 8) { /* stage 1 */ workspace1[0] = tmp[0] + tmp[1]; workspace1[1] = tmp[0] - tmp[1]; workspace1[2] = tmp[2] + tmp[3]; workspace1[3] = tmp[2] - tmp[3]; workspace1[4] = tmp[4] + tmp[5]; workspace1[5] = tmp[4] - tmp[5]; workspace1[6] = tmp[6] + tmp[7]; workspace1[7] = tmp[6] - tmp[7]; /* stage 2 */ workspace2[0] = workspace1[0] + workspace1[2]; workspace2[1] = workspace1[0] - workspace1[2]; workspace2[2] = workspace1[1] - workspace1[3]; workspace2[3] = workspace1[1] + workspace1[3]; workspace2[4] = workspace1[4] + workspace1[6]; workspace2[5] = workspace1[4] - workspace1[6]; workspace2[6] = workspace1[5] - workspace1[7]; workspace2[7] = workspace1[5] + workspace1[7]; /* stage 3 */ out[0] = workspace2[0] + workspace2[4]; out[1] = workspace2[0] - workspace2[4]; out[2] = workspace2[1] - workspace2[5]; out[3] = workspace2[1] + workspace2[5]; out[4] = workspace2[2] + workspace2[6]; out[5] = workspace2[2] - workspace2[6]; out[6] = workspace2[3] - workspace2[7]; out[7] = workspace2[3] + workspace2[7]; } out = output_block; for (i = 0; i < 8; i++, out++) { /* stage 1 */ workspace1[0] = out[0] + out[1*8]; workspace1[1] = out[0] - out[1*8]; workspace1[2] = out[2*8] + out[3*8]; workspace1[3] = out[2*8] - out[3*8]; workspace1[4] = out[4*8] + out[5*8]; workspace1[5] = out[4*8] - out[5*8]; workspace1[6] = out[6*8] + out[7*8]; workspace1[7] = out[6*8] - out[7*8]; /* stage 2 */ workspace2[0] = workspace1[0] + workspace1[2]; workspace2[1] = workspace1[0] - workspace1[2]; workspace2[2] = workspace1[1] - workspace1[3]; workspace2[3] = workspace1[1] + workspace1[3]; workspace2[4] = workspace1[4] + workspace1[6]; workspace2[5] = workspace1[4] - workspace1[6]; workspace2[6] = workspace1[5] - workspace1[7]; workspace2[7] = workspace1[5] + workspace1[7]; /* stage 3 */ out[0*8] = workspace2[0] + workspace2[4]; out[1*8] = workspace2[0] - workspace2[4]; out[2*8] = workspace2[1] - workspace2[5]; out[3*8] = workspace2[1] + workspace2[5]; out[4*8] = workspace2[2] + workspace2[6]; out[5*8] = workspace2[2] - workspace2[6]; out[6*8] = workspace2[3] - workspace2[7]; out[7*8] = workspace2[3] + workspace2[7]; } } static noinline_for_stack void ifwht(const s16 *block, s16 *output_block, int intra) { /* * we'll need more than 8 bits for the transformed coefficients * use native unit of cpu */ int workspace1[8], workspace2[8]; int inter = intra ? 0 : 1; const s16 *tmp = block; s16 *out = output_block; int i; for (i = 0; i < 8; i++, tmp += 8, out += 8) { /* stage 1 */ workspace1[0] = tmp[0] + tmp[1]; workspace1[1] = tmp[0] - tmp[1]; workspace1[2] = tmp[2] + tmp[3]; workspace1[3] = tmp[2] - tmp[3]; workspace1[4] = tmp[4] + tmp[5]; workspace1[5] = tmp[4] - tmp[5]; workspace1[6] = tmp[6] + tmp[7]; workspace1[7] = tmp[6] - tmp[7]; /* stage 2 */ workspace2[0] = workspace1[0] + workspace1[2]; workspace2[1] = workspace1[0] - workspace1[2]; workspace2[2] = workspace1[1] - workspace1[3]; workspace2[3] = workspace1[1] + workspace1[3]; workspace2[4] = workspace1[4] + workspace1[6]; workspace2[5] = workspace1[4] - workspace1[6]; workspace2[6] = workspace1[5] - workspace1[7]; workspace2[7] = workspace1[5] + workspace1[7]; /* stage 3 */ out[0] = workspace2[0] + workspace2[4]; out[1] = workspace2[0] - workspace2[4]; out[2] = workspace2[1] - workspace2[5]; out[3] = workspace2[1] + workspace2[5]; out[4] = workspace2[2] + workspace2[6]; out[5] = workspace2[2] - workspace2[6]; out[6] = workspace2[3] - workspace2[7]; out[7] = workspace2[3] + workspace2[7]; } out = output_block; for (i = 0; i < 8; i++, out++) { /* stage 1 */ workspace1[0] = out[0] + out[1 * 8]; workspace1[1] = out[0] - out[1 * 8]; workspace1[2] = out[2 * 8] + out[3 * 8]; workspace1[3] = out[2 * 8] - out[3 * 8]; workspace1[4] = out[4 * 8] + out[5 * 8]; workspace1[5] = out[4 * 8] - out[5 * 8]; workspace1[6] = out[6 * 8] + out[7 * 8]; workspace1[7] = out[6 * 8] - out[7 * 8]; /* stage 2 */ workspace2[0] = workspace1[0] + workspace1[2]; workspace2[1] = workspace1[0] - workspace1[2]; workspace2[2] = workspace1[1] - workspace1[3]; workspace2[3] = workspace1[1] + workspace1[3]; workspace2[4] = workspace1[4] + workspace1[6]; workspace2[5] = workspace1[4] - workspace1[6]; workspace2[6] = workspace1[5] - workspace1[7]; workspace2[7] = workspace1[5] + workspace1[7]; /* stage 3 */ if (inter) { int d; out[0 * 8] = workspace2[0] + workspace2[4]; out[1 * 8] = workspace2[0] - workspace2[4]; out[2 * 8] = workspace2[1] - workspace2[5]; out[3 * 8] = workspace2[1] + workspace2[5]; out[4 * 8] = workspace2[2] + workspace2[6]; out[5 * 8] = workspace2[2] - workspace2[6]; out[6 * 8] = workspace2[3] - workspace2[7]; out[7 * 8] = workspace2[3] + workspace2[7]; for (d = 0; d < 8; d++) out[8 * d] >>= 6; } else { int d; out[0 * 8] = workspace2[0] + workspace2[4]; out[1 * 8] = workspace2[0] - workspace2[4]; out[2 * 8] = workspace2[1] - workspace2[5]; out[3 * 8] = workspace2[1] + workspace2[5]; out[4 * 8] = workspace2[2] + workspace2[6]; out[5 * 8] = workspace2[2] - workspace2[6]; out[6 * 8] = workspace2[3] - workspace2[7]; out[7 * 8] = workspace2[3] + workspace2[7]; for (d = 0; d < 8; d++) { out[8 * d] >>= 6; out[8 * d] += 128; } } } } static void fill_encoder_block(const u8 *input, s16 *dst, unsigned int stride, unsigned int input_step) { int i, j; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++, input += input_step) *dst++ = *input; input += stride - 8 * input_step; } } static int var_intra(const s16 *input) { int32_t mean = 0; int32_t ret = 0; const s16 *tmp = input; int i; for (i = 0; i < 8 * 8; i++, tmp++) mean += *tmp; mean /= 64; tmp = input; for (i = 0; i < 8 * 8; i++, tmp++) ret += (*tmp - mean) < 0 ? -(*tmp - mean) : (*tmp - mean); return ret; } static int var_inter(const s16 *old, const s16 *new) { int32_t ret = 0; int i; for (i = 0; i < 8 * 8; i++, old++, new++) ret += (*old - *new) < 0 ? -(*old - *new) : (*old - *new); return ret; } static noinline_for_stack int decide_blocktype(const u8 *cur, const u8 *reference, s16 *deltablock, unsigned int stride, unsigned int input_step) { s16 tmp[64]; s16 old[64]; s16 *work = tmp; unsigned int k, l; int vari; int vard; fill_encoder_block(cur, tmp, stride, input_step); fill_encoder_block(reference, old, 8, 1); vari = var_intra(tmp); for (k = 0; k < 8; k++) { for (l = 0; l < 8; l++) { *deltablock = *work - *reference; deltablock++; work++; reference++; } } deltablock -= 64; vard = var_inter(old, tmp); return vari <= vard ? IBLOCK : PBLOCK; } static void fill_decoder_block(u8 *dst, const s16 *input, int stride, unsigned int dst_step) { int i, j; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++, input++, dst += dst_step) { if (*input < 0) *dst = 0; else if (*input > 255) *dst = 255; else *dst = *input; } dst += stride - (8 * dst_step); } } static void add_deltas(s16 *deltas, const u8 *ref, int stride, unsigned int ref_step) { int k, l; for (k = 0; k < 8; k++) { for (l = 0; l < 8; l++) { *deltas += *ref; ref += ref_step; /* * Due to quantizing, it might possible that the * decoded coefficients are slightly out of range */ if (*deltas < 0) *deltas = 0; else if (*deltas > 255) *deltas = 255; deltas++; } ref += stride - (8 * ref_step); } } static u32 encode_plane(u8 *input, u8 *refp, __be16 **rlco, __be16 *rlco_max, struct fwht_cframe *cf, u32 height, u32 width, u32 stride, unsigned int input_step, bool is_intra, bool next_is_intra) { u8 *input_start = input; __be16 *rlco_start = *rlco; s16 deltablock[64]; __be16 pframe_bit = htons(PFRAME_BIT); u32 encoding = 0; unsigned int last_size = 0; unsigned int i, j; width = round_up(width, 8); height = round_up(height, 8); for (j = 0; j < height / 8; j++) { input = input_start + j * 8 * stride; for (i = 0; i < width / 8; i++) { /* intra code, first frame is always intra coded. */ int blocktype = IBLOCK; unsigned int size; if (!is_intra) blocktype = decide_blocktype(input, refp, deltablock, stride, input_step); if (blocktype == IBLOCK) { fwht(input, cf->coeffs, stride, input_step, 1); quantize_intra(cf->coeffs, cf->de_coeffs, cf->i_frame_qp); } else { /* inter code */ encoding |= FWHT_FRAME_PCODED; fwht16(deltablock, cf->coeffs, 8, 0); quantize_inter(cf->coeffs, cf->de_coeffs, cf->p_frame_qp); } if (!next_is_intra) { ifwht(cf->de_coeffs, cf->de_fwht, blocktype); if (blocktype == PBLOCK) add_deltas(cf->de_fwht, refp, 8, 1); fill_decoder_block(refp, cf->de_fwht, 8, 1); } input += 8 * input_step; refp += 8 * 8; size = rlc(cf->coeffs, *rlco, blocktype); if (last_size == size && !memcmp(*rlco + 1, *rlco - size + 1, 2 * size - 2)) { __be16 *last_rlco = *rlco - size; s16 hdr = ntohs(*last_rlco); if (!((*last_rlco ^ **rlco) & pframe_bit) && (hdr & DUPS_MASK) < DUPS_MASK) *last_rlco = htons(hdr + 2); else *rlco += size; } else { *rlco += size; } if (*rlco >= rlco_max) { encoding |= FWHT_FRAME_UNENCODED; goto exit_loop; } last_size = size; } } exit_loop: if (encoding & FWHT_FRAME_UNENCODED) { u8 *out = (u8 *)rlco_start; u8 *p; input = input_start; /* * The compressed stream should never contain the magic * header, so when we copy the YUV data we replace 0xff * by 0xfe. Since YUV is limited range such values * shouldn't appear anyway. */ for (j = 0; j < height; j++) { for (i = 0, p = input; i < width; i++, p += input_step) *out++ = (*p == 0xff) ? 0xfe : *p; input += stride; } *rlco = (__be16 *)out; encoding &= ~FWHT_FRAME_PCODED; } return encoding; } u32 fwht_encode_frame(struct fwht_raw_frame *frm, struct fwht_raw_frame *ref_frm, struct fwht_cframe *cf, bool is_intra, bool next_is_intra, unsigned int width, unsigned int height, unsigned int stride, unsigned int chroma_stride) { unsigned int size = height * width; __be16 *rlco = cf->rlc_data; __be16 *rlco_max; u32 encoding; rlco_max = rlco + size / 2 - 256; encoding = encode_plane(frm->luma, ref_frm->luma, &rlco, rlco_max, cf, height, width, stride, frm->luma_alpha_step, is_intra, next_is_intra); if (encoding & FWHT_FRAME_UNENCODED) encoding |= FWHT_LUMA_UNENCODED; encoding &= ~FWHT_FRAME_UNENCODED; if (frm->components_num >= 3) { u32 chroma_h = height / frm->height_div; u32 chroma_w = width / frm->width_div; unsigned int chroma_size = chroma_h * chroma_w; rlco_max = rlco + chroma_size / 2 - 256; encoding |= encode_plane(frm->cb, ref_frm->cb, &rlco, rlco_max, cf, chroma_h, chroma_w, chroma_stride, frm->chroma_step, is_intra, next_is_intra); if (encoding & FWHT_FRAME_UNENCODED) encoding |= FWHT_CB_UNENCODED; encoding &= ~FWHT_FRAME_UNENCODED; rlco_max = rlco + chroma_size / 2 - 256; encoding |= encode_plane(frm->cr, ref_frm->cr, &rlco, rlco_max, cf, chroma_h, chroma_w, chroma_stride, frm->chroma_step, is_intra, next_is_intra); if (encoding & FWHT_FRAME_UNENCODED) encoding |= FWHT_CR_UNENCODED; encoding &= ~FWHT_FRAME_UNENCODED; } if (frm->components_num == 4) { rlco_max = rlco + size / 2 - 256; encoding |= encode_plane(frm->alpha, ref_frm->alpha, &rlco, rlco_max, cf, height, width, stride, frm->luma_alpha_step, is_intra, next_is_intra); if (encoding & FWHT_FRAME_UNENCODED) encoding |= FWHT_ALPHA_UNENCODED; encoding &= ~FWHT_FRAME_UNENCODED; } cf->size = (rlco - cf->rlc_data) * sizeof(*rlco); return encoding; } static bool decode_plane(struct fwht_cframe *cf, const __be16 **rlco, u32 height, u32 width, const u8 *ref, u32 ref_stride, unsigned int ref_step, u8 *dst, unsigned int dst_stride, unsigned int dst_step, bool uncompressed, const __be16 *end_of_rlco_buf) { unsigned int copies = 0; s16 copy[8 * 8]; u16 stat; unsigned int i, j; bool is_intra = !ref; width = round_up(width, 8); height = round_up(height, 8); if (uncompressed) { int i; if (end_of_rlco_buf + 1 < *rlco + width * height / 2) return false; for (i = 0; i < height; i++) { memcpy(dst, *rlco, width); dst += dst_stride; *rlco += width / 2; } return true; } /* * When decoding each macroblock the rlco pointer will be increased * by 65 * 2 bytes worst-case. * To avoid overflow the buffer has to be 65/64th of the actual raw * image size, just in case someone feeds it malicious data. */ for (j = 0; j < height / 8; j++) { for (i = 0; i < width / 8; i++) { const u8 *refp = ref + j * 8 * ref_stride + i * 8 * ref_step; u8 *dstp = dst + j * 8 * dst_stride + i * 8 * dst_step; if (copies) { memcpy(cf->de_fwht, copy, sizeof(copy)); if ((stat & PFRAME_BIT) && !is_intra) add_deltas(cf->de_fwht, refp, ref_stride, ref_step); fill_decoder_block(dstp, cf->de_fwht, dst_stride, dst_step); copies--; continue; } stat = derlc(rlco, cf->coeffs, end_of_rlco_buf); if (stat & OVERFLOW_BIT) return false; if ((stat & PFRAME_BIT) && !is_intra) dequantize_inter(cf->coeffs); else dequantize_intra(cf->coeffs); ifwht(cf->coeffs, cf->de_fwht, ((stat & PFRAME_BIT) && !is_intra) ? 0 : 1); copies = (stat & DUPS_MASK) >> 1; if (copies) memcpy(copy, cf->de_fwht, sizeof(copy)); if ((stat & PFRAME_BIT) && !is_intra) add_deltas(cf->de_fwht, refp, ref_stride, ref_step); fill_decoder_block(dstp, cf->de_fwht, dst_stride, dst_step); } } return true; } bool fwht_decode_frame(struct fwht_cframe *cf, u32 hdr_flags, unsigned int components_num, unsigned int width, unsigned int height, const struct fwht_raw_frame *ref, unsigned int ref_stride, unsigned int ref_chroma_stride, struct fwht_raw_frame *dst, unsigned int dst_stride, unsigned int dst_chroma_stride) { const __be16 *rlco = cf->rlc_data; const __be16 *end_of_rlco_buf = cf->rlc_data + (cf->size / sizeof(*rlco)) - 1; if (!decode_plane(cf, &rlco, height, width, ref->luma, ref_stride, ref->luma_alpha_step, dst->luma, dst_stride, dst->luma_alpha_step, hdr_flags & V4L2_FWHT_FL_LUMA_IS_UNCOMPRESSED, end_of_rlco_buf)) return false; if (components_num >= 3) { u32 h = height; u32 w = width; if (!(hdr_flags & V4L2_FWHT_FL_CHROMA_FULL_HEIGHT)) h /= 2; if (!(hdr_flags & V4L2_FWHT_FL_CHROMA_FULL_WIDTH)) w /= 2; if (!decode_plane(cf, &rlco, h, w, ref->cb, ref_chroma_stride, ref->chroma_step, dst->cb, dst_chroma_stride, dst->chroma_step, hdr_flags & V4L2_FWHT_FL_CB_IS_UNCOMPRESSED, end_of_rlco_buf)) return false; if (!decode_plane(cf, &rlco, h, w, ref->cr, ref_chroma_stride, ref->chroma_step, dst->cr, dst_chroma_stride, dst->chroma_step, hdr_flags & V4L2_FWHT_FL_CR_IS_UNCOMPRESSED, end_of_rlco_buf)) return false; } if (components_num == 4) if (!decode_plane(cf, &rlco, height, width, ref->alpha, ref_stride, ref->luma_alpha_step, dst->alpha, dst_stride, dst->luma_alpha_step, hdr_flags & V4L2_FWHT_FL_ALPHA_IS_UNCOMPRESSED, end_of_rlco_buf)) return false; return true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1