Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Antti Palosaari | 7722 | 68.73% | 64 | 58.18% |
Olli Salonen | 1551 | 13.80% | 4 | 3.64% |
Jose Alberto Reguero | 303 | 2.70% | 3 | 2.73% |
Alessandro Radicati | 244 | 2.17% | 2 | 1.82% |
Hans-Frieder Vogt | 234 | 2.08% | 3 | 2.73% |
Michael Buesch | 217 | 1.93% | 2 | 1.82% |
Malcolm Priestley | 203 | 1.81% | 4 | 3.64% |
Andreas Kemnade | 199 | 1.77% | 1 | 0.91% |
Stefan Pöschel | 122 | 1.09% | 1 | 0.91% |
Olliver Schinagl | 107 | 0.95% | 1 | 0.91% |
Mauro Carvalho Chehab | 79 | 0.70% | 4 | 3.64% |
Gon Solo | 49 | 0.44% | 1 | 0.91% |
Tomasz Maciej Nowak | 46 | 0.41% | 1 | 0.91% |
Sean Young | 23 | 0.20% | 2 | 1.82% |
Nuno Henriques | 15 | 0.13% | 1 | 0.91% |
Fabrizio Gazzato | 15 | 0.13% | 1 | 0.91% |
CIJOML CIJOMLovic | 15 | 0.13% | 1 | 0.91% |
Philippe Valembois | 15 | 0.13% | 1 | 0.91% |
Jozef Balga | 14 | 0.12% | 1 | 0.91% |
David Härdeman | 13 | 0.12% | 1 | 0.91% |
Wei Yongjun | 12 | 0.11% | 1 | 0.91% |
Uwe Kleine-König | 12 | 0.11% | 1 | 0.91% |
Gianluca Gennari | 11 | 0.10% | 3 | 2.73% |
Wolfram Sang | 5 | 0.04% | 1 | 0.91% |
Kees Cook | 3 | 0.03% | 1 | 0.91% |
Pierangelo Terzulli | 3 | 0.03% | 1 | 0.91% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.91% |
Jilin Yuan | 1 | 0.01% | 1 | 0.91% |
Andy Shevchenko | 1 | 0.01% | 1 | 0.91% |
Total | 11236 | 110 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Afatech AF9035 DVB USB driver * * Copyright (C) 2009 Antti Palosaari <crope@iki.fi> * Copyright (C) 2012 Antti Palosaari <crope@iki.fi> */ #include "af9035.h" /* Max transfer size done by I2C transfer functions */ #define MAX_XFER_SIZE 64 DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); static u16 af9035_checksum(const u8 *buf, size_t len) { size_t i; u16 checksum = 0; for (i = 1; i < len; i++) { if (i % 2) checksum += buf[i] << 8; else checksum += buf[i]; } checksum = ~checksum; return checksum; } static int af9035_ctrl_msg(struct dvb_usb_device *d, struct usb_req *req) { #define REQ_HDR_LEN 4 /* send header size */ #define ACK_HDR_LEN 3 /* rece header size */ #define CHECKSUM_LEN 2 #define USB_TIMEOUT 2000 struct state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret, wlen, rlen; u16 checksum, tmp_checksum; mutex_lock(&d->usb_mutex); /* buffer overflow check */ if (req->wlen > (BUF_LEN - REQ_HDR_LEN - CHECKSUM_LEN) || req->rlen > (BUF_LEN - ACK_HDR_LEN - CHECKSUM_LEN)) { dev_err(&intf->dev, "too much data wlen=%d rlen=%d\n", req->wlen, req->rlen); ret = -EINVAL; goto exit; } state->buf[0] = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN - 1; state->buf[1] = req->mbox; state->buf[2] = req->cmd; state->buf[3] = state->seq++; memcpy(&state->buf[REQ_HDR_LEN], req->wbuf, req->wlen); wlen = REQ_HDR_LEN + req->wlen + CHECKSUM_LEN; rlen = ACK_HDR_LEN + req->rlen + CHECKSUM_LEN; /* calc and add checksum */ checksum = af9035_checksum(state->buf, state->buf[0] - 1); state->buf[state->buf[0] - 1] = (checksum >> 8); state->buf[state->buf[0] - 0] = (checksum & 0xff); /* no ack for these packets */ if (req->cmd == CMD_FW_DL) rlen = 0; ret = dvb_usbv2_generic_rw_locked(d, state->buf, wlen, state->buf, rlen); if (ret) goto exit; /* no ack for those packets */ if (req->cmd == CMD_FW_DL) goto exit; /* verify checksum */ checksum = af9035_checksum(state->buf, rlen - 2); tmp_checksum = (state->buf[rlen - 2] << 8) | state->buf[rlen - 1]; if (tmp_checksum != checksum) { dev_err(&intf->dev, "command=%02x checksum mismatch (%04x != %04x)\n", req->cmd, tmp_checksum, checksum); ret = -EIO; goto exit; } /* check status */ if (state->buf[2]) { /* fw returns status 1 when IR code was not received */ if (req->cmd == CMD_IR_GET || state->buf[2] == 1) { ret = 1; goto exit; } dev_dbg(&intf->dev, "command=%02x failed fw error=%d\n", req->cmd, state->buf[2]); ret = -EIO; goto exit; } /* read request, copy returned data to return buf */ if (req->rlen) memcpy(req->rbuf, &state->buf[ACK_HDR_LEN], req->rlen); exit: mutex_unlock(&d->usb_mutex); return ret; } /* write multiple registers */ static int af9035_wr_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len) { struct usb_interface *intf = d->intf; u8 wbuf[MAX_XFER_SIZE]; u8 mbox = (reg >> 16) & 0xff; struct usb_req req = { CMD_MEM_WR, mbox, 6 + len, wbuf, 0, NULL }; if (6 + len > sizeof(wbuf)) { dev_warn(&intf->dev, "i2c wr: len=%d is too big!\n", len); return -EOPNOTSUPP; } wbuf[0] = len; wbuf[1] = 2; wbuf[2] = 0; wbuf[3] = 0; wbuf[4] = (reg >> 8) & 0xff; wbuf[5] = (reg >> 0) & 0xff; memcpy(&wbuf[6], val, len); return af9035_ctrl_msg(d, &req); } /* read multiple registers */ static int af9035_rd_regs(struct dvb_usb_device *d, u32 reg, u8 *val, int len) { u8 wbuf[] = { len, 2, 0, 0, (reg >> 8) & 0xff, reg & 0xff }; u8 mbox = (reg >> 16) & 0xff; struct usb_req req = { CMD_MEM_RD, mbox, sizeof(wbuf), wbuf, len, val }; return af9035_ctrl_msg(d, &req); } /* write single register */ static int af9035_wr_reg(struct dvb_usb_device *d, u32 reg, u8 val) { return af9035_wr_regs(d, reg, &val, 1); } /* read single register */ static int af9035_rd_reg(struct dvb_usb_device *d, u32 reg, u8 *val) { return af9035_rd_regs(d, reg, val, 1); } /* write single register with mask */ static int af9035_wr_reg_mask(struct dvb_usb_device *d, u32 reg, u8 val, u8 mask) { int ret; u8 tmp; /* no need for read if whole reg is written */ if (mask != 0xff) { ret = af9035_rd_regs(d, reg, &tmp, 1); if (ret) return ret; val &= mask; tmp &= ~mask; val |= tmp; } return af9035_wr_regs(d, reg, &val, 1); } static int af9035_add_i2c_dev(struct dvb_usb_device *d, const char *type, u8 addr, void *platform_data, struct i2c_adapter *adapter) { int ret, num; struct state *state = d_to_priv(d); struct usb_interface *intf = d->intf; struct i2c_client *client; struct i2c_board_info board_info = { .addr = addr, .platform_data = platform_data, }; strscpy(board_info.type, type, I2C_NAME_SIZE); /* find first free client */ for (num = 0; num < AF9035_I2C_CLIENT_MAX; num++) { if (state->i2c_client[num] == NULL) break; } dev_dbg(&intf->dev, "num=%d\n", num); if (num == AF9035_I2C_CLIENT_MAX) { dev_err(&intf->dev, "I2C client out of index\n"); ret = -ENODEV; goto err; } request_module("%s", board_info.type); /* register I2C device */ client = i2c_new_client_device(adapter, &board_info); if (!i2c_client_has_driver(client)) { dev_err(&intf->dev, "failed to bind i2c device to %s driver\n", type); ret = -ENODEV; goto err; } /* increase I2C driver usage count */ if (!try_module_get(client->dev.driver->owner)) { i2c_unregister_device(client); ret = -ENODEV; goto err; } state->i2c_client[num] = client; return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static void af9035_del_i2c_dev(struct dvb_usb_device *d) { int num; struct state *state = d_to_priv(d); struct usb_interface *intf = d->intf; struct i2c_client *client; /* find last used client */ num = AF9035_I2C_CLIENT_MAX; while (num--) { if (state->i2c_client[num] != NULL) break; } dev_dbg(&intf->dev, "num=%d\n", num); if (num == -1) { dev_err(&intf->dev, "I2C client out of index\n"); goto err; } client = state->i2c_client[num]; /* decrease I2C driver usage count */ module_put(client->dev.driver->owner); /* unregister I2C device */ i2c_unregister_device(client); state->i2c_client[num] = NULL; return; err: dev_dbg(&intf->dev, "failed\n"); } static int af9035_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg msg[], int num) { struct dvb_usb_device *d = i2c_get_adapdata(adap); struct state *state = d_to_priv(d); int ret; if (mutex_lock_interruptible(&d->i2c_mutex) < 0) return -EAGAIN; /* * AF9035 I2C sub header is 5 bytes long. Meaning of those bytes are: * 0: data len * 1: I2C addr << 1 * 2: reg addr len * byte 3 and 4 can be used as reg addr * 3: reg addr MSB * used when reg addr len is set to 2 * 4: reg addr LSB * used when reg addr len is set to 1 or 2 * * For the simplify we do not use register addr at all. * NOTE: As a firmware knows tuner type there is very small possibility * there could be some tuner I2C hacks done by firmware and this may * lead problems if firmware expects those bytes are used. * * TODO: Here is few hacks. AF9035 chip integrates AF9033 demodulator. * IT9135 chip integrates AF9033 demodulator and RF tuner. For dual * tuner devices, there is also external AF9033 demodulator connected * via external I2C bus. All AF9033 demod I2C traffic, both single and * dual tuner configuration, is covered by firmware - actual USB IO * looks just like a memory access. * In case of IT913x chip, there is own tuner driver. It is implemented * currently as a I2C driver, even tuner IP block is likely build * directly into the demodulator memory space and there is no own I2C * bus. I2C subsystem does not allow register multiple devices to same * bus, having same slave address. Due to that we reuse demod address, * shifted by one bit, on that case. * * For IT930x we use a different command and the sub header is * different as well: * 0: data len * 1: I2C bus (0x03 seems to be only value used) * 2: I2C addr << 1 */ #define AF9035_IS_I2C_XFER_WRITE_READ(_msg, _num) \ (_num == 2 && !(_msg[0].flags & I2C_M_RD) && (_msg[1].flags & I2C_M_RD)) #define AF9035_IS_I2C_XFER_WRITE(_msg, _num) \ (_num == 1 && !(_msg[0].flags & I2C_M_RD)) #define AF9035_IS_I2C_XFER_READ(_msg, _num) \ (_num == 1 && (_msg[0].flags & I2C_M_RD)) if (AF9035_IS_I2C_XFER_WRITE_READ(msg, num)) { if (msg[0].len > 40 || msg[1].len > 40) { /* TODO: correct limits > 40 */ ret = -EOPNOTSUPP; } else if ((msg[0].addr == state->af9033_i2c_addr[0]) || (msg[0].addr == state->af9033_i2c_addr[1])) { /* demod access via firmware interface */ u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 | msg[0].buf[2]; if (msg[0].addr == state->af9033_i2c_addr[1]) reg |= 0x100000; ret = af9035_rd_regs(d, reg, &msg[1].buf[0], msg[1].len); } else if (state->no_read) { memset(msg[1].buf, 0, msg[1].len); ret = 0; } else { /* I2C write + read */ u8 buf[MAX_XFER_SIZE]; struct usb_req req = { CMD_I2C_RD, 0, 5 + msg[0].len, buf, msg[1].len, msg[1].buf }; if (state->chip_type == 0x9306) { req.cmd = CMD_GENERIC_I2C_RD; req.wlen = 3 + msg[0].len; } req.mbox |= ((msg[0].addr & 0x80) >> 3); buf[0] = msg[1].len; if (state->chip_type == 0x9306) { buf[1] = 0x03; /* I2C bus */ buf[2] = msg[0].addr << 1; memcpy(&buf[3], msg[0].buf, msg[0].len); } else { buf[1] = msg[0].addr << 1; buf[3] = 0x00; /* reg addr MSB */ buf[4] = 0x00; /* reg addr LSB */ /* Keep prev behavior for write req len > 2*/ if (msg[0].len > 2) { buf[2] = 0x00; /* reg addr len */ memcpy(&buf[5], msg[0].buf, msg[0].len); /* Use reg addr fields if write req len <= 2 */ } else { req.wlen = 5; buf[2] = msg[0].len; if (msg[0].len == 2) { buf[3] = msg[0].buf[0]; buf[4] = msg[0].buf[1]; } else if (msg[0].len == 1) { buf[4] = msg[0].buf[0]; } } } ret = af9035_ctrl_msg(d, &req); } } else if (AF9035_IS_I2C_XFER_WRITE(msg, num)) { if (msg[0].len > 40) { /* TODO: correct limits > 40 */ ret = -EOPNOTSUPP; } else if ((msg[0].addr == state->af9033_i2c_addr[0]) || (msg[0].addr == state->af9033_i2c_addr[1])) { /* demod access via firmware interface */ u32 reg = msg[0].buf[0] << 16 | msg[0].buf[1] << 8 | msg[0].buf[2]; if (msg[0].addr == state->af9033_i2c_addr[1]) reg |= 0x100000; ret = (msg[0].len >= 3) ? af9035_wr_regs(d, reg, &msg[0].buf[3], msg[0].len - 3) : -EOPNOTSUPP; } else { /* I2C write */ u8 buf[MAX_XFER_SIZE]; struct usb_req req = { CMD_I2C_WR, 0, 5 + msg[0].len, buf, 0, NULL }; if (state->chip_type == 0x9306) { req.cmd = CMD_GENERIC_I2C_WR; req.wlen = 3 + msg[0].len; } req.mbox |= ((msg[0].addr & 0x80) >> 3); buf[0] = msg[0].len; if (state->chip_type == 0x9306) { buf[1] = 0x03; /* I2C bus */ buf[2] = msg[0].addr << 1; memcpy(&buf[3], msg[0].buf, msg[0].len); } else { buf[1] = msg[0].addr << 1; buf[2] = 0x00; /* reg addr len */ buf[3] = 0x00; /* reg addr MSB */ buf[4] = 0x00; /* reg addr LSB */ memcpy(&buf[5], msg[0].buf, msg[0].len); } ret = af9035_ctrl_msg(d, &req); } } else if (AF9035_IS_I2C_XFER_READ(msg, num)) { if (msg[0].len > 40) { /* TODO: correct limits > 40 */ ret = -EOPNOTSUPP; } else if (state->no_read) { memset(msg[0].buf, 0, msg[0].len); ret = 0; } else { /* I2C read */ u8 buf[5]; struct usb_req req = { CMD_I2C_RD, 0, sizeof(buf), buf, msg[0].len, msg[0].buf }; if (state->chip_type == 0x9306) { req.cmd = CMD_GENERIC_I2C_RD; req.wlen = 3; } req.mbox |= ((msg[0].addr & 0x80) >> 3); buf[0] = msg[0].len; if (state->chip_type == 0x9306) { buf[1] = 0x03; /* I2C bus */ buf[2] = msg[0].addr << 1; } else { buf[1] = msg[0].addr << 1; buf[2] = 0x00; /* reg addr len */ buf[3] = 0x00; /* reg addr MSB */ buf[4] = 0x00; /* reg addr LSB */ } ret = af9035_ctrl_msg(d, &req); } } else { /* * We support only three kind of I2C transactions: * 1) 1 x write + 1 x read (repeated start) * 2) 1 x write * 3) 1 x read */ ret = -EOPNOTSUPP; } mutex_unlock(&d->i2c_mutex); if (ret < 0) return ret; else return num; } static u32 af9035_i2c_functionality(struct i2c_adapter *adapter) { return I2C_FUNC_I2C; } static struct i2c_algorithm af9035_i2c_algo = { .master_xfer = af9035_i2c_master_xfer, .functionality = af9035_i2c_functionality, }; static int af9035_identify_state(struct dvb_usb_device *d, const char **name) { struct state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret, i, ts_mode_invalid; unsigned int utmp, eeprom_addr; u8 tmp; u8 wbuf[1] = { 1 }; u8 rbuf[4]; struct usb_req req = { CMD_FW_QUERYINFO, 0, sizeof(wbuf), wbuf, sizeof(rbuf), rbuf }; ret = af9035_rd_regs(d, 0x1222, rbuf, 3); if (ret < 0) goto err; state->chip_version = rbuf[0]; state->chip_type = rbuf[2] << 8 | rbuf[1] << 0; ret = af9035_rd_reg(d, 0x384f, &state->prechip_version); if (ret < 0) goto err; dev_info(&intf->dev, "prechip_version=%02x chip_version=%02x chip_type=%04x\n", state->prechip_version, state->chip_version, state->chip_type); if (state->chip_type == 0x9135) { if (state->chip_version == 0x02) { *name = AF9035_FIRMWARE_IT9135_V2; utmp = 0x00461d; } else { *name = AF9035_FIRMWARE_IT9135_V1; utmp = 0x00461b; } /* Check if eeprom exists */ ret = af9035_rd_reg(d, utmp, &tmp); if (ret < 0) goto err; if (tmp == 0x00) { dev_dbg(&intf->dev, "no eeprom\n"); state->no_eeprom = true; goto check_firmware_status; } eeprom_addr = EEPROM_BASE_IT9135; } else if (state->chip_type == 0x9306) { *name = AF9035_FIRMWARE_IT9303; state->no_eeprom = true; goto check_firmware_status; } else { *name = AF9035_FIRMWARE_AF9035; eeprom_addr = EEPROM_BASE_AF9035; } /* Read and store eeprom */ for (i = 0; i < 256; i += 32) { ret = af9035_rd_regs(d, eeprom_addr + i, &state->eeprom[i], 32); if (ret < 0) goto err; } dev_dbg(&intf->dev, "eeprom dump:\n"); for (i = 0; i < 256; i += 16) dev_dbg(&intf->dev, "%*ph\n", 16, &state->eeprom[i]); /* check for dual tuner mode */ tmp = state->eeprom[EEPROM_TS_MODE]; ts_mode_invalid = 0; switch (tmp) { case 0: break; case 1: case 3: state->dual_mode = true; break; case 5: if (state->chip_type != 0x9135 && state->chip_type != 0x9306) state->dual_mode = true; /* AF9035 */ else ts_mode_invalid = 1; break; default: ts_mode_invalid = 1; } dev_dbg(&intf->dev, "ts mode=%d dual mode=%d\n", tmp, state->dual_mode); if (ts_mode_invalid) dev_info(&intf->dev, "ts mode=%d not supported, defaulting to single tuner mode!", tmp); check_firmware_status: ret = af9035_ctrl_msg(d, &req); if (ret < 0) goto err; dev_dbg(&intf->dev, "reply=%*ph\n", 4, rbuf); if (rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3]) ret = WARM; else ret = COLD; return ret; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int af9035_download_firmware_old(struct dvb_usb_device *d, const struct firmware *fw) { struct usb_interface *intf = d->intf; int ret, i, j, len; u8 wbuf[1]; struct usb_req req = { 0, 0, 0, NULL, 0, NULL }; struct usb_req req_fw_dl = { CMD_FW_DL, 0, 0, wbuf, 0, NULL }; u8 hdr_core; u16 hdr_addr, hdr_data_len, hdr_checksum; #define MAX_DATA 58 #define HDR_SIZE 7 /* * Thanks to Daniel Glöckner <daniel-gl@gmx.net> about that info! * * byte 0: MCS 51 core * There are two inside the AF9035 (1=Link and 2=OFDM) with separate * address spaces * byte 1-2: Big endian destination address * byte 3-4: Big endian number of data bytes following the header * byte 5-6: Big endian header checksum, apparently ignored by the chip * Calculated as ~(h[0]*256+h[1]+h[2]*256+h[3]+h[4]*256) */ for (i = fw->size; i > HDR_SIZE;) { hdr_core = fw->data[fw->size - i + 0]; hdr_addr = fw->data[fw->size - i + 1] << 8; hdr_addr |= fw->data[fw->size - i + 2] << 0; hdr_data_len = fw->data[fw->size - i + 3] << 8; hdr_data_len |= fw->data[fw->size - i + 4] << 0; hdr_checksum = fw->data[fw->size - i + 5] << 8; hdr_checksum |= fw->data[fw->size - i + 6] << 0; dev_dbg(&intf->dev, "core=%d addr=%04x data_len=%d checksum=%04x\n", hdr_core, hdr_addr, hdr_data_len, hdr_checksum); if (((hdr_core != 1) && (hdr_core != 2)) || (hdr_data_len > i)) { dev_dbg(&intf->dev, "bad firmware\n"); break; } /* download begin packet */ req.cmd = CMD_FW_DL_BEGIN; ret = af9035_ctrl_msg(d, &req); if (ret < 0) goto err; /* download firmware packet(s) */ for (j = HDR_SIZE + hdr_data_len; j > 0; j -= MAX_DATA) { len = j; if (len > MAX_DATA) len = MAX_DATA; req_fw_dl.wlen = len; req_fw_dl.wbuf = (u8 *) &fw->data[fw->size - i + HDR_SIZE + hdr_data_len - j]; ret = af9035_ctrl_msg(d, &req_fw_dl); if (ret < 0) goto err; } /* download end packet */ req.cmd = CMD_FW_DL_END; ret = af9035_ctrl_msg(d, &req); if (ret < 0) goto err; i -= hdr_data_len + HDR_SIZE; dev_dbg(&intf->dev, "data uploaded=%zu\n", fw->size - i); } /* print warn if firmware is bad, continue and see what happens */ if (i) dev_warn(&intf->dev, "bad firmware\n"); return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int af9035_download_firmware_new(struct dvb_usb_device *d, const struct firmware *fw) { struct usb_interface *intf = d->intf; int ret, i, i_prev; struct usb_req req_fw_dl = { CMD_FW_SCATTER_WR, 0, 0, NULL, 0, NULL }; #define HDR_SIZE 7 /* * There seems to be following firmware header. Meaning of bytes 0-3 * is unknown. * * 0: 3 * 1: 0, 1 * 2: 0 * 3: 1, 2, 3 * 4: addr MSB * 5: addr LSB * 6: count of data bytes ? */ for (i = HDR_SIZE, i_prev = 0; i <= fw->size; i++) { if (i == fw->size || (fw->data[i + 0] == 0x03 && (fw->data[i + 1] == 0x00 || fw->data[i + 1] == 0x01) && fw->data[i + 2] == 0x00)) { req_fw_dl.wlen = i - i_prev; req_fw_dl.wbuf = (u8 *) &fw->data[i_prev]; i_prev = i; ret = af9035_ctrl_msg(d, &req_fw_dl); if (ret < 0) goto err; dev_dbg(&intf->dev, "data uploaded=%d\n", i); } } return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int af9035_download_firmware(struct dvb_usb_device *d, const struct firmware *fw) { struct usb_interface *intf = d->intf; struct state *state = d_to_priv(d); int ret; u8 wbuf[1]; u8 rbuf[4]; u8 tmp; struct usb_req req = { 0, 0, 0, NULL, 0, NULL }; struct usb_req req_fw_ver = { CMD_FW_QUERYINFO, 0, 1, wbuf, 4, rbuf }; dev_dbg(&intf->dev, "\n"); /* * In case of dual tuner configuration we need to do some extra * initialization in order to download firmware to slave demod too, * which is done by master demod. * Master feeds also clock and controls power via GPIO. */ if (state->dual_mode) { /* configure gpioh1, reset & power slave demod */ ret = af9035_wr_reg_mask(d, 0x00d8b0, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0x00d8b1, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0x00d8af, 0x00, 0x01); if (ret < 0) goto err; usleep_range(10000, 50000); ret = af9035_wr_reg_mask(d, 0x00d8af, 0x01, 0x01); if (ret < 0) goto err; /* tell the slave I2C address */ tmp = state->eeprom[EEPROM_2ND_DEMOD_ADDR]; /* Use default I2C address if eeprom has no address set */ if (!tmp) tmp = 0x1d << 1; /* 8-bit format used by chip */ if ((state->chip_type == 0x9135) || (state->chip_type == 0x9306)) { ret = af9035_wr_reg(d, 0x004bfb, tmp); if (ret < 0) goto err; } else { ret = af9035_wr_reg(d, 0x00417f, tmp); if (ret < 0) goto err; /* enable clock out */ ret = af9035_wr_reg_mask(d, 0x00d81a, 0x01, 0x01); if (ret < 0) goto err; } } if (fw->data[0] == 0x01) ret = af9035_download_firmware_old(d, fw); else ret = af9035_download_firmware_new(d, fw); if (ret < 0) goto err; /* firmware loaded, request boot */ req.cmd = CMD_FW_BOOT; ret = af9035_ctrl_msg(d, &req); if (ret < 0) goto err; /* ensure firmware starts */ wbuf[0] = 1; ret = af9035_ctrl_msg(d, &req_fw_ver); if (ret < 0) goto err; if (!(rbuf[0] || rbuf[1] || rbuf[2] || rbuf[3])) { dev_err(&intf->dev, "firmware did not run\n"); ret = -ENODEV; goto err; } dev_info(&intf->dev, "firmware version=%d.%d.%d.%d", rbuf[0], rbuf[1], rbuf[2], rbuf[3]); return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int af9035_read_config(struct dvb_usb_device *d) { struct usb_interface *intf = d->intf; struct state *state = d_to_priv(d); int ret, i; u8 tmp; u16 tmp16; /* Demod I2C address */ state->af9033_i2c_addr[0] = 0x1c; state->af9033_i2c_addr[1] = 0x1d; state->af9033_config[0].adc_multiplier = AF9033_ADC_MULTIPLIER_2X; state->af9033_config[1].adc_multiplier = AF9033_ADC_MULTIPLIER_2X; state->af9033_config[0].ts_mode = AF9033_TS_MODE_USB; state->af9033_config[1].ts_mode = AF9033_TS_MODE_SERIAL; state->it930x_addresses = 0; if (state->chip_type == 0x9135) { /* feed clock for integrated RF tuner */ state->af9033_config[0].dyn0_clk = true; state->af9033_config[1].dyn0_clk = true; if (state->chip_version == 0x02) { state->af9033_config[0].tuner = AF9033_TUNER_IT9135_60; state->af9033_config[1].tuner = AF9033_TUNER_IT9135_60; } else { state->af9033_config[0].tuner = AF9033_TUNER_IT9135_38; state->af9033_config[1].tuner = AF9033_TUNER_IT9135_38; } if (state->no_eeprom) { /* Remote controller to NEC polling by default */ state->ir_mode = 0x05; state->ir_type = 0x00; goto skip_eeprom; } } else if (state->chip_type == 0x9306) { /* * IT930x is an USB bridge, only single demod-single tuner * configurations seen so far. */ if ((le16_to_cpu(d->udev->descriptor.idVendor) == USB_VID_AVERMEDIA) && (le16_to_cpu(d->udev->descriptor.idProduct) == USB_PID_AVERMEDIA_TD310)) { state->it930x_addresses = 1; } return 0; } /* Remote controller */ state->ir_mode = state->eeprom[EEPROM_IR_MODE]; state->ir_type = state->eeprom[EEPROM_IR_TYPE]; if (state->dual_mode) { /* Read 2nd demodulator I2C address. 8-bit format on eeprom */ tmp = state->eeprom[EEPROM_2ND_DEMOD_ADDR]; if (tmp) state->af9033_i2c_addr[1] = tmp >> 1; dev_dbg(&intf->dev, "2nd demod I2C addr=%02x\n", state->af9033_i2c_addr[1]); } for (i = 0; i < state->dual_mode + 1; i++) { unsigned int eeprom_offset = 0; /* tuner */ tmp = state->eeprom[EEPROM_1_TUNER_ID + eeprom_offset]; dev_dbg(&intf->dev, "[%d]tuner=%02x\n", i, tmp); /* tuner sanity check */ if (state->chip_type == 0x9135) { if (state->chip_version == 0x02) { /* IT9135 BX (v2) */ switch (tmp) { case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: state->af9033_config[i].tuner = tmp; break; } } else { /* IT9135 AX (v1) */ switch (tmp) { case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: state->af9033_config[i].tuner = tmp; break; } } } else { /* AF9035 */ state->af9033_config[i].tuner = tmp; } if (state->af9033_config[i].tuner != tmp) { dev_info(&intf->dev, "[%d] overriding tuner from %02x to %02x\n", i, tmp, state->af9033_config[i].tuner); } switch (state->af9033_config[i].tuner) { case AF9033_TUNER_TUA9001: case AF9033_TUNER_FC0011: case AF9033_TUNER_MXL5007T: case AF9033_TUNER_TDA18218: case AF9033_TUNER_FC2580: case AF9033_TUNER_FC0012: state->af9033_config[i].spec_inv = 1; break; case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: break; default: dev_warn(&intf->dev, "tuner id=%02x not supported, please report!", tmp); } /* disable dual mode if driver does not support it */ if (i == 1) switch (state->af9033_config[i].tuner) { case AF9033_TUNER_FC0012: case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: case AF9033_TUNER_MXL5007T: break; default: state->dual_mode = false; dev_info(&intf->dev, "driver does not support 2nd tuner and will disable it"); } /* tuner IF frequency */ tmp = state->eeprom[EEPROM_1_IF_L + eeprom_offset]; tmp16 = tmp << 0; tmp = state->eeprom[EEPROM_1_IF_H + eeprom_offset]; tmp16 |= tmp << 8; dev_dbg(&intf->dev, "[%d]IF=%d\n", i, tmp16); eeprom_offset += 0x10; /* shift for the 2nd tuner params */ } skip_eeprom: /* get demod clock */ ret = af9035_rd_reg(d, 0x00d800, &tmp); if (ret < 0) goto err; tmp = (tmp >> 0) & 0x0f; for (i = 0; i < ARRAY_SIZE(state->af9033_config); i++) { if (state->chip_type == 0x9135) state->af9033_config[i].clock = clock_lut_it9135[tmp]; else state->af9033_config[i].clock = clock_lut_af9035[tmp]; } state->no_read = false; /* Some MXL5007T devices cannot properly handle tuner I2C read ops. */ if (state->af9033_config[0].tuner == AF9033_TUNER_MXL5007T && le16_to_cpu(d->udev->descriptor.idVendor) == USB_VID_AVERMEDIA) switch (le16_to_cpu(d->udev->descriptor.idProduct)) { case USB_PID_AVERMEDIA_A867: case USB_PID_AVERMEDIA_TWINSTAR: dev_info(&intf->dev, "Device may have issues with I2C read operations. Enabling fix.\n"); state->no_read = true; break; } return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int af9035_tua9001_tuner_callback(struct dvb_usb_device *d, int cmd, int arg) { struct usb_interface *intf = d->intf; int ret; u8 val; dev_dbg(&intf->dev, "cmd=%d arg=%d\n", cmd, arg); /* * CEN always enabled by hardware wiring * RESETN GPIOT3 * RXEN GPIOT2 */ switch (cmd) { case TUA9001_CMD_RESETN: if (arg) val = 0x00; else val = 0x01; ret = af9035_wr_reg_mask(d, 0x00d8e7, val, 0x01); if (ret < 0) goto err; break; case TUA9001_CMD_RXEN: if (arg) val = 0x01; else val = 0x00; ret = af9035_wr_reg_mask(d, 0x00d8eb, val, 0x01); if (ret < 0) goto err; break; } return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int af9035_fc0011_tuner_callback(struct dvb_usb_device *d, int cmd, int arg) { struct usb_interface *intf = d->intf; int ret; switch (cmd) { case FC0011_FE_CALLBACK_POWER: /* Tuner enable */ ret = af9035_wr_reg_mask(d, 0xd8eb, 1, 1); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ec, 1, 1); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ed, 1, 1); if (ret < 0) goto err; /* LED */ ret = af9035_wr_reg_mask(d, 0xd8d0, 1, 1); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8d1, 1, 1); if (ret < 0) goto err; usleep_range(10000, 50000); break; case FC0011_FE_CALLBACK_RESET: ret = af9035_wr_reg(d, 0xd8e9, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0xd8e8, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0xd8e7, 1); if (ret < 0) goto err; usleep_range(10000, 20000); ret = af9035_wr_reg(d, 0xd8e7, 0); if (ret < 0) goto err; usleep_range(10000, 20000); break; default: ret = -EINVAL; goto err; } return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int af9035_tuner_callback(struct dvb_usb_device *d, int cmd, int arg) { struct state *state = d_to_priv(d); switch (state->af9033_config[0].tuner) { case AF9033_TUNER_FC0011: return af9035_fc0011_tuner_callback(d, cmd, arg); case AF9033_TUNER_TUA9001: return af9035_tua9001_tuner_callback(d, cmd, arg); default: break; } return 0; } static int af9035_frontend_callback(void *adapter_priv, int component, int cmd, int arg) { struct i2c_adapter *adap = adapter_priv; struct dvb_usb_device *d = i2c_get_adapdata(adap); struct usb_interface *intf = d->intf; dev_dbg(&intf->dev, "component=%d cmd=%d arg=%d\n", component, cmd, arg); switch (component) { case DVB_FRONTEND_COMPONENT_TUNER: return af9035_tuner_callback(d, cmd, arg); default: break; } return 0; } static int af9035_get_adapter_count(struct dvb_usb_device *d) { struct state *state = d_to_priv(d); return state->dual_mode + 1; } static int af9035_frontend_attach(struct dvb_usb_adapter *adap) { struct state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); struct usb_interface *intf = d->intf; int ret; dev_dbg(&intf->dev, "adap->id=%d\n", adap->id); if (!state->af9033_config[adap->id].tuner) { /* unsupported tuner */ ret = -ENODEV; goto err; } state->af9033_config[adap->id].fe = &adap->fe[0]; state->af9033_config[adap->id].ops = &state->ops; ret = af9035_add_i2c_dev(d, "af9033", state->af9033_i2c_addr[adap->id], &state->af9033_config[adap->id], &d->i2c_adap); if (ret) goto err; if (adap->fe[0] == NULL) { ret = -ENODEV; goto err; } /* disable I2C-gate */ adap->fe[0]->ops.i2c_gate_ctrl = NULL; adap->fe[0]->callback = af9035_frontend_callback; return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } /* * The I2C speed register is calculated with: * I2C speed register = (1000000000 / (24.4 * 16 * I2C_speed)) * * The default speed register for it930x is 7, with means a * speed of ~366 kbps */ #define I2C_SPEED_366K 7 static int it930x_frontend_attach(struct dvb_usb_adapter *adap) { struct state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); struct usb_interface *intf = d->intf; int ret; struct si2168_config si2168_config; struct i2c_adapter *adapter; dev_dbg(&intf->dev, "adap->id=%d\n", adap->id); /* I2C master bus 2 clock speed 366k */ ret = af9035_wr_reg(d, 0x00f6a7, I2C_SPEED_366K); if (ret < 0) goto err; /* I2C master bus 1,3 clock speed 366k */ ret = af9035_wr_reg(d, 0x00f103, I2C_SPEED_366K); if (ret < 0) goto err; /* set gpio11 low */ ret = af9035_wr_reg_mask(d, 0xd8d4, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8d5, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8d3, 0x01, 0x01); if (ret < 0) goto err; /* Tuner enable using gpiot2_en, gpiot2_on and gpiot2_o (reset) */ ret = af9035_wr_reg_mask(d, 0xd8b8, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8b9, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8b7, 0x00, 0x01); if (ret < 0) goto err; msleep(200); ret = af9035_wr_reg_mask(d, 0xd8b7, 0x01, 0x01); if (ret < 0) goto err; memset(&si2168_config, 0, sizeof(si2168_config)); si2168_config.i2c_adapter = &adapter; si2168_config.fe = &adap->fe[0]; si2168_config.ts_mode = SI2168_TS_SERIAL; state->af9033_config[adap->id].fe = &adap->fe[0]; state->af9033_config[adap->id].ops = &state->ops; ret = af9035_add_i2c_dev(d, "si2168", it930x_addresses_table[state->it930x_addresses].frontend_i2c_addr, &si2168_config, &d->i2c_adap); if (ret) goto err; if (adap->fe[0] == NULL) { ret = -ENODEV; goto err; } state->i2c_adapter_demod = adapter; return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int af9035_frontend_detach(struct dvb_usb_adapter *adap) { struct state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); struct usb_interface *intf = d->intf; dev_dbg(&intf->dev, "adap->id=%d\n", adap->id); if (adap->id == 1) { if (state->i2c_client[1]) af9035_del_i2c_dev(d); } else if (adap->id == 0) { if (state->i2c_client[0]) af9035_del_i2c_dev(d); } return 0; } static const struct fc0011_config af9035_fc0011_config = { .i2c_address = 0x60, }; static struct mxl5007t_config af9035_mxl5007t_config[] = { { .xtal_freq_hz = MxL_XTAL_24_MHZ, .if_freq_hz = MxL_IF_4_57_MHZ, .invert_if = 0, .loop_thru_enable = 0, .clk_out_enable = 0, .clk_out_amp = MxL_CLKOUT_AMP_0_94V, }, { .xtal_freq_hz = MxL_XTAL_24_MHZ, .if_freq_hz = MxL_IF_4_57_MHZ, .invert_if = 0, .loop_thru_enable = 1, .clk_out_enable = 1, .clk_out_amp = MxL_CLKOUT_AMP_0_94V, } }; static struct tda18218_config af9035_tda18218_config = { .i2c_address = 0x60, .i2c_wr_max = 21, }; static const struct fc0012_config af9035_fc0012_config[] = { { .i2c_address = 0x63, .xtal_freq = FC_XTAL_36_MHZ, .dual_master = true, .loop_through = true, .clock_out = true, }, { .i2c_address = 0x63 | 0x80, /* I2C bus select hack */ .xtal_freq = FC_XTAL_36_MHZ, .dual_master = true, } }; static int af9035_tuner_attach(struct dvb_usb_adapter *adap) { struct state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); struct usb_interface *intf = d->intf; int ret; struct dvb_frontend *fe; struct i2c_msg msg[1]; u8 tuner_addr; dev_dbg(&intf->dev, "adap->id=%d\n", adap->id); /* * XXX: Hack used in that function: we abuse unused I2C address bit [7] * to carry info about used I2C bus for dual tuner configuration. */ switch (state->af9033_config[adap->id].tuner) { case AF9033_TUNER_TUA9001: { struct tua9001_platform_data tua9001_pdata = { .dvb_frontend = adap->fe[0], }; /* * AF9035 gpiot3 = TUA9001 RESETN * AF9035 gpiot2 = TUA9001 RXEN */ /* configure gpiot2 and gpiot2 as output */ ret = af9035_wr_reg_mask(d, 0x00d8ec, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0x00d8ed, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0x00d8e8, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0x00d8e9, 0x01, 0x01); if (ret < 0) goto err; /* attach tuner */ ret = af9035_add_i2c_dev(d, "tua9001", 0x60, &tua9001_pdata, &d->i2c_adap); if (ret) goto err; fe = adap->fe[0]; break; } case AF9033_TUNER_FC0011: fe = dvb_attach(fc0011_attach, adap->fe[0], &d->i2c_adap, &af9035_fc0011_config); break; case AF9033_TUNER_MXL5007T: if (adap->id == 0) { ret = af9035_wr_reg(d, 0x00d8e0, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8e1, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8df, 0); if (ret < 0) goto err; msleep(30); ret = af9035_wr_reg(d, 0x00d8df, 1); if (ret < 0) goto err; msleep(300); ret = af9035_wr_reg(d, 0x00d8c0, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8c1, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8bf, 0); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8b4, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8b5, 1); if (ret < 0) goto err; ret = af9035_wr_reg(d, 0x00d8b3, 1); if (ret < 0) goto err; tuner_addr = 0x60; } else { tuner_addr = 0x60 | 0x80; /* I2C bus hack */ } /* attach tuner */ fe = dvb_attach(mxl5007t_attach, adap->fe[0], &d->i2c_adap, tuner_addr, &af9035_mxl5007t_config[adap->id]); break; case AF9033_TUNER_TDA18218: /* attach tuner */ fe = dvb_attach(tda18218_attach, adap->fe[0], &d->i2c_adap, &af9035_tda18218_config); break; case AF9033_TUNER_FC2580: { struct fc2580_platform_data fc2580_pdata = { .dvb_frontend = adap->fe[0], }; /* Tuner enable using gpiot2_o, gpiot2_en and gpiot2_on */ ret = af9035_wr_reg_mask(d, 0xd8eb, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ec, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ed, 0x01, 0x01); if (ret < 0) goto err; usleep_range(10000, 50000); /* attach tuner */ ret = af9035_add_i2c_dev(d, "fc2580", 0x56, &fc2580_pdata, &d->i2c_adap); if (ret) goto err; fe = adap->fe[0]; break; } case AF9033_TUNER_FC0012: /* * AF9035 gpiot2 = FC0012 enable * XXX: there seems to be something on gpioh8 too, but on my * test I didn't find any difference. */ if (adap->id == 0) { /* configure gpiot2 as output and high */ ret = af9035_wr_reg_mask(d, 0xd8eb, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ec, 0x01, 0x01); if (ret < 0) goto err; ret = af9035_wr_reg_mask(d, 0xd8ed, 0x01, 0x01); if (ret < 0) goto err; } else { /* * FIXME: That belongs for the FC0012 driver. * Write 02 to FC0012 master tuner register 0d directly * in order to make slave tuner working. */ msg[0].addr = 0x63; msg[0].flags = 0; msg[0].len = 2; msg[0].buf = "\x0d\x02"; ret = i2c_transfer(&d->i2c_adap, msg, 1); if (ret < 0) goto err; } usleep_range(10000, 50000); fe = dvb_attach(fc0012_attach, adap->fe[0], &d->i2c_adap, &af9035_fc0012_config[adap->id]); break; case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: { struct platform_device *pdev; const char *name; struct it913x_platform_data it913x_pdata = { .regmap = state->af9033_config[adap->id].regmap, .fe = adap->fe[0], }; switch (state->af9033_config[adap->id].tuner) { case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: name = "it9133ax-tuner"; break; case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: name = "it9133bx-tuner"; break; default: ret = -ENODEV; goto err; } if (state->dual_mode) { if (adap->id == 0) it913x_pdata.role = IT913X_ROLE_DUAL_MASTER; else it913x_pdata.role = IT913X_ROLE_DUAL_SLAVE; } else { it913x_pdata.role = IT913X_ROLE_SINGLE; } request_module("%s", "it913x"); pdev = platform_device_register_data(&d->intf->dev, name, PLATFORM_DEVID_AUTO, &it913x_pdata, sizeof(it913x_pdata)); if (IS_ERR(pdev) || !pdev->dev.driver) { ret = -ENODEV; goto err; } if (!try_module_get(pdev->dev.driver->owner)) { platform_device_unregister(pdev); ret = -ENODEV; goto err; } state->platform_device_tuner[adap->id] = pdev; fe = adap->fe[0]; break; } default: fe = NULL; } if (fe == NULL) { ret = -ENODEV; goto err; } return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int it930x_tuner_attach(struct dvb_usb_adapter *adap) { struct state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); struct usb_interface *intf = d->intf; int ret; struct si2157_config si2157_config; dev_dbg(&intf->dev, "adap->id=%d\n", adap->id); memset(&si2157_config, 0, sizeof(si2157_config)); si2157_config.fe = adap->fe[0]; /* * HACK: The Logilink VG0022A and TerraTec TC2 Stick have * a bug: when the si2157 firmware that came with the device * is replaced by a new one, the I2C transfers to the tuner * will return just 0xff. * * Probably, the vendor firmware has some patch specifically * designed for this device. So, we can't replace by the * generic firmware. The right solution would be to extract * the si2157 firmware from the original driver and ask the * driver to load the specifically designed firmware, but, * while we don't have that, the next best solution is to just * keep the original firmware at the device. */ if ((le16_to_cpu(d->udev->descriptor.idVendor) == USB_VID_DEXATEK && le16_to_cpu(d->udev->descriptor.idProduct) == 0x0100) || (le16_to_cpu(d->udev->descriptor.idVendor) == USB_VID_TERRATEC && le16_to_cpu(d->udev->descriptor.idProduct) == USB_PID_TERRATEC_CINERGY_TC2_STICK)) si2157_config.dont_load_firmware = true; si2157_config.if_port = it930x_addresses_table[state->it930x_addresses].tuner_if_port; ret = af9035_add_i2c_dev(d, "si2157", it930x_addresses_table[state->it930x_addresses].tuner_i2c_addr, &si2157_config, state->i2c_adapter_demod); if (ret) goto err; return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int it930x_tuner_detach(struct dvb_usb_adapter *adap) { struct state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); struct usb_interface *intf = d->intf; dev_dbg(&intf->dev, "adap->id=%d\n", adap->id); if (adap->id == 1) { if (state->i2c_client[3]) af9035_del_i2c_dev(d); } else if (adap->id == 0) { if (state->i2c_client[1]) af9035_del_i2c_dev(d); } return 0; } static int af9035_tuner_detach(struct dvb_usb_adapter *adap) { struct state *state = adap_to_priv(adap); struct dvb_usb_device *d = adap_to_d(adap); struct usb_interface *intf = d->intf; dev_dbg(&intf->dev, "adap->id=%d\n", adap->id); switch (state->af9033_config[adap->id].tuner) { case AF9033_TUNER_TUA9001: case AF9033_TUNER_FC2580: if (adap->id == 1) { if (state->i2c_client[3]) af9035_del_i2c_dev(d); } else if (adap->id == 0) { if (state->i2c_client[1]) af9035_del_i2c_dev(d); } break; case AF9033_TUNER_IT9135_38: case AF9033_TUNER_IT9135_51: case AF9033_TUNER_IT9135_52: case AF9033_TUNER_IT9135_60: case AF9033_TUNER_IT9135_61: case AF9033_TUNER_IT9135_62: { struct platform_device *pdev; pdev = state->platform_device_tuner[adap->id]; if (pdev) { module_put(pdev->dev.driver->owner); platform_device_unregister(pdev); } break; } } return 0; } static int af9035_init(struct dvb_usb_device *d) { struct state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret, i; u16 frame_size = (d->udev->speed == USB_SPEED_FULL ? 5 : 87) * 188 / 4; u8 packet_size = (d->udev->speed == USB_SPEED_FULL ? 64 : 512) / 4; struct reg_val_mask tab[] = { { 0x80f99d, 0x01, 0x01 }, { 0x80f9a4, 0x01, 0x01 }, { 0x00dd11, 0x00, 0x20 }, { 0x00dd11, 0x00, 0x40 }, { 0x00dd13, 0x00, 0x20 }, { 0x00dd13, 0x00, 0x40 }, { 0x00dd11, 0x20, 0x20 }, { 0x00dd88, (frame_size >> 0) & 0xff, 0xff}, { 0x00dd89, (frame_size >> 8) & 0xff, 0xff}, { 0x00dd0c, packet_size, 0xff}, { 0x00dd11, state->dual_mode << 6, 0x40 }, { 0x00dd8a, (frame_size >> 0) & 0xff, 0xff}, { 0x00dd8b, (frame_size >> 8) & 0xff, 0xff}, { 0x00dd0d, packet_size, 0xff }, { 0x80f9a3, state->dual_mode, 0x01 }, { 0x80f9cd, state->dual_mode, 0x01 }, { 0x80f99d, 0x00, 0x01 }, { 0x80f9a4, 0x00, 0x01 }, }; dev_dbg(&intf->dev, "USB speed=%d frame_size=%04x packet_size=%02x\n", d->udev->speed, frame_size, packet_size); /* init endpoints */ for (i = 0; i < ARRAY_SIZE(tab); i++) { ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val, tab[i].mask); if (ret < 0) goto err; } return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int it930x_init(struct dvb_usb_device *d) { struct state *state = d_to_priv(d); struct usb_interface *intf = d->intf; int ret, i; u16 frame_size = (d->udev->speed == USB_SPEED_FULL ? 5 : 816) * 188 / 4; u8 packet_size = (d->udev->speed == USB_SPEED_FULL ? 64 : 512) / 4; struct reg_val_mask tab[] = { { 0x00da1a, 0x00, 0x01 }, /* ignore_sync_byte */ { 0x00f41f, 0x04, 0x04 }, /* dvbt_inten */ { 0x00da10, 0x00, 0x01 }, /* mpeg_full_speed */ { 0x00f41a, 0x01, 0x01 }, /* dvbt_en */ { 0x00da1d, 0x01, 0x01 }, /* mp2_sw_rst, reset EP4 */ { 0x00dd11, 0x00, 0x20 }, /* ep4_tx_en, disable EP4 */ { 0x00dd13, 0x00, 0x20 }, /* ep4_tx_nak, disable EP4 NAK */ { 0x00dd11, 0x20, 0x20 }, /* ep4_tx_en, enable EP4 */ { 0x00dd11, 0x00, 0x40 }, /* ep5_tx_en, disable EP5 */ { 0x00dd13, 0x00, 0x40 }, /* ep5_tx_nak, disable EP5 NAK */ { 0x00dd11, state->dual_mode << 6, 0x40 }, /* enable EP5 */ { 0x00dd88, (frame_size >> 0) & 0xff, 0xff}, { 0x00dd89, (frame_size >> 8) & 0xff, 0xff}, { 0x00dd0c, packet_size, 0xff}, { 0x00dd8a, (frame_size >> 0) & 0xff, 0xff}, { 0x00dd8b, (frame_size >> 8) & 0xff, 0xff}, { 0x00dd0d, packet_size, 0xff }, { 0x00da1d, 0x00, 0x01 }, /* mp2_sw_rst, disable */ { 0x00d833, 0x01, 0xff }, /* slew rate ctrl: slew rate boosts */ { 0x00d830, 0x00, 0xff }, /* Bit 0 of output driving control */ { 0x00d831, 0x01, 0xff }, /* Bit 1 of output driving control */ { 0x00d832, 0x00, 0xff }, /* Bit 2 of output driving control */ /* suspend gpio1 for TS-C */ { 0x00d8b0, 0x01, 0xff }, /* gpio1 */ { 0x00d8b1, 0x01, 0xff }, /* gpio1 */ { 0x00d8af, 0x00, 0xff }, /* gpio1 */ /* suspend gpio7 for TS-D */ { 0x00d8c4, 0x01, 0xff }, /* gpio7 */ { 0x00d8c5, 0x01, 0xff }, /* gpio7 */ { 0x00d8c3, 0x00, 0xff }, /* gpio7 */ /* suspend gpio13 for TS-B */ { 0x00d8dc, 0x01, 0xff }, /* gpio13 */ { 0x00d8dd, 0x01, 0xff }, /* gpio13 */ { 0x00d8db, 0x00, 0xff }, /* gpio13 */ /* suspend gpio14 for TS-E */ { 0x00d8e4, 0x01, 0xff }, /* gpio14 */ { 0x00d8e5, 0x01, 0xff }, /* gpio14 */ { 0x00d8e3, 0x00, 0xff }, /* gpio14 */ /* suspend gpio15 for TS-A */ { 0x00d8e8, 0x01, 0xff }, /* gpio15 */ { 0x00d8e9, 0x01, 0xff }, /* gpio15 */ { 0x00d8e7, 0x00, 0xff }, /* gpio15 */ { 0x00da58, 0x00, 0x01 }, /* ts_in_src, serial */ { 0x00da73, 0x01, 0xff }, /* ts0_aggre_mode */ { 0x00da78, 0x47, 0xff }, /* ts0_sync_byte */ { 0x00da4c, 0x01, 0xff }, /* ts0_en */ { 0x00da5a, 0x1f, 0xff }, /* ts_fail_ignore */ }; dev_dbg(&intf->dev, "USB speed=%d frame_size=%04x packet_size=%02x\n", d->udev->speed, frame_size, packet_size); /* init endpoints */ for (i = 0; i < ARRAY_SIZE(tab); i++) { ret = af9035_wr_reg_mask(d, tab[i].reg, tab[i].val, tab[i].mask); if (ret < 0) goto err; } return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } #if IS_ENABLED(CONFIG_RC_CORE) static int af9035_rc_query(struct dvb_usb_device *d) { struct usb_interface *intf = d->intf; int ret; enum rc_proto proto; u32 key; u8 buf[4]; struct usb_req req = { CMD_IR_GET, 0, 0, NULL, 4, buf }; ret = af9035_ctrl_msg(d, &req); if (ret == 1) return 0; else if (ret < 0) goto err; if ((buf[2] + buf[3]) == 0xff) { if ((buf[0] + buf[1]) == 0xff) { /* NEC standard 16bit */ key = RC_SCANCODE_NEC(buf[0], buf[2]); proto = RC_PROTO_NEC; } else { /* NEC extended 24bit */ key = RC_SCANCODE_NECX(buf[0] << 8 | buf[1], buf[2]); proto = RC_PROTO_NECX; } } else { /* NEC full code 32bit */ key = RC_SCANCODE_NEC32(buf[0] << 24 | buf[1] << 16 | buf[2] << 8 | buf[3]); proto = RC_PROTO_NEC32; } dev_dbg(&intf->dev, "%*ph\n", 4, buf); rc_keydown(d->rc_dev, proto, key, 0); return 0; err: dev_dbg(&intf->dev, "failed=%d\n", ret); return ret; } static int af9035_get_rc_config(struct dvb_usb_device *d, struct dvb_usb_rc *rc) { struct state *state = d_to_priv(d); struct usb_interface *intf = d->intf; dev_dbg(&intf->dev, "ir_mode=%02x ir_type=%02x\n", state->ir_mode, state->ir_type); /* don't activate rc if in HID mode or if not available */ if (state->ir_mode == 0x05) { switch (state->ir_type) { case 0: /* NEC */ default: rc->allowed_protos = RC_PROTO_BIT_NEC | RC_PROTO_BIT_NECX | RC_PROTO_BIT_NEC32; break; case 1: /* RC6 */ rc->allowed_protos = RC_PROTO_BIT_RC6_MCE; break; } rc->query = af9035_rc_query; rc->interval = 500; /* load empty to enable rc */ if (!rc->map_name) rc->map_name = RC_MAP_EMPTY; } return 0; } #else #define af9035_get_rc_config NULL #endif static int af9035_get_stream_config(struct dvb_frontend *fe, u8 *ts_type, struct usb_data_stream_properties *stream) { struct dvb_usb_device *d = fe_to_d(fe); struct usb_interface *intf = d->intf; dev_dbg(&intf->dev, "adap=%d\n", fe_to_adap(fe)->id); if (d->udev->speed == USB_SPEED_FULL) stream->u.bulk.buffersize = 5 * 188; return 0; } static int af9035_pid_filter_ctrl(struct dvb_usb_adapter *adap, int onoff) { struct state *state = adap_to_priv(adap); return state->ops.pid_filter_ctrl(adap->fe[0], onoff); } static int af9035_pid_filter(struct dvb_usb_adapter *adap, int index, u16 pid, int onoff) { struct state *state = adap_to_priv(adap); return state->ops.pid_filter(adap->fe[0], index, pid, onoff); } static int af9035_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); char manufacturer[sizeof("Afatech")]; memset(manufacturer, 0, sizeof(manufacturer)); usb_string(udev, udev->descriptor.iManufacturer, manufacturer, sizeof(manufacturer)); /* * There is two devices having same ID but different chipset. One uses * AF9015 and the other IT9135 chipset. Only difference seen on lsusb * is iManufacturer string. * * idVendor 0x0ccd TerraTec Electronic GmbH * idProduct 0x0099 * bcdDevice 2.00 * iManufacturer 1 Afatech * iProduct 2 DVB-T 2 * * idVendor 0x0ccd TerraTec Electronic GmbH * idProduct 0x0099 * bcdDevice 2.00 * iManufacturer 1 ITE Technologies, Inc. * iProduct 2 DVB-T TV Stick */ if ((le16_to_cpu(udev->descriptor.idVendor) == USB_VID_TERRATEC) && (le16_to_cpu(udev->descriptor.idProduct) == 0x0099)) { if (!strcmp("Afatech", manufacturer)) { dev_dbg(&udev->dev, "rejecting device\n"); return -ENODEV; } } return dvb_usbv2_probe(intf, id); } /* interface 0 is used by DVB-T receiver and interface 1 is for remote controller (HID) */ static const struct dvb_usb_device_properties af9035_props = { .driver_name = KBUILD_MODNAME, .owner = THIS_MODULE, .adapter_nr = adapter_nr, .size_of_priv = sizeof(struct state), .generic_bulk_ctrl_endpoint = 0x02, .generic_bulk_ctrl_endpoint_response = 0x81, .identify_state = af9035_identify_state, .download_firmware = af9035_download_firmware, .i2c_algo = &af9035_i2c_algo, .read_config = af9035_read_config, .frontend_attach = af9035_frontend_attach, .frontend_detach = af9035_frontend_detach, .tuner_attach = af9035_tuner_attach, .tuner_detach = af9035_tuner_detach, .init = af9035_init, .get_rc_config = af9035_get_rc_config, .get_stream_config = af9035_get_stream_config, .get_adapter_count = af9035_get_adapter_count, .adapter = { { .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 32, .pid_filter_ctrl = af9035_pid_filter_ctrl, .pid_filter = af9035_pid_filter, .stream = DVB_USB_STREAM_BULK(0x84, 6, 87 * 188), }, { .caps = DVB_USB_ADAP_HAS_PID_FILTER | DVB_USB_ADAP_PID_FILTER_CAN_BE_TURNED_OFF, .pid_filter_count = 32, .pid_filter_ctrl = af9035_pid_filter_ctrl, .pid_filter = af9035_pid_filter, .stream = DVB_USB_STREAM_BULK(0x85, 6, 87 * 188), }, }, }; static const struct dvb_usb_device_properties it930x_props = { .driver_name = KBUILD_MODNAME, .owner = THIS_MODULE, .adapter_nr = adapter_nr, .size_of_priv = sizeof(struct state), .generic_bulk_ctrl_endpoint = 0x02, .generic_bulk_ctrl_endpoint_response = 0x81, .identify_state = af9035_identify_state, .download_firmware = af9035_download_firmware, .i2c_algo = &af9035_i2c_algo, .read_config = af9035_read_config, .frontend_attach = it930x_frontend_attach, .frontend_detach = af9035_frontend_detach, .tuner_attach = it930x_tuner_attach, .tuner_detach = it930x_tuner_detach, .init = it930x_init, .get_stream_config = af9035_get_stream_config, .get_adapter_count = af9035_get_adapter_count, .adapter = { { .stream = DVB_USB_STREAM_BULK(0x84, 4, 816 * 188), }, { .stream = DVB_USB_STREAM_BULK(0x85, 4, 816 * 188), }, }, }; static const struct usb_device_id af9035_id_table[] = { /* AF9035 devices */ { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_9035, &af9035_props, "Afatech AF9035 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1000, &af9035_props, "Afatech AF9035 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1001, &af9035_props, "Afatech AF9035 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1002, &af9035_props, "Afatech AF9035 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_AFATECH, USB_PID_AFATECH_AF9035_1003, &af9035_props, "Afatech AF9035 reference design", NULL) }, { DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_T_STICK, &af9035_props, "TerraTec Cinergy T Stick", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835, &af9035_props, "AVerMedia AVerTV Volar HD/PRO (A835)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_B835, &af9035_props, "AVerMedia AVerTV Volar HD/PRO (A835)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_1867, &af9035_props, "AVerMedia HD Volar (A867)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A867, &af9035_props, "AVerMedia HD Volar (A867)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TWINSTAR, &af9035_props, "AVerMedia Twinstar (A825)", NULL) }, { DVB_USB_DEVICE(USB_VID_ASUS, USB_PID_ASUS_U3100MINI_PLUS, &af9035_props, "Asus U3100Mini Plus", NULL) }, { DVB_USB_DEVICE(USB_VID_TERRATEC, 0x00aa, &af9035_props, "TerraTec Cinergy T Stick (rev. 2)", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, 0x0337, &af9035_props, "AVerMedia HD Volar (A867)", NULL) }, { DVB_USB_DEVICE(USB_VID_GTEK, USB_PID_EVOLVEO_XTRATV_STICK, &af9035_props, "EVOLVEO XtraTV stick", NULL) }, /* IT9135 devices */ { DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135, &af9035_props, "ITE 9135 Generic", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135_9005, &af9035_props, "ITE 9135(9005) Generic", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9135_9006, &af9035_props, "ITE 9135(9006) Generic", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_1835, &af9035_props, "Avermedia A835B(1835)", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_2835, &af9035_props, "Avermedia A835B(2835)", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_3835, &af9035_props, "Avermedia A835B(3835)", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_A835B_4835, &af9035_props, "Avermedia A835B(4835)", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TD110, &af9035_props, "Avermedia AverTV Volar HD 2 (TD110)", RC_MAP_AVERMEDIA_RM_KS) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_H335, &af9035_props, "Avermedia H335", RC_MAP_IT913X_V2) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_KWORLD_UB499_2T_T09, &af9035_props, "Kworld UB499-2T T09", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_SVEON_STV22_IT9137, &af9035_props, "Sveon STV22 Dual DVB-T HDTV", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_KWORLD_2, USB_PID_CTVDIGDUAL_V2, &af9035_props, "Digital Dual TV Receiver CTVDIGDUAL_V2", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_T1, &af9035_props, "TerraTec T1", RC_MAP_IT913X_V1) }, /* XXX: that same ID [0ccd:0099] is used by af9015 driver too */ { DVB_USB_DEVICE(USB_VID_TERRATEC, 0x0099, &af9035_props, "TerraTec Cinergy T Stick Dual RC (rev. 2)", NULL) }, { DVB_USB_DEVICE(USB_VID_LEADTEK, 0x6a05, &af9035_props, "Leadtek WinFast DTV Dongle Dual", NULL) }, { DVB_USB_DEVICE(USB_VID_HAUPPAUGE, 0xf900, &af9035_props, "Hauppauge WinTV-MiniStick 2", NULL) }, { DVB_USB_DEVICE(USB_VID_PCTV, USB_PID_PCTV_78E, &af9035_props, "PCTV AndroiDTV (78e)", RC_MAP_IT913X_V1) }, { DVB_USB_DEVICE(USB_VID_PCTV, USB_PID_PCTV_79E, &af9035_props, "PCTV microStick (79e)", RC_MAP_IT913X_V2) }, /* IT930x devices */ { DVB_USB_DEVICE(USB_VID_ITETECH, USB_PID_ITETECH_IT9303, &it930x_props, "ITE 9303 Generic", NULL) }, { DVB_USB_DEVICE(USB_VID_AVERMEDIA, USB_PID_AVERMEDIA_TD310, &it930x_props, "AVerMedia TD310 DVB-T2", NULL) }, { DVB_USB_DEVICE(USB_VID_DEXATEK, 0x0100, &it930x_props, "Logilink VG0022A", NULL) }, { DVB_USB_DEVICE(USB_VID_TERRATEC, USB_PID_TERRATEC_CINERGY_TC2_STICK, &it930x_props, "TerraTec Cinergy TC2 Stick", NULL) }, { } }; MODULE_DEVICE_TABLE(usb, af9035_id_table); static struct usb_driver af9035_usb_driver = { .name = KBUILD_MODNAME, .id_table = af9035_id_table, .probe = af9035_probe, .disconnect = dvb_usbv2_disconnect, .suspend = dvb_usbv2_suspend, .resume = dvb_usbv2_resume, .reset_resume = dvb_usbv2_reset_resume, .no_dynamic_id = 1, .soft_unbind = 1, }; module_usb_driver(af9035_usb_driver); MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>"); MODULE_DESCRIPTION("Afatech AF9035 driver"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(AF9035_FIRMWARE_AF9035); MODULE_FIRMWARE(AF9035_FIRMWARE_IT9135_V1); MODULE_FIRMWARE(AF9035_FIRMWARE_IT9135_V2); MODULE_FIRMWARE(AF9035_FIRMWARE_IT9303);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1