Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Frank Schäfer | 1855 | 41.69% | 20 | 30.77% |
Mauro Carvalho Chehab | 1647 | 37.02% | 27 | 41.54% |
Andrew Morton | 761 | 17.10% | 1 | 1.54% |
Douglas Schilling Landgraf | 51 | 1.15% | 2 | 3.08% |
Sascha Sommer | 50 | 1.12% | 1 | 1.54% |
Brad Love | 27 | 0.61% | 1 | 1.54% |
Shuah Khan | 10 | 0.22% | 1 | 1.54% |
Martin Blumenstingl | 8 | 0.18% | 1 | 1.54% |
Wilson Michaels | 8 | 0.18% | 1 | 1.54% |
Vitaly Wool | 8 | 0.18% | 1 | 1.54% |
Markus Rechberger | 8 | 0.18% | 1 | 1.54% |
Dan Carpenter | 5 | 0.11% | 1 | 1.54% |
Michael Ira Krufky | 3 | 0.07% | 1 | 1.54% |
Hans Verkuil | 2 | 0.04% | 1 | 1.54% |
Bhumika Goyal | 2 | 0.04% | 2 | 3.08% |
Antonio Cardace | 2 | 0.04% | 1 | 1.54% |
Julia Lawall | 1 | 0.02% | 1 | 1.54% |
Alban Browaeys | 1 | 0.02% | 1 | 1.54% |
Total | 4449 | 65 |
// SPDX-License-Identifier: GPL-2.0+ // // em28xx-i2c.c - driver for Empia EM2800/EM2820/2840 USB video capture devices // // Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it> // Markus Rechberger <mrechberger@gmail.com> // Mauro Carvalho Chehab <mchehab@kernel.org> // Sascha Sommer <saschasommer@freenet.de> // Copyright (C) 2013 Frank Schäfer <fschaefer.oss@googlemail.com> #include "em28xx.h" #include <linux/module.h> #include <linux/kernel.h> #include <linux/usb.h> #include <linux/i2c.h> #include <linux/jiffies.h> #include "xc2028.h" #include <media/v4l2-common.h> #include <media/tuner.h> /* ----------------------------------------------------------- */ static unsigned int i2c_scan; module_param(i2c_scan, int, 0444); MODULE_PARM_DESC(i2c_scan, "scan i2c bus at insmod time"); static unsigned int i2c_debug; module_param(i2c_debug, int, 0644); MODULE_PARM_DESC(i2c_debug, "i2c debug message level (1: normal debug, 2: show I2C transfers)"); #define dprintk(level, fmt, arg...) do { \ if (i2c_debug > level) \ dev_printk(KERN_DEBUG, &dev->intf->dev, \ "i2c: %s: " fmt, __func__, ## arg); \ } while (0) /* * Time in msecs to wait for i2c xfers to finish. * 35ms is the maximum time a SMBUS device could wait when * clock stretching is used. As the transfer itself will take * some time to happen, set it to 35 ms. * * Ok, I2C doesn't specify any limit. So, eventually, we may need * to increase this timeout. */ #define EM28XX_I2C_XFER_TIMEOUT 35 /* ms */ static int em28xx_i2c_timeout(struct em28xx *dev) { int time = EM28XX_I2C_XFER_TIMEOUT; switch (dev->i2c_speed & 0x03) { case EM28XX_I2C_FREQ_25_KHZ: time += 4; /* Assume 4 ms for transfers */ break; case EM28XX_I2C_FREQ_100_KHZ: case EM28XX_I2C_FREQ_400_KHZ: time += 1; /* Assume 1 ms for transfers */ break; default: /* EM28XX_I2C_FREQ_1_5_MHZ */ break; } return msecs_to_jiffies(time); } /* * em2800_i2c_send_bytes() * send up to 4 bytes to the em2800 i2c device */ static int em2800_i2c_send_bytes(struct em28xx *dev, u8 addr, u8 *buf, u16 len) { unsigned long timeout = jiffies + em28xx_i2c_timeout(dev); int ret; u8 b2[6]; if (len < 1 || len > 4) return -EOPNOTSUPP; b2[5] = 0x80 + len - 1; b2[4] = addr; b2[3] = buf[0]; if (len > 1) b2[2] = buf[1]; if (len > 2) b2[1] = buf[2]; if (len > 3) b2[0] = buf[3]; /* trigger write */ ret = dev->em28xx_write_regs(dev, 4 - len, &b2[4 - len], 2 + len); if (ret != 2 + len) { dev_warn(&dev->intf->dev, "failed to trigger write to i2c address 0x%x (error=%i)\n", addr, ret); return (ret < 0) ? ret : -EIO; } /* wait for completion */ while (time_is_after_jiffies(timeout)) { ret = dev->em28xx_read_reg(dev, 0x05); if (ret == 0x80 + len - 1) return len; if (ret == 0x94 + len - 1) { dprintk(1, "R05 returned 0x%02x: I2C ACK error\n", ret); return -ENXIO; } if (ret < 0) { dev_warn(&dev->intf->dev, "failed to get i2c transfer status from bridge register (error=%i)\n", ret); return ret; } usleep_range(5000, 6000); } dprintk(0, "write to i2c device at 0x%x timed out\n", addr); return -ETIMEDOUT; } /* * em2800_i2c_recv_bytes() * read up to 4 bytes from the em2800 i2c device */ static int em2800_i2c_recv_bytes(struct em28xx *dev, u8 addr, u8 *buf, u16 len) { unsigned long timeout = jiffies + em28xx_i2c_timeout(dev); u8 buf2[4]; int ret; int i; if (len < 1 || len > 4) return -EOPNOTSUPP; /* trigger read */ buf2[1] = 0x84 + len - 1; buf2[0] = addr; ret = dev->em28xx_write_regs(dev, 0x04, buf2, 2); if (ret != 2) { dev_warn(&dev->intf->dev, "failed to trigger read from i2c address 0x%x (error=%i)\n", addr, ret); return (ret < 0) ? ret : -EIO; } /* wait for completion */ while (time_is_after_jiffies(timeout)) { ret = dev->em28xx_read_reg(dev, 0x05); if (ret == 0x84 + len - 1) break; if (ret == 0x94 + len - 1) { dprintk(1, "R05 returned 0x%02x: I2C ACK error\n", ret); return -ENXIO; } if (ret < 0) { dev_warn(&dev->intf->dev, "failed to get i2c transfer status from bridge register (error=%i)\n", ret); return ret; } usleep_range(5000, 6000); } if (ret != 0x84 + len - 1) dprintk(0, "read from i2c device at 0x%x timed out\n", addr); /* get the received message */ ret = dev->em28xx_read_reg_req_len(dev, 0x00, 4 - len, buf2, len); if (ret != len) { dev_warn(&dev->intf->dev, "reading from i2c device at 0x%x failed: couldn't get the received message from the bridge (error=%i)\n", addr, ret); return (ret < 0) ? ret : -EIO; } for (i = 0; i < len; i++) buf[i] = buf2[len - 1 - i]; return ret; } /* * em2800_i2c_check_for_device() * check if there is an i2c device at the supplied address */ static int em2800_i2c_check_for_device(struct em28xx *dev, u8 addr) { u8 buf; int ret; ret = em2800_i2c_recv_bytes(dev, addr, &buf, 1); if (ret == 1) return 0; return (ret < 0) ? ret : -EIO; } /* * em28xx_i2c_send_bytes() */ static int em28xx_i2c_send_bytes(struct em28xx *dev, u16 addr, u8 *buf, u16 len, int stop) { unsigned long timeout = jiffies + em28xx_i2c_timeout(dev); int ret; if (len < 1 || len > 64) return -EOPNOTSUPP; /* * NOTE: limited by the USB ctrl message constraints * Zero length reads always succeed, even if no device is connected */ /* Write to i2c device */ ret = dev->em28xx_write_regs_req(dev, stop ? 2 : 3, addr, buf, len); if (ret != len) { if (ret < 0) { dev_warn(&dev->intf->dev, "writing to i2c device at 0x%x failed (error=%i)\n", addr, ret); return ret; } dev_warn(&dev->intf->dev, "%i bytes write to i2c device at 0x%x requested, but %i bytes written\n", len, addr, ret); return -EIO; } /* wait for completion */ while (time_is_after_jiffies(timeout)) { ret = dev->em28xx_read_reg(dev, 0x05); if (ret == 0) /* success */ return len; if (ret == 0x10) { dprintk(1, "I2C ACK error on writing to addr 0x%02x\n", addr); return -ENXIO; } if (ret < 0) { dev_warn(&dev->intf->dev, "failed to get i2c transfer status from bridge register (error=%i)\n", ret); return ret; } usleep_range(5000, 6000); /* * NOTE: do we really have to wait for success ? * Never seen anything else than 0x00 or 0x10 * (even with high payload) ... */ } if (ret == 0x02 || ret == 0x04) { /* NOTE: these errors seem to be related to clock stretching */ dprintk(0, "write to i2c device at 0x%x timed out (status=%i)\n", addr, ret); return -ETIMEDOUT; } dev_warn(&dev->intf->dev, "write to i2c device at 0x%x failed with unknown error (status=%i)\n", addr, ret); return -EIO; } /* * em28xx_i2c_recv_bytes() * read a byte from the i2c device */ static int em28xx_i2c_recv_bytes(struct em28xx *dev, u16 addr, u8 *buf, u16 len) { int ret; if (len < 1 || len > 64) return -EOPNOTSUPP; /* * NOTE: limited by the USB ctrl message constraints * Zero length reads always succeed, even if no device is connected */ /* Read data from i2c device */ ret = dev->em28xx_read_reg_req_len(dev, 2, addr, buf, len); if (ret < 0) { dev_warn(&dev->intf->dev, "reading from i2c device at 0x%x failed (error=%i)\n", addr, ret); return ret; } else if (ret != len) { dev_dbg(&dev->intf->dev, "%i bytes read from i2c device at 0x%x requested, but %i bytes written\n", ret, addr, len); } /* * NOTE: some devices with two i2c buses have the bad habit to return 0 * bytes if we are on bus B AND there was no write attempt to the * specified slave address before AND no device is present at the * requested slave address. * Anyway, the next check will fail with -ENXIO in this case, so avoid * spamming the system log on device probing and do nothing here. */ /* Check success of the i2c operation */ ret = dev->em28xx_read_reg(dev, 0x05); if (ret == 0) /* success */ return len; if (ret < 0) { dev_warn(&dev->intf->dev, "failed to get i2c transfer status from bridge register (error=%i)\n", ret); return ret; } if (ret == 0x10) { dprintk(1, "I2C ACK error on writing to addr 0x%02x\n", addr); return -ENXIO; } if (ret == 0x02 || ret == 0x04) { /* NOTE: these errors seem to be related to clock stretching */ dprintk(0, "write to i2c device at 0x%x timed out (status=%i)\n", addr, ret); return -ETIMEDOUT; } dev_warn(&dev->intf->dev, "read from i2c device at 0x%x failed with unknown error (status=%i)\n", addr, ret); return -EIO; } /* * em28xx_i2c_check_for_device() * check if there is a i2c_device at the supplied address */ static int em28xx_i2c_check_for_device(struct em28xx *dev, u16 addr) { int ret; u8 buf; ret = em28xx_i2c_recv_bytes(dev, addr, &buf, 1); if (ret == 1) return 0; return (ret < 0) ? ret : -EIO; } /* * em25xx_bus_B_send_bytes * write bytes to the i2c device */ static int em25xx_bus_B_send_bytes(struct em28xx *dev, u16 addr, u8 *buf, u16 len) { int ret; if (len < 1 || len > 64) return -EOPNOTSUPP; /* * NOTE: limited by the USB ctrl message constraints * Zero length reads always succeed, even if no device is connected */ /* Set register and write value */ ret = dev->em28xx_write_regs_req(dev, 0x06, addr, buf, len); if (ret != len) { if (ret < 0) { dev_warn(&dev->intf->dev, "writing to i2c device at 0x%x failed (error=%i)\n", addr, ret); return ret; } dev_warn(&dev->intf->dev, "%i bytes write to i2c device at 0x%x requested, but %i bytes written\n", len, addr, ret); return -EIO; } /* Check success */ ret = dev->em28xx_read_reg_req(dev, 0x08, 0x0000); /* * NOTE: the only error we've seen so far is * 0x01 when the slave device is not present */ if (!ret) return len; if (ret > 0) { dprintk(1, "Bus B R08 returned 0x%02x: I2C ACK error\n", ret); return -ENXIO; } return ret; /* * NOTE: With chip types (other chip IDs) which actually don't support * this operation, it seems to succeed ALWAYS ! (even if there is no * slave device or even no second i2c bus provided) */ } /* * em25xx_bus_B_recv_bytes * read bytes from the i2c device */ static int em25xx_bus_B_recv_bytes(struct em28xx *dev, u16 addr, u8 *buf, u16 len) { int ret; if (len < 1 || len > 64) return -EOPNOTSUPP; /* * NOTE: limited by the USB ctrl message constraints * Zero length reads always succeed, even if no device is connected */ /* Read value */ ret = dev->em28xx_read_reg_req_len(dev, 0x06, addr, buf, len); if (ret < 0) { dev_warn(&dev->intf->dev, "reading from i2c device at 0x%x failed (error=%i)\n", addr, ret); return ret; } /* * NOTE: some devices with two i2c buses have the bad habit to return 0 * bytes if we are on bus B AND there was no write attempt to the * specified slave address before AND no device is present at the * requested slave address. * Anyway, the next check will fail with -ENXIO in this case, so avoid * spamming the system log on device probing and do nothing here. */ /* Check success */ ret = dev->em28xx_read_reg_req(dev, 0x08, 0x0000); /* * NOTE: the only error we've seen so far is * 0x01 when the slave device is not present */ if (!ret) return len; if (ret > 0) { dprintk(1, "Bus B R08 returned 0x%02x: I2C ACK error\n", ret); return -ENXIO; } return ret; /* * NOTE: With chip types (other chip IDs) which actually don't support * this operation, it seems to succeed ALWAYS ! (even if there is no * slave device or even no second i2c bus provided) */ } /* * em25xx_bus_B_check_for_device() * check if there is a i2c device at the supplied address */ static int em25xx_bus_B_check_for_device(struct em28xx *dev, u16 addr) { u8 buf; int ret; ret = em25xx_bus_B_recv_bytes(dev, addr, &buf, 1); if (ret < 0) return ret; return 0; /* * NOTE: With chips which do not support this operation, * it seems to succeed ALWAYS ! (even if no device connected) */ } static inline int i2c_check_for_device(struct em28xx_i2c_bus *i2c_bus, u16 addr) { struct em28xx *dev = i2c_bus->dev; int rc = -EOPNOTSUPP; if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX) rc = em28xx_i2c_check_for_device(dev, addr); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800) rc = em2800_i2c_check_for_device(dev, addr); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B) rc = em25xx_bus_B_check_for_device(dev, addr); return rc; } static inline int i2c_recv_bytes(struct em28xx_i2c_bus *i2c_bus, struct i2c_msg msg) { struct em28xx *dev = i2c_bus->dev; u16 addr = msg.addr << 1; int rc = -EOPNOTSUPP; if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX) rc = em28xx_i2c_recv_bytes(dev, addr, msg.buf, msg.len); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800) rc = em2800_i2c_recv_bytes(dev, addr, msg.buf, msg.len); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B) rc = em25xx_bus_B_recv_bytes(dev, addr, msg.buf, msg.len); return rc; } static inline int i2c_send_bytes(struct em28xx_i2c_bus *i2c_bus, struct i2c_msg msg, int stop) { struct em28xx *dev = i2c_bus->dev; u16 addr = msg.addr << 1; int rc = -EOPNOTSUPP; if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX) rc = em28xx_i2c_send_bytes(dev, addr, msg.buf, msg.len, stop); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800) rc = em2800_i2c_send_bytes(dev, addr, msg.buf, msg.len); else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B) rc = em25xx_bus_B_send_bytes(dev, addr, msg.buf, msg.len); return rc; } /* * em28xx_i2c_xfer() * the main i2c transfer function */ static int em28xx_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[], int num) { struct em28xx_i2c_bus *i2c_bus = i2c_adap->algo_data; struct em28xx *dev = i2c_bus->dev; unsigned int bus = i2c_bus->bus; int addr, rc, i; u8 reg; /* * prevent i2c xfer attempts after device is disconnected * some fe's try to do i2c writes/reads from their release * interfaces when called in disconnect path */ if (dev->disconnected) return -ENODEV; if (!rt_mutex_trylock(&dev->i2c_bus_lock)) return -EAGAIN; /* Switch I2C bus if needed */ if (bus != dev->cur_i2c_bus && i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX) { if (bus == 1) reg = EM2874_I2C_SECONDARY_BUS_SELECT; else reg = 0; em28xx_write_reg_bits(dev, EM28XX_R06_I2C_CLK, reg, EM2874_I2C_SECONDARY_BUS_SELECT); dev->cur_i2c_bus = bus; } for (i = 0; i < num; i++) { addr = msgs[i].addr << 1; if (!msgs[i].len) { /* * no len: check only for device presence * This code is only called during device probe. */ rc = i2c_check_for_device(i2c_bus, addr); if (rc == -ENXIO) rc = -ENODEV; } else if (msgs[i].flags & I2C_M_RD) { /* read bytes */ rc = i2c_recv_bytes(i2c_bus, msgs[i]); } else { /* write bytes */ rc = i2c_send_bytes(i2c_bus, msgs[i], i == num - 1); } if (rc < 0) goto error; dprintk(2, "%s %s addr=%02x len=%d: %*ph\n", (msgs[i].flags & I2C_M_RD) ? "read" : "write", i == num - 1 ? "stop" : "nonstop", addr, msgs[i].len, msgs[i].len, msgs[i].buf); } rt_mutex_unlock(&dev->i2c_bus_lock); return num; error: dprintk(2, "%s %s addr=%02x len=%d: %sERROR: %i\n", (msgs[i].flags & I2C_M_RD) ? "read" : "write", i == num - 1 ? "stop" : "nonstop", addr, msgs[i].len, (rc == -ENODEV) ? "no device " : "", rc); rt_mutex_unlock(&dev->i2c_bus_lock); return rc; } /* * based on linux/sunrpc/svcauth.h and linux/hash.h * The original hash function returns a different value, if arch is x86_64 * or i386. */ static inline unsigned long em28xx_hash_mem(char *buf, int length, int bits) { unsigned long hash = 0; unsigned long l = 0; int len = 0; unsigned char c; do { if (len == length) { c = (char)len; len = -1; } else { c = *buf++; } l = (l << 8) | c; len++; if ((len & (32 / 8 - 1)) == 0) hash = ((hash ^ l) * 0x9e370001UL); } while (len); return (hash >> (32 - bits)) & 0xffffffffUL; } /* * Helper function to read data blocks from i2c clients with 8 or 16 bit * address width, 8 bit register width and auto incrementation been activated */ static int em28xx_i2c_read_block(struct em28xx *dev, unsigned int bus, u16 addr, bool addr_w16, u16 len, u8 *data) { int remain = len, rsize, rsize_max, ret; u8 buf[2]; /* Sanity check */ if (addr + remain > (addr_w16 * 0xff00 + 0xff + 1)) return -EINVAL; /* Select address */ buf[0] = addr >> 8; buf[1] = addr & 0xff; ret = i2c_master_send(&dev->i2c_client[bus], buf + !addr_w16, 1 + addr_w16); if (ret < 0) return ret; /* Read data */ if (dev->board.is_em2800) rsize_max = 4; else rsize_max = 64; while (remain > 0) { if (remain > rsize_max) rsize = rsize_max; else rsize = remain; ret = i2c_master_recv(&dev->i2c_client[bus], data, rsize); if (ret < 0) return ret; remain -= rsize; data += rsize; } return len; } static int em28xx_i2c_eeprom(struct em28xx *dev, unsigned int bus, u8 **eedata, u16 *eedata_len) { const u16 len = 256; /* * FIXME common length/size for bytes to read, to display, hash * calculation and returned device dataset. Simplifies the code a lot, * but we might have to deal with multiple sizes in the future ! */ int err; struct em28xx_eeprom *dev_config; u8 buf, *data; *eedata = NULL; *eedata_len = 0; /* EEPROM is always on i2c bus 0 on all known devices. */ dev->i2c_client[bus].addr = 0xa0 >> 1; /* Check if board has eeprom */ err = i2c_master_recv(&dev->i2c_client[bus], &buf, 0); if (err < 0) { dev_info(&dev->intf->dev, "board has no eeprom\n"); return -ENODEV; } data = kzalloc(len, GFP_KERNEL); if (!data) return -ENOMEM; /* Read EEPROM content */ err = em28xx_i2c_read_block(dev, bus, 0x0000, dev->eeprom_addrwidth_16bit, len, data); if (err != len) { dev_err(&dev->intf->dev, "failed to read eeprom (err=%d)\n", err); goto error; } if (i2c_debug) { /* Display eeprom content */ print_hex_dump(KERN_DEBUG, "em28xx eeprom ", DUMP_PREFIX_OFFSET, 16, 1, data, len, true); if (dev->eeprom_addrwidth_16bit) dev_info(&dev->intf->dev, "eeprom %06x: ... (skipped)\n", 256); } if (dev->eeprom_addrwidth_16bit && data[0] == 0x26 && data[3] == 0x00) { /* new eeprom format; size 4-64kb */ u16 mc_start; u16 hwconf_offset; dev->hash = em28xx_hash_mem(data, len, 32); mc_start = (data[1] << 8) + 4; /* usually 0x0004 */ dev_info(&dev->intf->dev, "EEPROM ID = %4ph, EEPROM hash = 0x%08lx\n", data, dev->hash); dev_info(&dev->intf->dev, "EEPROM info:\n"); dev_info(&dev->intf->dev, "\tmicrocode start address = 0x%04x, boot configuration = 0x%02x\n", mc_start, data[2]); /* * boot configuration (address 0x0002): * [0] microcode download speed: 1 = 400 kHz; 0 = 100 kHz * [1] always selects 12 kb RAM * [2] USB device speed: 1 = force Full Speed; 0 = auto detect * [4] 1 = force fast mode and no suspend for device testing * [5:7] USB PHY tuning registers; determined by device * characterization */ /* * Read hardware config dataset offset from address * (microcode start + 46) */ err = em28xx_i2c_read_block(dev, bus, mc_start + 46, 1, 2, data); if (err != 2) { dev_err(&dev->intf->dev, "failed to read hardware configuration data from eeprom (err=%d)\n", err); goto error; } /* Calculate hardware config dataset start address */ hwconf_offset = mc_start + data[0] + (data[1] << 8); /* Read hardware config dataset */ /* * NOTE: the microcode copy can be multiple pages long, but * we assume the hardware config dataset is the same as in * the old eeprom and not longer than 256 bytes. * tveeprom is currently also limited to 256 bytes. */ err = em28xx_i2c_read_block(dev, bus, hwconf_offset, 1, len, data); if (err != len) { dev_err(&dev->intf->dev, "failed to read hardware configuration data from eeprom (err=%d)\n", err); goto error; } /* Verify hardware config dataset */ /* NOTE: not all devices provide this type of dataset */ if (data[0] != 0x1a || data[1] != 0xeb || data[2] != 0x67 || data[3] != 0x95) { dev_info(&dev->intf->dev, "\tno hardware configuration dataset found in eeprom\n"); kfree(data); return 0; } /* * TODO: decrypt eeprom data for camera bridges * (em25xx, em276x+) */ } else if (!dev->eeprom_addrwidth_16bit && data[0] == 0x1a && data[1] == 0xeb && data[2] == 0x67 && data[3] == 0x95) { dev->hash = em28xx_hash_mem(data, len, 32); dev_info(&dev->intf->dev, "EEPROM ID = %4ph, EEPROM hash = 0x%08lx\n", data, dev->hash); dev_info(&dev->intf->dev, "EEPROM info:\n"); } else { dev_info(&dev->intf->dev, "unknown eeprom format or eeprom corrupted !\n"); err = -ENODEV; goto error; } *eedata = data; *eedata_len = len; dev_config = (void *)*eedata; switch (le16_to_cpu(dev_config->chip_conf) >> 4 & 0x3) { case 0: dev_info(&dev->intf->dev, "\tNo audio on board.\n"); break; case 1: dev_info(&dev->intf->dev, "\tAC97 audio (5 sample rates)\n"); break; case 2: if (dev->chip_id < CHIP_ID_EM2860) dev_info(&dev->intf->dev, "\tI2S audio, sample rate=32k\n"); else dev_info(&dev->intf->dev, "\tI2S audio, 3 sample rates\n"); break; case 3: if (dev->chip_id < CHIP_ID_EM2860) dev_info(&dev->intf->dev, "\tI2S audio, 3 sample rates\n"); else dev_info(&dev->intf->dev, "\tI2S audio, 5 sample rates\n"); break; } if (le16_to_cpu(dev_config->chip_conf) & 1 << 3) dev_info(&dev->intf->dev, "\tUSB Remote wakeup capable\n"); if (le16_to_cpu(dev_config->chip_conf) & 1 << 2) dev_info(&dev->intf->dev, "\tUSB Self power capable\n"); switch (le16_to_cpu(dev_config->chip_conf) & 0x3) { case 0: dev_info(&dev->intf->dev, "\t500mA max power\n"); break; case 1: dev_info(&dev->intf->dev, "\t400mA max power\n"); break; case 2: dev_info(&dev->intf->dev, "\t300mA max power\n"); break; case 3: dev_info(&dev->intf->dev, "\t200mA max power\n"); break; } dev_info(&dev->intf->dev, "\tTable at offset 0x%02x, strings=0x%04x, 0x%04x, 0x%04x\n", dev_config->string_idx_table, le16_to_cpu(dev_config->string1), le16_to_cpu(dev_config->string2), le16_to_cpu(dev_config->string3)); return 0; error: kfree(data); return err; } /* ----------------------------------------------------------- */ /* * functionality() */ static u32 functionality(struct i2c_adapter *i2c_adap) { struct em28xx_i2c_bus *i2c_bus = i2c_adap->algo_data; if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM28XX || i2c_bus->algo_type == EM28XX_I2C_ALGO_EM25XX_BUS_B) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } else if (i2c_bus->algo_type == EM28XX_I2C_ALGO_EM2800) { return (I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL) & ~I2C_FUNC_SMBUS_WRITE_BLOCK_DATA; } WARN(1, "Unknown i2c bus algorithm.\n"); return 0; } static const struct i2c_algorithm em28xx_algo = { .master_xfer = em28xx_i2c_xfer, .functionality = functionality, }; static const struct i2c_adapter em28xx_adap_template = { .owner = THIS_MODULE, .name = "em28xx", .algo = &em28xx_algo, }; static const struct i2c_client em28xx_client_template = { .name = "em28xx internal", }; /* ----------------------------------------------------------- */ /* * i2c_devs * incomplete list of known devices */ static char *i2c_devs[128] = { [0x1c >> 1] = "lgdt330x", [0x3e >> 1] = "remote IR sensor", [0x4a >> 1] = "saa7113h", [0x52 >> 1] = "drxk", [0x60 >> 1] = "remote IR sensor", [0x8e >> 1] = "remote IR sensor", [0x86 >> 1] = "tda9887", [0x80 >> 1] = "msp34xx", [0x88 >> 1] = "msp34xx", [0xa0 >> 1] = "eeprom", [0xb0 >> 1] = "tda9874", [0xb8 >> 1] = "tvp5150a", [0xba >> 1] = "webcam sensor or tvp5150a", [0xc0 >> 1] = "tuner (analog)", [0xc2 >> 1] = "tuner (analog)", [0xc4 >> 1] = "tuner (analog)", [0xc6 >> 1] = "tuner (analog)", }; /* * do_i2c_scan() * check i2c address range for devices */ void em28xx_do_i2c_scan(struct em28xx *dev, unsigned int bus) { u8 i2c_devicelist[128]; unsigned char buf; int i, rc; memset(i2c_devicelist, 0, sizeof(i2c_devicelist)); for (i = 0; i < ARRAY_SIZE(i2c_devs); i++) { dev->i2c_client[bus].addr = i; rc = i2c_master_recv(&dev->i2c_client[bus], &buf, 0); if (rc < 0) continue; i2c_devicelist[i] = i; dev_info(&dev->intf->dev, "found i2c device @ 0x%x on bus %d [%s]\n", i << 1, bus, i2c_devs[i] ? i2c_devs[i] : "???"); } if (bus == dev->def_i2c_bus) dev->i2c_hash = em28xx_hash_mem(i2c_devicelist, sizeof(i2c_devicelist), 32); } /* * em28xx_i2c_register() * register i2c bus */ int em28xx_i2c_register(struct em28xx *dev, unsigned int bus, enum em28xx_i2c_algo_type algo_type) { int retval; if (WARN_ON(!dev->em28xx_write_regs || !dev->em28xx_read_reg || !dev->em28xx_write_regs_req || !dev->em28xx_read_reg_req)) return -ENODEV; if (bus >= NUM_I2C_BUSES) return -ENODEV; dev->i2c_adap[bus] = em28xx_adap_template; dev->i2c_adap[bus].dev.parent = &dev->intf->dev; strscpy(dev->i2c_adap[bus].name, dev_name(&dev->intf->dev), sizeof(dev->i2c_adap[bus].name)); dev->i2c_bus[bus].bus = bus; dev->i2c_bus[bus].algo_type = algo_type; dev->i2c_bus[bus].dev = dev; dev->i2c_adap[bus].algo_data = &dev->i2c_bus[bus]; retval = i2c_add_adapter(&dev->i2c_adap[bus]); if (retval < 0) { dev_err(&dev->intf->dev, "%s: i2c_add_adapter failed! retval [%d]\n", __func__, retval); return retval; } dev->i2c_client[bus] = em28xx_client_template; dev->i2c_client[bus].adapter = &dev->i2c_adap[bus]; /* Up to now, all eeproms are at bus 0 */ if (!bus) { retval = em28xx_i2c_eeprom(dev, bus, &dev->eedata, &dev->eedata_len); if (retval < 0 && retval != -ENODEV) { dev_err(&dev->intf->dev, "%s: em28xx_i2_eeprom failed! retval [%d]\n", __func__, retval); } } if (i2c_scan) em28xx_do_i2c_scan(dev, bus); return 0; } /* * em28xx_i2c_unregister() * unregister i2c_bus */ int em28xx_i2c_unregister(struct em28xx *dev, unsigned int bus) { if (bus >= NUM_I2C_BUSES) return -ENODEV; i2c_del_adapter(&dev->i2c_adap[bus]); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1