Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Scott Branden | 7420 | 99.76% | 12 | 75.00% |
Dan Carpenter | 11 | 0.15% | 1 | 6.25% |
Breno Leitão | 4 | 0.05% | 2 | 12.50% |
Andy Shevchenko | 3 | 0.04% | 1 | 6.25% |
Total | 7438 | 16 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2018-2020 Broadcom. */ #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/firmware.h> #include <linux/fs.h> #include <linux/idr.h> #include <linux/interrupt.h> #include <linux/panic_notifier.h> #include <linux/kref.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/pci.h> #include <linux/pci_regs.h> #include <uapi/linux/misc/bcm_vk.h> #include "bcm_vk.h" #define PCI_DEVICE_ID_VALKYRIE 0x5e87 #define PCI_DEVICE_ID_VIPER 0x5e88 static DEFINE_IDA(bcm_vk_ida); enum soc_idx { VALKYRIE_A0 = 0, VALKYRIE_B0, VIPER, VK_IDX_INVALID }; enum img_idx { IMG_PRI = 0, IMG_SEC, IMG_PER_TYPE_MAX }; struct load_image_entry { const u32 image_type; const char *image_name[IMG_PER_TYPE_MAX]; }; #define NUM_BOOT_STAGES 2 /* default firmware images names */ static const struct load_image_entry image_tab[][NUM_BOOT_STAGES] = { [VALKYRIE_A0] = { {VK_IMAGE_TYPE_BOOT1, {"vk_a0-boot1.bin", "vk-boot1.bin"}}, {VK_IMAGE_TYPE_BOOT2, {"vk_a0-boot2.bin", "vk-boot2.bin"}} }, [VALKYRIE_B0] = { {VK_IMAGE_TYPE_BOOT1, {"vk_b0-boot1.bin", "vk-boot1.bin"}}, {VK_IMAGE_TYPE_BOOT2, {"vk_b0-boot2.bin", "vk-boot2.bin"}} }, [VIPER] = { {VK_IMAGE_TYPE_BOOT1, {"vp-boot1.bin", ""}}, {VK_IMAGE_TYPE_BOOT2, {"vp-boot2.bin", ""}} }, }; /* Location of memory base addresses of interest in BAR1 */ /* Load Boot1 to start of ITCM */ #define BAR1_CODEPUSH_BASE_BOOT1 0x100000 /* Allow minimum 1s for Load Image timeout responses */ #define LOAD_IMAGE_TIMEOUT_MS (1 * MSEC_PER_SEC) /* Image startup timeouts */ #define BOOT1_STARTUP_TIMEOUT_MS (5 * MSEC_PER_SEC) #define BOOT2_STARTUP_TIMEOUT_MS (10 * MSEC_PER_SEC) /* 1ms wait for checking the transfer complete status */ #define TXFR_COMPLETE_TIMEOUT_MS 1 /* MSIX usages */ #define VK_MSIX_MSGQ_MAX 3 #define VK_MSIX_NOTF_MAX 1 #define VK_MSIX_TTY_MAX BCM_VK_NUM_TTY #define VK_MSIX_IRQ_MAX (VK_MSIX_MSGQ_MAX + VK_MSIX_NOTF_MAX + \ VK_MSIX_TTY_MAX) #define VK_MSIX_IRQ_MIN_REQ (VK_MSIX_MSGQ_MAX + VK_MSIX_NOTF_MAX) /* Number of bits set in DMA mask*/ #define BCM_VK_DMA_BITS 64 /* Ucode boot wait time */ #define BCM_VK_UCODE_BOOT_US (100 * USEC_PER_MSEC) /* 50% margin */ #define BCM_VK_UCODE_BOOT_MAX_US ((BCM_VK_UCODE_BOOT_US * 3) >> 1) /* deinit time for the card os after receiving doorbell */ #define BCM_VK_DEINIT_TIME_MS (2 * MSEC_PER_SEC) /* * module parameters */ static bool auto_load = true; module_param(auto_load, bool, 0444); MODULE_PARM_DESC(auto_load, "Load images automatically at PCIe probe time.\n"); static uint nr_scratch_pages = VK_BAR1_SCRATCH_DEF_NR_PAGES; module_param(nr_scratch_pages, uint, 0444); MODULE_PARM_DESC(nr_scratch_pages, "Number of pre allocated DMAable coherent pages.\n"); static uint nr_ib_sgl_blk = BCM_VK_DEF_IB_SGL_BLK_LEN; module_param(nr_ib_sgl_blk, uint, 0444); MODULE_PARM_DESC(nr_ib_sgl_blk, "Number of in-band msg blks for short SGL.\n"); /* * alerts that could be generated from peer */ const struct bcm_vk_entry bcm_vk_peer_err[BCM_VK_PEER_ERR_NUM] = { {ERR_LOG_UECC, ERR_LOG_UECC, "uecc"}, {ERR_LOG_SSIM_BUSY, ERR_LOG_SSIM_BUSY, "ssim_busy"}, {ERR_LOG_AFBC_BUSY, ERR_LOG_AFBC_BUSY, "afbc_busy"}, {ERR_LOG_HIGH_TEMP_ERR, ERR_LOG_HIGH_TEMP_ERR, "high_temp"}, {ERR_LOG_WDOG_TIMEOUT, ERR_LOG_WDOG_TIMEOUT, "wdog_timeout"}, {ERR_LOG_SYS_FAULT, ERR_LOG_SYS_FAULT, "sys_fault"}, {ERR_LOG_RAMDUMP, ERR_LOG_RAMDUMP, "ramdump"}, {ERR_LOG_COP_WDOG_TIMEOUT, ERR_LOG_COP_WDOG_TIMEOUT, "cop_wdog_timeout"}, {ERR_LOG_MEM_ALLOC_FAIL, ERR_LOG_MEM_ALLOC_FAIL, "malloc_fail warn"}, {ERR_LOG_LOW_TEMP_WARN, ERR_LOG_LOW_TEMP_WARN, "low_temp warn"}, {ERR_LOG_ECC, ERR_LOG_ECC, "ecc"}, {ERR_LOG_IPC_DWN, ERR_LOG_IPC_DWN, "ipc_down"}, }; /* alerts detected by the host */ const struct bcm_vk_entry bcm_vk_host_err[BCM_VK_HOST_ERR_NUM] = { {ERR_LOG_HOST_PCIE_DWN, ERR_LOG_HOST_PCIE_DWN, "PCIe_down"}, {ERR_LOG_HOST_HB_FAIL, ERR_LOG_HOST_HB_FAIL, "hb_fail"}, {ERR_LOG_HOST_INTF_V_FAIL, ERR_LOG_HOST_INTF_V_FAIL, "intf_ver_fail"}, }; irqreturn_t bcm_vk_notf_irqhandler(int irq, void *dev_id) { struct bcm_vk *vk = dev_id; if (!bcm_vk_drv_access_ok(vk)) { dev_err(&vk->pdev->dev, "Interrupt %d received when msgq not inited\n", irq); goto skip_schedule_work; } /* if notification is not pending, set bit and schedule work */ if (test_and_set_bit(BCM_VK_WQ_NOTF_PEND, vk->wq_offload) == 0) queue_work(vk->wq_thread, &vk->wq_work); skip_schedule_work: return IRQ_HANDLED; } static int bcm_vk_intf_ver_chk(struct bcm_vk *vk) { struct device *dev = &vk->pdev->dev; u32 reg; u16 major, minor; int ret = 0; /* read interface register */ reg = vkread32(vk, BAR_0, BAR_INTF_VER); major = (reg >> BAR_INTF_VER_MAJOR_SHIFT) & BAR_INTF_VER_MASK; minor = reg & BAR_INTF_VER_MASK; /* * if major number is 0, it is pre-release and it would be allowed * to continue, else, check versions accordingly */ if (!major) { dev_warn(dev, "Pre-release major.minor=%d.%d - drv %d.%d\n", major, minor, SEMANTIC_MAJOR, SEMANTIC_MINOR); } else if (major != SEMANTIC_MAJOR) { dev_err(dev, "Intf major.minor=%d.%d rejected - drv %d.%d\n", major, minor, SEMANTIC_MAJOR, SEMANTIC_MINOR); bcm_vk_set_host_alert(vk, ERR_LOG_HOST_INTF_V_FAIL); ret = -EPFNOSUPPORT; } else { dev_dbg(dev, "Intf major.minor=%d.%d passed - drv %d.%d\n", major, minor, SEMANTIC_MAJOR, SEMANTIC_MINOR); } return ret; } static void bcm_vk_log_notf(struct bcm_vk *vk, struct bcm_vk_alert *alert, struct bcm_vk_entry const *entry_tab, const u32 table_size) { u32 i; u32 masked_val, latched_val; struct bcm_vk_entry const *entry; u32 reg; u16 ecc_mem_err, uecc_mem_err; struct device *dev = &vk->pdev->dev; for (i = 0; i < table_size; i++) { entry = &entry_tab[i]; masked_val = entry->mask & alert->notfs; latched_val = entry->mask & alert->flags; if (masked_val == ERR_LOG_UECC) { /* * if there is difference between stored cnt and it * is greater than threshold, log it. */ reg = vkread32(vk, BAR_0, BAR_CARD_ERR_MEM); BCM_VK_EXTRACT_FIELD(uecc_mem_err, reg, BCM_VK_MEM_ERR_FIELD_MASK, BCM_VK_UECC_MEM_ERR_SHIFT); if ((uecc_mem_err != vk->alert_cnts.uecc) && (uecc_mem_err >= BCM_VK_UECC_THRESHOLD)) dev_info(dev, "ALERT! %s.%d uecc RAISED - ErrCnt %d\n", DRV_MODULE_NAME, vk->devid, uecc_mem_err); vk->alert_cnts.uecc = uecc_mem_err; } else if (masked_val == ERR_LOG_ECC) { reg = vkread32(vk, BAR_0, BAR_CARD_ERR_MEM); BCM_VK_EXTRACT_FIELD(ecc_mem_err, reg, BCM_VK_MEM_ERR_FIELD_MASK, BCM_VK_ECC_MEM_ERR_SHIFT); if ((ecc_mem_err != vk->alert_cnts.ecc) && (ecc_mem_err >= BCM_VK_ECC_THRESHOLD)) dev_info(dev, "ALERT! %s.%d ecc RAISED - ErrCnt %d\n", DRV_MODULE_NAME, vk->devid, ecc_mem_err); vk->alert_cnts.ecc = ecc_mem_err; } else if (masked_val != latched_val) { /* print a log as info */ dev_info(dev, "ALERT! %s.%d %s %s\n", DRV_MODULE_NAME, vk->devid, entry->str, masked_val ? "RAISED" : "CLEARED"); } } } static void bcm_vk_dump_peer_log(struct bcm_vk *vk) { struct bcm_vk_peer_log log; struct bcm_vk_peer_log *log_info = &vk->peerlog_info; char loc_buf[BCM_VK_PEER_LOG_LINE_MAX]; int cnt; struct device *dev = &vk->pdev->dev; unsigned int data_offset; memcpy_fromio(&log, vk->bar[BAR_2] + vk->peerlog_off, sizeof(log)); dev_dbg(dev, "Peer PANIC: Size 0x%x(0x%x), [Rd Wr] = [%d %d]\n", log.buf_size, log.mask, log.rd_idx, log.wr_idx); if (!log_info->buf_size) { dev_err(dev, "Peer log dump disabled - skipped!\n"); return; } /* perform range checking for rd/wr idx */ if ((log.rd_idx > log_info->mask) || (log.wr_idx > log_info->mask) || (log.buf_size != log_info->buf_size) || (log.mask != log_info->mask)) { dev_err(dev, "Corrupted Ptrs: Size 0x%x(0x%x) Mask 0x%x(0x%x) [Rd Wr] = [%d %d], skip log dump.\n", log_info->buf_size, log.buf_size, log_info->mask, log.mask, log.rd_idx, log.wr_idx); return; } cnt = 0; data_offset = vk->peerlog_off + sizeof(struct bcm_vk_peer_log); loc_buf[BCM_VK_PEER_LOG_LINE_MAX - 1] = '\0'; while (log.rd_idx != log.wr_idx) { loc_buf[cnt] = vkread8(vk, BAR_2, data_offset + log.rd_idx); if ((loc_buf[cnt] == '\0') || (cnt == (BCM_VK_PEER_LOG_LINE_MAX - 1))) { dev_err(dev, "%s", loc_buf); cnt = 0; } else { cnt++; } log.rd_idx = (log.rd_idx + 1) & log.mask; } /* update rd idx at the end */ vkwrite32(vk, log.rd_idx, BAR_2, vk->peerlog_off + offsetof(struct bcm_vk_peer_log, rd_idx)); } void bcm_vk_handle_notf(struct bcm_vk *vk) { u32 reg; struct bcm_vk_alert alert; bool intf_down; unsigned long flags; /* handle peer alerts and then locally detected ones */ reg = vkread32(vk, BAR_0, BAR_CARD_ERR_LOG); intf_down = BCM_VK_INTF_IS_DOWN(reg); if (!intf_down) { vk->peer_alert.notfs = reg; bcm_vk_log_notf(vk, &vk->peer_alert, bcm_vk_peer_err, ARRAY_SIZE(bcm_vk_peer_err)); vk->peer_alert.flags = vk->peer_alert.notfs; } else { /* turn off access */ bcm_vk_blk_drv_access(vk); } /* check and make copy of alert with lock and then free lock */ spin_lock_irqsave(&vk->host_alert_lock, flags); if (intf_down) vk->host_alert.notfs |= ERR_LOG_HOST_PCIE_DWN; alert = vk->host_alert; vk->host_alert.flags = vk->host_alert.notfs; spin_unlock_irqrestore(&vk->host_alert_lock, flags); /* call display with copy */ bcm_vk_log_notf(vk, &alert, bcm_vk_host_err, ARRAY_SIZE(bcm_vk_host_err)); /* * If it is a sys fault or heartbeat timeout, we would like extract * log msg from the card so that we would know what is the last fault */ if (!intf_down && ((vk->host_alert.flags & ERR_LOG_HOST_HB_FAIL) || (vk->peer_alert.flags & ERR_LOG_SYS_FAULT))) bcm_vk_dump_peer_log(vk); } static inline int bcm_vk_wait(struct bcm_vk *vk, enum pci_barno bar, u64 offset, u32 mask, u32 value, unsigned long timeout_ms) { struct device *dev = &vk->pdev->dev; unsigned long start_time; unsigned long timeout; u32 rd_val, boot_status; start_time = jiffies; timeout = start_time + msecs_to_jiffies(timeout_ms); do { rd_val = vkread32(vk, bar, offset); dev_dbg(dev, "BAR%d Offset=0x%llx: 0x%x\n", bar, offset, rd_val); /* check for any boot err condition */ boot_status = vkread32(vk, BAR_0, BAR_BOOT_STATUS); if (boot_status & BOOT_ERR_MASK) { dev_err(dev, "Boot Err 0x%x, progress 0x%x after %d ms\n", (boot_status & BOOT_ERR_MASK) >> BOOT_ERR_SHIFT, boot_status & BOOT_PROG_MASK, jiffies_to_msecs(jiffies - start_time)); return -EFAULT; } if (time_after(jiffies, timeout)) return -ETIMEDOUT; cpu_relax(); cond_resched(); } while ((rd_val & mask) != value); return 0; } static void bcm_vk_get_card_info(struct bcm_vk *vk) { struct device *dev = &vk->pdev->dev; u32 offset; int i; u8 *dst; struct bcm_vk_card_info *info = &vk->card_info; /* first read the offset from spare register */ offset = vkread32(vk, BAR_0, BAR_CARD_STATIC_INFO); offset &= (pci_resource_len(vk->pdev, BAR_2 * 2) - 1); /* based on the offset, read info to internal card info structure */ dst = (u8 *)info; for (i = 0; i < sizeof(*info); i++) *dst++ = vkread8(vk, BAR_2, offset++); #define CARD_INFO_LOG_FMT "version : %x\n" \ "os_tag : %s\n" \ "cmpt_tag : %s\n" \ "cpu_freq : %d MHz\n" \ "cpu_scale : %d full, %d lowest\n" \ "ddr_freq : %d MHz\n" \ "ddr_size : %d MB\n" \ "video_freq: %d MHz\n" dev_dbg(dev, CARD_INFO_LOG_FMT, info->version, info->os_tag, info->cmpt_tag, info->cpu_freq_mhz, info->cpu_scale[0], info->cpu_scale[MAX_OPP - 1], info->ddr_freq_mhz, info->ddr_size_MB, info->video_core_freq_mhz); /* * get the peer log pointer, only need the offset, and get record * of the log buffer information which would be used for checking * before dump, in case the BAR2 memory has been corrupted. */ vk->peerlog_off = offset; memcpy_fromio(&vk->peerlog_info, vk->bar[BAR_2] + vk->peerlog_off, sizeof(vk->peerlog_info)); /* * Do a range checking and if out of bound, the record will be zeroed * which guarantees that nothing would be dumped. In other words, * peer dump is disabled. */ if ((vk->peerlog_info.buf_size > BCM_VK_PEER_LOG_BUF_MAX) || (vk->peerlog_info.mask != (vk->peerlog_info.buf_size - 1)) || (vk->peerlog_info.rd_idx > vk->peerlog_info.mask) || (vk->peerlog_info.wr_idx > vk->peerlog_info.mask)) { dev_err(dev, "Peer log disabled - range error: Size 0x%x(0x%x), [Rd Wr] = [%d %d]\n", vk->peerlog_info.buf_size, vk->peerlog_info.mask, vk->peerlog_info.rd_idx, vk->peerlog_info.wr_idx); memset(&vk->peerlog_info, 0, sizeof(vk->peerlog_info)); } else { dev_dbg(dev, "Peer log: Size 0x%x(0x%x), [Rd Wr] = [%d %d]\n", vk->peerlog_info.buf_size, vk->peerlog_info.mask, vk->peerlog_info.rd_idx, vk->peerlog_info.wr_idx); } } static void bcm_vk_get_proc_mon_info(struct bcm_vk *vk) { struct device *dev = &vk->pdev->dev; struct bcm_vk_proc_mon_info *mon = &vk->proc_mon_info; u32 num, entry_size, offset, buf_size; u8 *dst; /* calculate offset which is based on peerlog offset */ buf_size = vkread32(vk, BAR_2, vk->peerlog_off + offsetof(struct bcm_vk_peer_log, buf_size)); offset = vk->peerlog_off + sizeof(struct bcm_vk_peer_log) + buf_size; /* first read the num and entry size */ num = vkread32(vk, BAR_2, offset); entry_size = vkread32(vk, BAR_2, offset + sizeof(num)); /* check for max allowed */ if (num > BCM_VK_PROC_MON_MAX) { dev_err(dev, "Processing monitoring entry %d exceeds max %d\n", num, BCM_VK_PROC_MON_MAX); return; } mon->num = num; mon->entry_size = entry_size; vk->proc_mon_off = offset; /* read it once that will capture those static info */ dst = (u8 *)&mon->entries[0]; offset += sizeof(num) + sizeof(entry_size); memcpy_fromio(dst, vk->bar[BAR_2] + offset, num * entry_size); } static int bcm_vk_sync_card_info(struct bcm_vk *vk) { u32 rdy_marker = vkread32(vk, BAR_1, VK_BAR1_MSGQ_DEF_RDY); /* check for marker, but allow diags mode to skip sync */ if (!bcm_vk_msgq_marker_valid(vk)) return (rdy_marker == VK_BAR1_DIAG_RDY_MARKER ? 0 : -EINVAL); /* * Write down scratch addr which is used for DMA. For * signed part, BAR1 is accessible only after boot2 has come * up */ if (vk->tdma_addr) { vkwrite32(vk, (u64)vk->tdma_addr >> 32, BAR_1, VK_BAR1_SCRATCH_OFF_HI); vkwrite32(vk, (u32)vk->tdma_addr, BAR_1, VK_BAR1_SCRATCH_OFF_LO); vkwrite32(vk, nr_scratch_pages * PAGE_SIZE, BAR_1, VK_BAR1_SCRATCH_SZ_ADDR); } /* get static card info, only need to read once */ bcm_vk_get_card_info(vk); /* get the proc mon info once */ bcm_vk_get_proc_mon_info(vk); return 0; } void bcm_vk_blk_drv_access(struct bcm_vk *vk) { int i; /* * kill all the apps except for the process that is resetting. * If not called during reset, reset_pid will be 0, and all will be * killed. */ spin_lock(&vk->ctx_lock); /* set msgq_inited to 0 so that all rd/wr will be blocked */ atomic_set(&vk->msgq_inited, 0); for (i = 0; i < VK_PID_HT_SZ; i++) { struct bcm_vk_ctx *ctx; list_for_each_entry(ctx, &vk->pid_ht[i].head, node) { if (ctx->pid != vk->reset_pid) { dev_dbg(&vk->pdev->dev, "Send kill signal to pid %d\n", ctx->pid); kill_pid(find_vpid(ctx->pid), SIGKILL, 1); } } } bcm_vk_tty_terminate_tty_user(vk); spin_unlock(&vk->ctx_lock); } static void bcm_vk_buf_notify(struct bcm_vk *vk, void *bufp, dma_addr_t host_buf_addr, u32 buf_size) { /* update the dma address to the card */ vkwrite32(vk, (u64)host_buf_addr >> 32, BAR_1, VK_BAR1_DMA_BUF_OFF_HI); vkwrite32(vk, (u32)host_buf_addr, BAR_1, VK_BAR1_DMA_BUF_OFF_LO); vkwrite32(vk, buf_size, BAR_1, VK_BAR1_DMA_BUF_SZ); } static int bcm_vk_load_image_by_type(struct bcm_vk *vk, u32 load_type, const char *filename) { struct device *dev = &vk->pdev->dev; const struct firmware *fw = NULL; void *bufp = NULL; size_t max_buf, offset; int ret; u64 offset_codepush; u32 codepush; u32 value; dma_addr_t boot_dma_addr; bool is_stdalone; if (load_type == VK_IMAGE_TYPE_BOOT1) { /* * After POR, enable VK soft BOOTSRC so bootrom do not clear * the pushed image (the TCM memories). */ value = vkread32(vk, BAR_0, BAR_BOOTSRC_SELECT); value |= BOOTSRC_SOFT_ENABLE; vkwrite32(vk, value, BAR_0, BAR_BOOTSRC_SELECT); codepush = CODEPUSH_BOOTSTART + CODEPUSH_BOOT1_ENTRY; offset_codepush = BAR_CODEPUSH_SBL; /* Write a 1 to request SRAM open bit */ vkwrite32(vk, CODEPUSH_BOOTSTART, BAR_0, offset_codepush); /* Wait for VK to respond */ ret = bcm_vk_wait(vk, BAR_0, BAR_BOOT_STATUS, SRAM_OPEN, SRAM_OPEN, LOAD_IMAGE_TIMEOUT_MS); if (ret < 0) { dev_err(dev, "boot1 wait SRAM err - ret(%d)\n", ret); goto err_buf_out; } max_buf = SZ_256K; bufp = dma_alloc_coherent(dev, max_buf, &boot_dma_addr, GFP_KERNEL); if (!bufp) { dev_err(dev, "Error allocating 0x%zx\n", max_buf); ret = -ENOMEM; goto err_buf_out; } } else if (load_type == VK_IMAGE_TYPE_BOOT2) { codepush = CODEPUSH_BOOT2_ENTRY; offset_codepush = BAR_CODEPUSH_SBI; /* Wait for VK to respond */ ret = bcm_vk_wait(vk, BAR_0, BAR_BOOT_STATUS, DDR_OPEN, DDR_OPEN, LOAD_IMAGE_TIMEOUT_MS); if (ret < 0) { dev_err(dev, "boot2 wait DDR open error - ret(%d)\n", ret); goto err_buf_out; } max_buf = SZ_4M; bufp = dma_alloc_coherent(dev, max_buf, &boot_dma_addr, GFP_KERNEL); if (!bufp) { dev_err(dev, "Error allocating 0x%zx\n", max_buf); ret = -ENOMEM; goto err_buf_out; } bcm_vk_buf_notify(vk, bufp, boot_dma_addr, max_buf); } else { dev_err(dev, "Error invalid image type 0x%x\n", load_type); ret = -EINVAL; goto err_buf_out; } offset = 0; ret = request_partial_firmware_into_buf(&fw, filename, dev, bufp, max_buf, offset); if (ret) { dev_err(dev, "Error %d requesting firmware file: %s\n", ret, filename); goto err_firmware_out; } dev_dbg(dev, "size=0x%zx\n", fw->size); if (load_type == VK_IMAGE_TYPE_BOOT1) memcpy_toio(vk->bar[BAR_1] + BAR1_CODEPUSH_BASE_BOOT1, bufp, fw->size); dev_dbg(dev, "Signaling 0x%x to 0x%llx\n", codepush, offset_codepush); vkwrite32(vk, codepush, BAR_0, offset_codepush); if (load_type == VK_IMAGE_TYPE_BOOT1) { u32 boot_status; /* wait until done */ ret = bcm_vk_wait(vk, BAR_0, BAR_BOOT_STATUS, BOOT1_RUNNING, BOOT1_RUNNING, BOOT1_STARTUP_TIMEOUT_MS); boot_status = vkread32(vk, BAR_0, BAR_BOOT_STATUS); is_stdalone = !BCM_VK_INTF_IS_DOWN(boot_status) && (boot_status & BOOT_STDALONE_RUNNING); if (ret && !is_stdalone) { dev_err(dev, "Timeout %ld ms waiting for boot1 to come up - ret(%d)\n", BOOT1_STARTUP_TIMEOUT_MS, ret); goto err_firmware_out; } else if (is_stdalone) { u32 reg; reg = vkread32(vk, BAR_0, BAR_BOOT1_STDALONE_PROGRESS); if ((reg & BOOT1_STDALONE_PROGRESS_MASK) == BOOT1_STDALONE_SUCCESS) { dev_info(dev, "Boot1 standalone success\n"); ret = 0; } else { dev_err(dev, "Timeout %ld ms - Boot1 standalone failure\n", BOOT1_STARTUP_TIMEOUT_MS); ret = -EINVAL; goto err_firmware_out; } } } else if (load_type == VK_IMAGE_TYPE_BOOT2) { unsigned long timeout; timeout = jiffies + msecs_to_jiffies(LOAD_IMAGE_TIMEOUT_MS); /* To send more data to VK than max_buf allowed at a time */ do { /* * Check for ack from card. when Ack is received, * it means all the data is received by card. * Exit the loop after ack is received. */ ret = bcm_vk_wait(vk, BAR_0, BAR_BOOT_STATUS, FW_LOADER_ACK_RCVD_ALL_DATA, FW_LOADER_ACK_RCVD_ALL_DATA, TXFR_COMPLETE_TIMEOUT_MS); if (ret == 0) { dev_dbg(dev, "Exit boot2 download\n"); break; } else if (ret == -EFAULT) { dev_err(dev, "Error detected during ACK waiting"); goto err_firmware_out; } /* exit the loop, if there is no response from card */ if (time_after(jiffies, timeout)) { dev_err(dev, "Error. No reply from card\n"); ret = -ETIMEDOUT; goto err_firmware_out; } /* Wait for VK to open BAR space to copy new data */ ret = bcm_vk_wait(vk, BAR_0, offset_codepush, codepush, 0, TXFR_COMPLETE_TIMEOUT_MS); if (ret == 0) { offset += max_buf; ret = request_partial_firmware_into_buf (&fw, filename, dev, bufp, max_buf, offset); if (ret) { dev_err(dev, "Error %d requesting firmware file: %s offset: 0x%zx\n", ret, filename, offset); goto err_firmware_out; } dev_dbg(dev, "size=0x%zx\n", fw->size); dev_dbg(dev, "Signaling 0x%x to 0x%llx\n", codepush, offset_codepush); vkwrite32(vk, codepush, BAR_0, offset_codepush); /* reload timeout after every codepush */ timeout = jiffies + msecs_to_jiffies(LOAD_IMAGE_TIMEOUT_MS); } else if (ret == -EFAULT) { dev_err(dev, "Error detected waiting for transfer\n"); goto err_firmware_out; } } while (1); /* wait for fw status bits to indicate app ready */ ret = bcm_vk_wait(vk, BAR_0, VK_BAR_FWSTS, VK_FWSTS_READY, VK_FWSTS_READY, BOOT2_STARTUP_TIMEOUT_MS); if (ret < 0) { dev_err(dev, "Boot2 not ready - ret(%d)\n", ret); goto err_firmware_out; } is_stdalone = vkread32(vk, BAR_0, BAR_BOOT_STATUS) & BOOT_STDALONE_RUNNING; if (!is_stdalone) { ret = bcm_vk_intf_ver_chk(vk); if (ret) { dev_err(dev, "failure in intf version check\n"); goto err_firmware_out; } /* * Next, initialize Message Q if we are loading boot2. * Do a force sync */ ret = bcm_vk_sync_msgq(vk, true); if (ret) { dev_err(dev, "Boot2 Error reading comm msg Q info\n"); ret = -EIO; goto err_firmware_out; } /* sync & channel other info */ ret = bcm_vk_sync_card_info(vk); if (ret) { dev_err(dev, "Syncing Card Info failure\n"); goto err_firmware_out; } } } err_firmware_out: release_firmware(fw); err_buf_out: if (bufp) dma_free_coherent(dev, max_buf, bufp, boot_dma_addr); return ret; } static u32 bcm_vk_next_boot_image(struct bcm_vk *vk) { u32 boot_status; u32 fw_status; u32 load_type = 0; /* default for unknown */ boot_status = vkread32(vk, BAR_0, BAR_BOOT_STATUS); fw_status = vkread32(vk, BAR_0, VK_BAR_FWSTS); if (!BCM_VK_INTF_IS_DOWN(boot_status) && (boot_status & SRAM_OPEN)) load_type = VK_IMAGE_TYPE_BOOT1; else if (boot_status == BOOT1_RUNNING) load_type = VK_IMAGE_TYPE_BOOT2; /* Log status so that we know different stages */ dev_info(&vk->pdev->dev, "boot-status value for next image: 0x%x : fw-status 0x%x\n", boot_status, fw_status); return load_type; } static enum soc_idx get_soc_idx(struct bcm_vk *vk) { struct pci_dev *pdev = vk->pdev; enum soc_idx idx = VK_IDX_INVALID; u32 rev; static enum soc_idx const vk_soc_tab[] = { VALKYRIE_A0, VALKYRIE_B0 }; switch (pdev->device) { case PCI_DEVICE_ID_VALKYRIE: /* get the chip id to decide sub-class */ rev = MAJOR_SOC_REV(vkread32(vk, BAR_0, BAR_CHIP_ID)); if (rev < ARRAY_SIZE(vk_soc_tab)) { idx = vk_soc_tab[rev]; } else { /* Default to A0 firmware for all other chip revs */ idx = VALKYRIE_A0; dev_warn(&pdev->dev, "Rev %d not in image lookup table, default to idx=%d\n", rev, idx); } break; case PCI_DEVICE_ID_VIPER: idx = VIPER; break; default: dev_err(&pdev->dev, "no images for 0x%x\n", pdev->device); } return idx; } static const char *get_load_fw_name(struct bcm_vk *vk, const struct load_image_entry *entry) { const struct firmware *fw; struct device *dev = &vk->pdev->dev; int ret; unsigned long dummy; int i; for (i = 0; i < IMG_PER_TYPE_MAX; i++) { fw = NULL; ret = request_partial_firmware_into_buf(&fw, entry->image_name[i], dev, &dummy, sizeof(dummy), 0); release_firmware(fw); if (!ret) return entry->image_name[i]; } return NULL; } int bcm_vk_auto_load_all_images(struct bcm_vk *vk) { int i, ret = -1; enum soc_idx idx; struct device *dev = &vk->pdev->dev; u32 curr_type; const char *curr_name; idx = get_soc_idx(vk); if (idx == VK_IDX_INVALID) goto auto_load_all_exit; /* log a message to know the relative loading order */ dev_dbg(dev, "Load All for device %d\n", vk->devid); for (i = 0; i < NUM_BOOT_STAGES; i++) { curr_type = image_tab[idx][i].image_type; if (bcm_vk_next_boot_image(vk) == curr_type) { curr_name = get_load_fw_name(vk, &image_tab[idx][i]); if (!curr_name) { dev_err(dev, "No suitable firmware exists for type %d", curr_type); ret = -ENOENT; goto auto_load_all_exit; } ret = bcm_vk_load_image_by_type(vk, curr_type, curr_name); dev_info(dev, "Auto load %s, ret %d\n", curr_name, ret); if (ret) { dev_err(dev, "Error loading default %s\n", curr_name); goto auto_load_all_exit; } } } auto_load_all_exit: return ret; } static int bcm_vk_trigger_autoload(struct bcm_vk *vk) { if (test_and_set_bit(BCM_VK_WQ_DWNLD_PEND, vk->wq_offload) != 0) return -EPERM; set_bit(BCM_VK_WQ_DWNLD_AUTO, vk->wq_offload); queue_work(vk->wq_thread, &vk->wq_work); return 0; } /* * deferred work queue for draining and auto download. */ static void bcm_vk_wq_handler(struct work_struct *work) { struct bcm_vk *vk = container_of(work, struct bcm_vk, wq_work); struct device *dev = &vk->pdev->dev; s32 ret; /* check wq offload bit map to perform various operations */ if (test_bit(BCM_VK_WQ_NOTF_PEND, vk->wq_offload)) { /* clear bit right the way for notification */ clear_bit(BCM_VK_WQ_NOTF_PEND, vk->wq_offload); bcm_vk_handle_notf(vk); } if (test_bit(BCM_VK_WQ_DWNLD_AUTO, vk->wq_offload)) { bcm_vk_auto_load_all_images(vk); /* * at the end of operation, clear AUTO bit and pending * bit */ clear_bit(BCM_VK_WQ_DWNLD_AUTO, vk->wq_offload); clear_bit(BCM_VK_WQ_DWNLD_PEND, vk->wq_offload); } /* next, try to drain */ ret = bcm_to_h_msg_dequeue(vk); if (ret == 0) dev_dbg(dev, "Spurious trigger for workqueue\n"); else if (ret < 0) bcm_vk_blk_drv_access(vk); } static long bcm_vk_load_image(struct bcm_vk *vk, const struct vk_image __user *arg) { struct device *dev = &vk->pdev->dev; const char *image_name; struct vk_image image; u32 next_loadable; enum soc_idx idx; int image_idx; int ret = -EPERM; if (copy_from_user(&image, arg, sizeof(image))) return -EACCES; if ((image.type != VK_IMAGE_TYPE_BOOT1) && (image.type != VK_IMAGE_TYPE_BOOT2)) { dev_err(dev, "invalid image.type %u\n", image.type); return ret; } next_loadable = bcm_vk_next_boot_image(vk); if (next_loadable != image.type) { dev_err(dev, "Next expected image %u, Loading %u\n", next_loadable, image.type); return ret; } /* * if something is pending download already. This could only happen * for now when the driver is being loaded, or if someone has issued * another download command in another shell. */ if (test_and_set_bit(BCM_VK_WQ_DWNLD_PEND, vk->wq_offload) != 0) { dev_err(dev, "Download operation already pending.\n"); return ret; } image_name = image.filename; if (image_name[0] == '\0') { /* Use default image name if NULL */ idx = get_soc_idx(vk); if (idx == VK_IDX_INVALID) goto err_idx; /* Image idx starts with boot1 */ image_idx = image.type - VK_IMAGE_TYPE_BOOT1; image_name = get_load_fw_name(vk, &image_tab[idx][image_idx]); if (!image_name) { dev_err(dev, "No suitable image found for type %d", image.type); ret = -ENOENT; goto err_idx; } } else { /* Ensure filename is NULL terminated */ image.filename[sizeof(image.filename) - 1] = '\0'; } ret = bcm_vk_load_image_by_type(vk, image.type, image_name); dev_info(dev, "Load %s, ret %d\n", image_name, ret); err_idx: clear_bit(BCM_VK_WQ_DWNLD_PEND, vk->wq_offload); return ret; } static int bcm_vk_reset_successful(struct bcm_vk *vk) { struct device *dev = &vk->pdev->dev; u32 fw_status, reset_reason; int ret = -EAGAIN; /* * Reset could be triggered when the card in several state: * i) in bootROM * ii) after boot1 * iii) boot2 running * * i) & ii) - no status bits will be updated. If vkboot1 * runs automatically after reset, it will update the reason * to be unknown reason * iii) - reboot reason match + deinit done. */ fw_status = vkread32(vk, BAR_0, VK_BAR_FWSTS); /* immediate exit if interface goes down */ if (BCM_VK_INTF_IS_DOWN(fw_status)) { dev_err(dev, "PCIe Intf Down!\n"); goto reset_exit; } reset_reason = (fw_status & VK_FWSTS_RESET_REASON_MASK); if ((reset_reason == VK_FWSTS_RESET_MBOX_DB) || (reset_reason == VK_FWSTS_RESET_UNKNOWN)) ret = 0; /* * if some of the deinit bits are set, but done * bit is not, this is a failure if triggered while boot2 is running */ if ((fw_status & VK_FWSTS_DEINIT_TRIGGERED) && !(fw_status & VK_FWSTS_RESET_DONE)) ret = -EAGAIN; reset_exit: dev_dbg(dev, "FW status = 0x%x ret %d\n", fw_status, ret); return ret; } static void bcm_to_v_reset_doorbell(struct bcm_vk *vk, u32 db_val) { vkwrite32(vk, db_val, BAR_0, VK_BAR0_RESET_DB_BASE); } static int bcm_vk_trigger_reset(struct bcm_vk *vk) { u32 i; u32 value, boot_status; bool is_stdalone, is_boot2; static const u32 bar0_reg_clr_list[] = { BAR_OS_UPTIME, BAR_INTF_VER, BAR_CARD_VOLTAGE, BAR_CARD_TEMPERATURE, BAR_CARD_PWR_AND_THRE }; /* clean up before pressing the door bell */ bcm_vk_drain_msg_on_reset(vk); vkwrite32(vk, 0, BAR_1, VK_BAR1_MSGQ_DEF_RDY); /* make tag '\0' terminated */ vkwrite32(vk, 0, BAR_1, VK_BAR1_BOOT1_VER_TAG); for (i = 0; i < VK_BAR1_DAUTH_MAX; i++) { vkwrite32(vk, 0, BAR_1, VK_BAR1_DAUTH_STORE_ADDR(i)); vkwrite32(vk, 0, BAR_1, VK_BAR1_DAUTH_VALID_ADDR(i)); } for (i = 0; i < VK_BAR1_SOTP_REVID_MAX; i++) vkwrite32(vk, 0, BAR_1, VK_BAR1_SOTP_REVID_ADDR(i)); memset(&vk->card_info, 0, sizeof(vk->card_info)); memset(&vk->peerlog_info, 0, sizeof(vk->peerlog_info)); memset(&vk->proc_mon_info, 0, sizeof(vk->proc_mon_info)); memset(&vk->alert_cnts, 0, sizeof(vk->alert_cnts)); /* * When boot request fails, the CODE_PUSH_OFFSET stays persistent. * Allowing us to debug the failure. When we call reset, * we should clear CODE_PUSH_OFFSET so ROM does not execute * boot again (and fails again) and instead waits for a new * codepush. And, if previous boot has encountered error, need * to clear the entry values */ boot_status = vkread32(vk, BAR_0, BAR_BOOT_STATUS); if (boot_status & BOOT_ERR_MASK) { dev_info(&vk->pdev->dev, "Card in boot error 0x%x, clear CODEPUSH val\n", boot_status); value = 0; } else { value = vkread32(vk, BAR_0, BAR_CODEPUSH_SBL); value &= CODEPUSH_MASK; } vkwrite32(vk, value, BAR_0, BAR_CODEPUSH_SBL); /* special reset handling */ is_stdalone = boot_status & BOOT_STDALONE_RUNNING; is_boot2 = (boot_status & BOOT_STATE_MASK) == BOOT2_RUNNING; if (vk->peer_alert.flags & ERR_LOG_RAMDUMP) { /* * if card is in ramdump mode, it is hitting an error. Don't * reset the reboot reason as it will contain valid info that * is important - simply use special reset */ vkwrite32(vk, VK_BAR0_RESET_RAMPDUMP, BAR_0, VK_BAR_FWSTS); return VK_BAR0_RESET_RAMPDUMP; } else if (is_stdalone && !is_boot2) { dev_info(&vk->pdev->dev, "Hard reset on Standalone mode"); bcm_to_v_reset_doorbell(vk, VK_BAR0_RESET_DB_HARD); return VK_BAR0_RESET_DB_HARD; } /* reset fw_status with proper reason, and press db */ vkwrite32(vk, VK_FWSTS_RESET_MBOX_DB, BAR_0, VK_BAR_FWSTS); bcm_to_v_reset_doorbell(vk, VK_BAR0_RESET_DB_SOFT); /* clear other necessary registers and alert records */ for (i = 0; i < ARRAY_SIZE(bar0_reg_clr_list); i++) vkwrite32(vk, 0, BAR_0, bar0_reg_clr_list[i]); memset(&vk->host_alert, 0, sizeof(vk->host_alert)); memset(&vk->peer_alert, 0, sizeof(vk->peer_alert)); /* clear 4096 bits of bitmap */ bitmap_clear(vk->bmap, 0, VK_MSG_ID_BITMAP_SIZE); return 0; } static long bcm_vk_reset(struct bcm_vk *vk, struct vk_reset __user *arg) { struct device *dev = &vk->pdev->dev; struct vk_reset reset; int ret = 0; u32 ramdump_reset; int special_reset; if (copy_from_user(&reset, arg, sizeof(struct vk_reset))) return -EFAULT; /* check if any download is in-progress, if so return error */ if (test_and_set_bit(BCM_VK_WQ_DWNLD_PEND, vk->wq_offload) != 0) { dev_err(dev, "Download operation pending - skip reset.\n"); return -EPERM; } ramdump_reset = vk->peer_alert.flags & ERR_LOG_RAMDUMP; dev_info(dev, "Issue Reset %s\n", ramdump_reset ? "in ramdump mode" : ""); /* * The following is the sequence of reset: * - send card level graceful shut down * - wait enough time for VK to handle its business, stopping DMA etc * - kill host apps * - Trigger interrupt with DB */ bcm_vk_send_shutdown_msg(vk, VK_SHUTDOWN_GRACEFUL, 0, 0); spin_lock(&vk->ctx_lock); if (!vk->reset_pid) { vk->reset_pid = task_pid_nr(current); } else { dev_err(dev, "Reset already launched by process pid %d\n", vk->reset_pid); ret = -EACCES; } spin_unlock(&vk->ctx_lock); if (ret) goto err_exit; bcm_vk_blk_drv_access(vk); special_reset = bcm_vk_trigger_reset(vk); /* * Wait enough time for card os to deinit * and populate the reset reason. */ msleep(BCM_VK_DEINIT_TIME_MS); if (special_reset) { /* if it is special ramdump reset, return the type to user */ reset.arg2 = special_reset; if (copy_to_user(arg, &reset, sizeof(reset))) ret = -EFAULT; } else { ret = bcm_vk_reset_successful(vk); } err_exit: clear_bit(BCM_VK_WQ_DWNLD_PEND, vk->wq_offload); return ret; } static int bcm_vk_mmap(struct file *file, struct vm_area_struct *vma) { struct bcm_vk_ctx *ctx = file->private_data; struct bcm_vk *vk = container_of(ctx->miscdev, struct bcm_vk, miscdev); unsigned long pg_size; /* only BAR2 is mmap possible, which is bar num 4 due to 64bit */ #define VK_MMAPABLE_BAR 4 pg_size = ((pci_resource_len(vk->pdev, VK_MMAPABLE_BAR) - 1) >> PAGE_SHIFT) + 1; if (vma->vm_pgoff + vma_pages(vma) > pg_size) return -EINVAL; vma->vm_pgoff += (pci_resource_start(vk->pdev, VK_MMAPABLE_BAR) >> PAGE_SHIFT); vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); return io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vma->vm_end - vma->vm_start, vma->vm_page_prot); } static long bcm_vk_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { long ret = -EINVAL; struct bcm_vk_ctx *ctx = file->private_data; struct bcm_vk *vk = container_of(ctx->miscdev, struct bcm_vk, miscdev); void __user *argp = (void __user *)arg; dev_dbg(&vk->pdev->dev, "ioctl, cmd=0x%02x, arg=0x%02lx\n", cmd, arg); mutex_lock(&vk->mutex); switch (cmd) { case VK_IOCTL_LOAD_IMAGE: ret = bcm_vk_load_image(vk, argp); break; case VK_IOCTL_RESET: ret = bcm_vk_reset(vk, argp); break; default: break; } mutex_unlock(&vk->mutex); return ret; } static const struct file_operations bcm_vk_fops = { .owner = THIS_MODULE, .open = bcm_vk_open, .read = bcm_vk_read, .write = bcm_vk_write, .poll = bcm_vk_poll, .release = bcm_vk_release, .mmap = bcm_vk_mmap, .unlocked_ioctl = bcm_vk_ioctl, }; static int bcm_vk_on_panic(struct notifier_block *nb, unsigned long e, void *p) { struct bcm_vk *vk = container_of(nb, struct bcm_vk, panic_nb); bcm_to_v_reset_doorbell(vk, VK_BAR0_RESET_DB_HARD); return 0; } static int bcm_vk_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err; int i; int id; int irq; char name[20]; struct bcm_vk *vk; struct device *dev = &pdev->dev; struct miscdevice *misc_device; u32 boot_status; /* allocate vk structure which is tied to kref for freeing */ vk = kzalloc(sizeof(*vk), GFP_KERNEL); if (!vk) return -ENOMEM; kref_init(&vk->kref); if (nr_ib_sgl_blk > BCM_VK_IB_SGL_BLK_MAX) { dev_warn(dev, "Inband SGL blk %d limited to max %d\n", nr_ib_sgl_blk, BCM_VK_IB_SGL_BLK_MAX); nr_ib_sgl_blk = BCM_VK_IB_SGL_BLK_MAX; } vk->ib_sgl_size = nr_ib_sgl_blk * VK_MSGQ_BLK_SIZE; mutex_init(&vk->mutex); err = pci_enable_device(pdev); if (err) { dev_err(dev, "Cannot enable PCI device\n"); goto err_free_exit; } vk->pdev = pci_dev_get(pdev); err = pci_request_regions(pdev, DRV_MODULE_NAME); if (err) { dev_err(dev, "Cannot obtain PCI resources\n"); goto err_disable_pdev; } /* make sure DMA is good */ err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(BCM_VK_DMA_BITS)); if (err) { dev_err(dev, "failed to set DMA mask\n"); goto err_disable_pdev; } /* The tdma is a scratch area for some DMA testings. */ if (nr_scratch_pages) { vk->tdma_vaddr = dma_alloc_coherent (dev, nr_scratch_pages * PAGE_SIZE, &vk->tdma_addr, GFP_KERNEL); if (!vk->tdma_vaddr) { err = -ENOMEM; goto err_disable_pdev; } } pci_set_master(pdev); pci_set_drvdata(pdev, vk); irq = pci_alloc_irq_vectors(pdev, VK_MSIX_IRQ_MIN_REQ, VK_MSIX_IRQ_MAX, PCI_IRQ_MSI | PCI_IRQ_MSIX); if (irq < VK_MSIX_IRQ_MIN_REQ) { dev_err(dev, "failed to get min %d MSIX interrupts, irq(%d)\n", VK_MSIX_IRQ_MIN_REQ, irq); err = (irq >= 0) ? -EINVAL : irq; goto err_disable_pdev; } if (irq != VK_MSIX_IRQ_MAX) dev_warn(dev, "Number of IRQs %d allocated - requested(%d).\n", irq, VK_MSIX_IRQ_MAX); for (i = 0; i < MAX_BAR; i++) { /* multiple by 2 for 64 bit BAR mapping */ vk->bar[i] = pci_ioremap_bar(pdev, i * 2); if (!vk->bar[i]) { dev_err(dev, "failed to remap BAR%d\n", i); err = -ENOMEM; goto err_iounmap; } } for (vk->num_irqs = 0; vk->num_irqs < VK_MSIX_MSGQ_MAX; vk->num_irqs++) { err = devm_request_irq(dev, pci_irq_vector(pdev, vk->num_irqs), bcm_vk_msgq_irqhandler, IRQF_SHARED, DRV_MODULE_NAME, vk); if (err) { dev_err(dev, "failed to request msgq IRQ %d for MSIX %d\n", pdev->irq + vk->num_irqs, vk->num_irqs + 1); goto err_irq; } } /* one irq for notification from VK */ err = devm_request_irq(dev, pci_irq_vector(pdev, vk->num_irqs), bcm_vk_notf_irqhandler, IRQF_SHARED, DRV_MODULE_NAME, vk); if (err) { dev_err(dev, "failed to request notf IRQ %d for MSIX %d\n", pdev->irq + vk->num_irqs, vk->num_irqs + 1); goto err_irq; } vk->num_irqs++; for (i = 0; (i < VK_MSIX_TTY_MAX) && (vk->num_irqs < irq); i++, vk->num_irqs++) { err = devm_request_irq(dev, pci_irq_vector(pdev, vk->num_irqs), bcm_vk_tty_irqhandler, IRQF_SHARED, DRV_MODULE_NAME, vk); if (err) { dev_err(dev, "failed request tty IRQ %d for MSIX %d\n", pdev->irq + vk->num_irqs, vk->num_irqs + 1); goto err_irq; } bcm_vk_tty_set_irq_enabled(vk, i); } id = ida_alloc(&bcm_vk_ida, GFP_KERNEL); if (id < 0) { err = id; dev_err(dev, "unable to get id\n"); goto err_irq; } vk->devid = id; snprintf(name, sizeof(name), DRV_MODULE_NAME ".%d", id); misc_device = &vk->miscdev; misc_device->minor = MISC_DYNAMIC_MINOR; misc_device->name = kstrdup(name, GFP_KERNEL); if (!misc_device->name) { err = -ENOMEM; goto err_ida_remove; } misc_device->fops = &bcm_vk_fops, err = misc_register(misc_device); if (err) { dev_err(dev, "failed to register device\n"); goto err_kfree_name; } INIT_WORK(&vk->wq_work, bcm_vk_wq_handler); /* create dedicated workqueue */ vk->wq_thread = create_singlethread_workqueue(name); if (!vk->wq_thread) { dev_err(dev, "Fail to create workqueue thread\n"); err = -ENOMEM; goto err_misc_deregister; } err = bcm_vk_msg_init(vk); if (err) { dev_err(dev, "failed to init msg queue info\n"); goto err_destroy_workqueue; } /* sync other info */ bcm_vk_sync_card_info(vk); /* register for panic notifier */ vk->panic_nb.notifier_call = bcm_vk_on_panic; err = atomic_notifier_chain_register(&panic_notifier_list, &vk->panic_nb); if (err) { dev_err(dev, "Fail to register panic notifier\n"); goto err_destroy_workqueue; } snprintf(name, sizeof(name), KBUILD_MODNAME ".%d_ttyVK", id); err = bcm_vk_tty_init(vk, name); if (err) goto err_unregister_panic_notifier; /* * lets trigger an auto download. We don't want to do it serially here * because at probing time, it is not supposed to block for a long time. */ boot_status = vkread32(vk, BAR_0, BAR_BOOT_STATUS); if (auto_load) { if ((boot_status & BOOT_STATE_MASK) == BROM_RUNNING) { err = bcm_vk_trigger_autoload(vk); if (err) goto err_bcm_vk_tty_exit; } else { dev_err(dev, "Auto-load skipped - BROM not in proper state (0x%x)\n", boot_status); } } /* enable hb */ bcm_vk_hb_init(vk); dev_dbg(dev, "BCM-VK:%u created\n", id); return 0; err_bcm_vk_tty_exit: bcm_vk_tty_exit(vk); err_unregister_panic_notifier: atomic_notifier_chain_unregister(&panic_notifier_list, &vk->panic_nb); err_destroy_workqueue: destroy_workqueue(vk->wq_thread); err_misc_deregister: misc_deregister(misc_device); err_kfree_name: kfree(misc_device->name); misc_device->name = NULL; err_ida_remove: ida_free(&bcm_vk_ida, id); err_irq: for (i = 0; i < vk->num_irqs; i++) devm_free_irq(dev, pci_irq_vector(pdev, i), vk); pci_disable_msix(pdev); pci_disable_msi(pdev); err_iounmap: for (i = 0; i < MAX_BAR; i++) { if (vk->bar[i]) pci_iounmap(pdev, vk->bar[i]); } pci_release_regions(pdev); err_disable_pdev: if (vk->tdma_vaddr) dma_free_coherent(&pdev->dev, nr_scratch_pages * PAGE_SIZE, vk->tdma_vaddr, vk->tdma_addr); pci_free_irq_vectors(pdev); pci_disable_device(pdev); pci_dev_put(pdev); err_free_exit: kfree(vk); return err; } void bcm_vk_release_data(struct kref *kref) { struct bcm_vk *vk = container_of(kref, struct bcm_vk, kref); struct pci_dev *pdev = vk->pdev; dev_dbg(&pdev->dev, "BCM-VK:%d release data 0x%p\n", vk->devid, vk); pci_dev_put(pdev); kfree(vk); } static void bcm_vk_remove(struct pci_dev *pdev) { int i; struct bcm_vk *vk = pci_get_drvdata(pdev); struct miscdevice *misc_device = &vk->miscdev; bcm_vk_hb_deinit(vk); /* * Trigger a reset to card and wait enough time for UCODE to rerun, * which re-initialize the card into its default state. * This ensures when driver is re-enumerated it will start from * a completely clean state. */ bcm_vk_trigger_reset(vk); usleep_range(BCM_VK_UCODE_BOOT_US, BCM_VK_UCODE_BOOT_MAX_US); /* unregister panic notifier */ atomic_notifier_chain_unregister(&panic_notifier_list, &vk->panic_nb); bcm_vk_msg_remove(vk); bcm_vk_tty_exit(vk); if (vk->tdma_vaddr) dma_free_coherent(&pdev->dev, nr_scratch_pages * PAGE_SIZE, vk->tdma_vaddr, vk->tdma_addr); /* remove if name is set which means misc dev registered */ if (misc_device->name) { misc_deregister(misc_device); kfree(misc_device->name); ida_free(&bcm_vk_ida, vk->devid); } for (i = 0; i < vk->num_irqs; i++) devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), vk); pci_disable_msix(pdev); pci_disable_msi(pdev); cancel_work_sync(&vk->wq_work); destroy_workqueue(vk->wq_thread); bcm_vk_tty_wq_exit(vk); for (i = 0; i < MAX_BAR; i++) { if (vk->bar[i]) pci_iounmap(pdev, vk->bar[i]); } dev_dbg(&pdev->dev, "BCM-VK:%d released\n", vk->devid); pci_release_regions(pdev); pci_free_irq_vectors(pdev); pci_disable_device(pdev); kref_put(&vk->kref, bcm_vk_release_data); } static void bcm_vk_shutdown(struct pci_dev *pdev) { struct bcm_vk *vk = pci_get_drvdata(pdev); u32 reg, boot_stat; reg = vkread32(vk, BAR_0, BAR_BOOT_STATUS); boot_stat = reg & BOOT_STATE_MASK; if (boot_stat == BOOT1_RUNNING) { /* simply trigger a reset interrupt to park it */ bcm_vk_trigger_reset(vk); } else if (boot_stat == BROM_NOT_RUN) { int err; u16 lnksta; /* * The boot status only reflects boot condition since last reset * As ucode will run only once to configure pcie, if multiple * resets happen, we lost track if ucode has run or not. * Here, read the current link speed and use that to * sync up the bootstatus properly so that on reboot-back-up, * it has the proper state to start with autoload */ err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); if (!err && (lnksta & PCI_EXP_LNKSTA_CLS) != PCI_EXP_LNKSTA_CLS_2_5GB) { reg |= BROM_STATUS_COMPLETE; vkwrite32(vk, reg, BAR_0, BAR_BOOT_STATUS); } } } static const struct pci_device_id bcm_vk_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_VALKYRIE), }, { } }; MODULE_DEVICE_TABLE(pci, bcm_vk_ids); static struct pci_driver pci_driver = { .name = DRV_MODULE_NAME, .id_table = bcm_vk_ids, .probe = bcm_vk_probe, .remove = bcm_vk_remove, .shutdown = bcm_vk_shutdown, }; module_pci_driver(pci_driver); MODULE_DESCRIPTION("Broadcom VK Host Driver"); MODULE_AUTHOR("Scott Branden <scott.branden@broadcom.com>"); MODULE_LICENSE("GPL v2"); MODULE_VERSION("1.0");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1