Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anatolij Gustschin | 1559 | 53.19% | 1 | 4.55% |
Cory Tusar | 617 | 21.05% | 4 | 18.18% |
Emmanuel Gil Peyrot | 266 | 9.08% | 2 | 9.09% |
Andrew Lunn | 155 | 5.29% | 1 | 4.55% |
Mark Brown | 117 | 3.99% | 1 | 4.55% |
Srinivas Kandagatla | 95 | 3.24% | 1 | 4.55% |
Aswath Govindraju | 75 | 2.56% | 4 | 18.18% |
Bartosz Golaszewski | 16 | 0.55% | 1 | 4.55% |
Fabio Estevam | 15 | 0.51% | 1 | 4.55% |
Vadym Kochan | 8 | 0.27% | 1 | 4.55% |
Arnd Bergmann | 2 | 0.07% | 1 | 4.55% |
Jingoo Han | 2 | 0.07% | 1 | 4.55% |
Thomas Gleixner | 2 | 0.07% | 1 | 4.55% |
Uwe Kleine-König | 1 | 0.03% | 1 | 4.55% |
Axel Lin | 1 | 0.03% | 1 | 4.55% |
Total | 2931 | 22 |
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for 93xx46 EEPROMs * * (C) 2011 DENX Software Engineering, Anatolij Gustschin <agust@denx.de> */ #include <linux/delay.h> #include <linux/device.h> #include <linux/gpio/consumer.h> #include <linux/kernel.h> #include <linux/log2.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_gpio.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include <linux/nvmem-provider.h> #include <linux/eeprom_93xx46.h> #define OP_START 0x4 #define OP_WRITE (OP_START | 0x1) #define OP_READ (OP_START | 0x2) #define ADDR_EWDS 0x00 #define ADDR_ERAL 0x20 #define ADDR_EWEN 0x30 struct eeprom_93xx46_devtype_data { unsigned int quirks; unsigned char flags; }; static const struct eeprom_93xx46_devtype_data at93c46_data = { .flags = EE_SIZE1K, }; static const struct eeprom_93xx46_devtype_data at93c56_data = { .flags = EE_SIZE2K, }; static const struct eeprom_93xx46_devtype_data at93c66_data = { .flags = EE_SIZE4K, }; static const struct eeprom_93xx46_devtype_data atmel_at93c46d_data = { .flags = EE_SIZE1K, .quirks = EEPROM_93XX46_QUIRK_SINGLE_WORD_READ | EEPROM_93XX46_QUIRK_INSTRUCTION_LENGTH, }; static const struct eeprom_93xx46_devtype_data microchip_93lc46b_data = { .flags = EE_SIZE1K, .quirks = EEPROM_93XX46_QUIRK_EXTRA_READ_CYCLE, }; struct eeprom_93xx46_dev { struct spi_device *spi; struct eeprom_93xx46_platform_data *pdata; struct mutex lock; struct nvmem_config nvmem_config; struct nvmem_device *nvmem; int addrlen; int size; }; static inline bool has_quirk_single_word_read(struct eeprom_93xx46_dev *edev) { return edev->pdata->quirks & EEPROM_93XX46_QUIRK_SINGLE_WORD_READ; } static inline bool has_quirk_instruction_length(struct eeprom_93xx46_dev *edev) { return edev->pdata->quirks & EEPROM_93XX46_QUIRK_INSTRUCTION_LENGTH; } static inline bool has_quirk_extra_read_cycle(struct eeprom_93xx46_dev *edev) { return edev->pdata->quirks & EEPROM_93XX46_QUIRK_EXTRA_READ_CYCLE; } static int eeprom_93xx46_read(void *priv, unsigned int off, void *val, size_t count) { struct eeprom_93xx46_dev *edev = priv; char *buf = val; int err = 0; int bits; if (unlikely(off >= edev->size)) return 0; if ((off + count) > edev->size) count = edev->size - off; if (unlikely(!count)) return count; mutex_lock(&edev->lock); if (edev->pdata->prepare) edev->pdata->prepare(edev); /* The opcode in front of the address is three bits. */ bits = edev->addrlen + 3; while (count) { struct spi_message m; struct spi_transfer t[2] = { { 0 } }; u16 cmd_addr = OP_READ << edev->addrlen; size_t nbytes = count; if (edev->pdata->flags & EE_ADDR8) { cmd_addr |= off; if (has_quirk_single_word_read(edev)) nbytes = 1; } else { cmd_addr |= (off >> 1); if (has_quirk_single_word_read(edev)) nbytes = 2; } dev_dbg(&edev->spi->dev, "read cmd 0x%x, %d Hz\n", cmd_addr, edev->spi->max_speed_hz); if (has_quirk_extra_read_cycle(edev)) { cmd_addr <<= 1; bits += 1; } spi_message_init(&m); t[0].tx_buf = (char *)&cmd_addr; t[0].len = 2; t[0].bits_per_word = bits; spi_message_add_tail(&t[0], &m); t[1].rx_buf = buf; t[1].len = count; t[1].bits_per_word = 8; spi_message_add_tail(&t[1], &m); err = spi_sync(edev->spi, &m); /* have to wait at least Tcsl ns */ ndelay(250); if (err) { dev_err(&edev->spi->dev, "read %zu bytes at %d: err. %d\n", nbytes, (int)off, err); break; } buf += nbytes; off += nbytes; count -= nbytes; } if (edev->pdata->finish) edev->pdata->finish(edev); mutex_unlock(&edev->lock); return err; } static int eeprom_93xx46_ew(struct eeprom_93xx46_dev *edev, int is_on) { struct spi_message m; struct spi_transfer t; int bits, ret; u16 cmd_addr; /* The opcode in front of the address is three bits. */ bits = edev->addrlen + 3; cmd_addr = OP_START << edev->addrlen; if (edev->pdata->flags & EE_ADDR8) cmd_addr |= (is_on ? ADDR_EWEN : ADDR_EWDS) << 1; else cmd_addr |= (is_on ? ADDR_EWEN : ADDR_EWDS); if (has_quirk_instruction_length(edev)) { cmd_addr <<= 2; bits += 2; } dev_dbg(&edev->spi->dev, "ew%s cmd 0x%04x, %d bits\n", is_on ? "en" : "ds", cmd_addr, bits); spi_message_init(&m); memset(&t, 0, sizeof(t)); t.tx_buf = &cmd_addr; t.len = 2; t.bits_per_word = bits; spi_message_add_tail(&t, &m); mutex_lock(&edev->lock); if (edev->pdata->prepare) edev->pdata->prepare(edev); ret = spi_sync(edev->spi, &m); /* have to wait at least Tcsl ns */ ndelay(250); if (ret) dev_err(&edev->spi->dev, "erase/write %sable error %d\n", is_on ? "en" : "dis", ret); if (edev->pdata->finish) edev->pdata->finish(edev); mutex_unlock(&edev->lock); return ret; } static ssize_t eeprom_93xx46_write_word(struct eeprom_93xx46_dev *edev, const char *buf, unsigned off) { struct spi_message m; struct spi_transfer t[2]; int bits, data_len, ret; u16 cmd_addr; if (unlikely(off >= edev->size)) return -EINVAL; /* The opcode in front of the address is three bits. */ bits = edev->addrlen + 3; cmd_addr = OP_WRITE << edev->addrlen; if (edev->pdata->flags & EE_ADDR8) { cmd_addr |= off; data_len = 1; } else { cmd_addr |= (off >> 1); data_len = 2; } dev_dbg(&edev->spi->dev, "write cmd 0x%x\n", cmd_addr); spi_message_init(&m); memset(t, 0, sizeof(t)); t[0].tx_buf = (char *)&cmd_addr; t[0].len = 2; t[0].bits_per_word = bits; spi_message_add_tail(&t[0], &m); t[1].tx_buf = buf; t[1].len = data_len; t[1].bits_per_word = 8; spi_message_add_tail(&t[1], &m); ret = spi_sync(edev->spi, &m); /* have to wait program cycle time Twc ms */ mdelay(6); return ret; } static int eeprom_93xx46_write(void *priv, unsigned int off, void *val, size_t count) { struct eeprom_93xx46_dev *edev = priv; char *buf = val; int i, ret, step = 1; if (unlikely(off >= edev->size)) return -EFBIG; if ((off + count) > edev->size) count = edev->size - off; if (unlikely(!count)) return count; /* only write even number of bytes on 16-bit devices */ if (edev->pdata->flags & EE_ADDR16) { step = 2; count &= ~1; } /* erase/write enable */ ret = eeprom_93xx46_ew(edev, 1); if (ret) return ret; mutex_lock(&edev->lock); if (edev->pdata->prepare) edev->pdata->prepare(edev); for (i = 0; i < count; i += step) { ret = eeprom_93xx46_write_word(edev, &buf[i], off + i); if (ret) { dev_err(&edev->spi->dev, "write failed at %d: %d\n", (int)off + i, ret); break; } } if (edev->pdata->finish) edev->pdata->finish(edev); mutex_unlock(&edev->lock); /* erase/write disable */ eeprom_93xx46_ew(edev, 0); return ret; } static int eeprom_93xx46_eral(struct eeprom_93xx46_dev *edev) { struct eeprom_93xx46_platform_data *pd = edev->pdata; struct spi_message m; struct spi_transfer t; int bits, ret; u16 cmd_addr; /* The opcode in front of the address is three bits. */ bits = edev->addrlen + 3; cmd_addr = OP_START << edev->addrlen; if (edev->pdata->flags & EE_ADDR8) cmd_addr |= ADDR_ERAL << 1; else cmd_addr |= ADDR_ERAL; if (has_quirk_instruction_length(edev)) { cmd_addr <<= 2; bits += 2; } dev_dbg(&edev->spi->dev, "eral cmd 0x%04x, %d bits\n", cmd_addr, bits); spi_message_init(&m); memset(&t, 0, sizeof(t)); t.tx_buf = &cmd_addr; t.len = 2; t.bits_per_word = bits; spi_message_add_tail(&t, &m); mutex_lock(&edev->lock); if (edev->pdata->prepare) edev->pdata->prepare(edev); ret = spi_sync(edev->spi, &m); if (ret) dev_err(&edev->spi->dev, "erase error %d\n", ret); /* have to wait erase cycle time Tec ms */ mdelay(6); if (pd->finish) pd->finish(edev); mutex_unlock(&edev->lock); return ret; } static ssize_t eeprom_93xx46_store_erase(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct eeprom_93xx46_dev *edev = dev_get_drvdata(dev); int erase = 0, ret; sscanf(buf, "%d", &erase); if (erase) { ret = eeprom_93xx46_ew(edev, 1); if (ret) return ret; ret = eeprom_93xx46_eral(edev); if (ret) return ret; ret = eeprom_93xx46_ew(edev, 0); if (ret) return ret; } return count; } static DEVICE_ATTR(erase, S_IWUSR, NULL, eeprom_93xx46_store_erase); static void select_assert(void *context) { struct eeprom_93xx46_dev *edev = context; gpiod_set_value_cansleep(edev->pdata->select, 1); } static void select_deassert(void *context) { struct eeprom_93xx46_dev *edev = context; gpiod_set_value_cansleep(edev->pdata->select, 0); } static const struct of_device_id eeprom_93xx46_of_table[] = { { .compatible = "eeprom-93xx46", .data = &at93c46_data, }, { .compatible = "atmel,at93c46", .data = &at93c46_data, }, { .compatible = "atmel,at93c46d", .data = &atmel_at93c46d_data, }, { .compatible = "atmel,at93c56", .data = &at93c56_data, }, { .compatible = "atmel,at93c66", .data = &at93c66_data, }, { .compatible = "microchip,93lc46b", .data = µchip_93lc46b_data, }, {} }; MODULE_DEVICE_TABLE(of, eeprom_93xx46_of_table); static const struct spi_device_id eeprom_93xx46_spi_ids[] = { { .name = "eeprom-93xx46", .driver_data = (kernel_ulong_t)&at93c46_data, }, { .name = "at93c46", .driver_data = (kernel_ulong_t)&at93c46_data, }, { .name = "at93c46d", .driver_data = (kernel_ulong_t)&atmel_at93c46d_data, }, { .name = "at93c56", .driver_data = (kernel_ulong_t)&at93c56_data, }, { .name = "at93c66", .driver_data = (kernel_ulong_t)&at93c66_data, }, { .name = "93lc46b", .driver_data = (kernel_ulong_t)µchip_93lc46b_data, }, {} }; MODULE_DEVICE_TABLE(spi, eeprom_93xx46_spi_ids); static int eeprom_93xx46_probe_dt(struct spi_device *spi) { const struct of_device_id *of_id = of_match_device(eeprom_93xx46_of_table, &spi->dev); struct device_node *np = spi->dev.of_node; struct eeprom_93xx46_platform_data *pd; u32 tmp; int ret; pd = devm_kzalloc(&spi->dev, sizeof(*pd), GFP_KERNEL); if (!pd) return -ENOMEM; ret = of_property_read_u32(np, "data-size", &tmp); if (ret < 0) { dev_err(&spi->dev, "data-size property not found\n"); return ret; } if (tmp == 8) { pd->flags |= EE_ADDR8; } else if (tmp == 16) { pd->flags |= EE_ADDR16; } else { dev_err(&spi->dev, "invalid data-size (%d)\n", tmp); return -EINVAL; } if (of_property_read_bool(np, "read-only")) pd->flags |= EE_READONLY; pd->select = devm_gpiod_get_optional(&spi->dev, "select", GPIOD_OUT_LOW); if (IS_ERR(pd->select)) return PTR_ERR(pd->select); pd->prepare = select_assert; pd->finish = select_deassert; gpiod_direction_output(pd->select, 0); if (of_id->data) { const struct eeprom_93xx46_devtype_data *data = of_id->data; pd->quirks = data->quirks; pd->flags |= data->flags; } spi->dev.platform_data = pd; return 0; } static int eeprom_93xx46_probe(struct spi_device *spi) { struct eeprom_93xx46_platform_data *pd; struct eeprom_93xx46_dev *edev; int err; if (spi->dev.of_node) { err = eeprom_93xx46_probe_dt(spi); if (err < 0) return err; } pd = spi->dev.platform_data; if (!pd) { dev_err(&spi->dev, "missing platform data\n"); return -ENODEV; } edev = devm_kzalloc(&spi->dev, sizeof(*edev), GFP_KERNEL); if (!edev) return -ENOMEM; if (pd->flags & EE_SIZE1K) edev->size = 128; else if (pd->flags & EE_SIZE2K) edev->size = 256; else if (pd->flags & EE_SIZE4K) edev->size = 512; else { dev_err(&spi->dev, "unspecified size\n"); return -EINVAL; } if (pd->flags & EE_ADDR8) edev->addrlen = ilog2(edev->size); else if (pd->flags & EE_ADDR16) edev->addrlen = ilog2(edev->size) - 1; else { dev_err(&spi->dev, "unspecified address type\n"); return -EINVAL; } mutex_init(&edev->lock); edev->spi = spi; edev->pdata = pd; edev->nvmem_config.type = NVMEM_TYPE_EEPROM; edev->nvmem_config.name = dev_name(&spi->dev); edev->nvmem_config.dev = &spi->dev; edev->nvmem_config.read_only = pd->flags & EE_READONLY; edev->nvmem_config.root_only = true; edev->nvmem_config.owner = THIS_MODULE; edev->nvmem_config.compat = true; edev->nvmem_config.base_dev = &spi->dev; edev->nvmem_config.reg_read = eeprom_93xx46_read; edev->nvmem_config.reg_write = eeprom_93xx46_write; edev->nvmem_config.priv = edev; edev->nvmem_config.stride = 4; edev->nvmem_config.word_size = 1; edev->nvmem_config.size = edev->size; edev->nvmem = devm_nvmem_register(&spi->dev, &edev->nvmem_config); if (IS_ERR(edev->nvmem)) return PTR_ERR(edev->nvmem); dev_info(&spi->dev, "%d-bit eeprom containing %d bytes %s\n", (pd->flags & EE_ADDR8) ? 8 : 16, edev->size, (pd->flags & EE_READONLY) ? "(readonly)" : ""); if (!(pd->flags & EE_READONLY)) { if (device_create_file(&spi->dev, &dev_attr_erase)) dev_err(&spi->dev, "can't create erase interface\n"); } spi_set_drvdata(spi, edev); return 0; } static void eeprom_93xx46_remove(struct spi_device *spi) { struct eeprom_93xx46_dev *edev = spi_get_drvdata(spi); if (!(edev->pdata->flags & EE_READONLY)) device_remove_file(&spi->dev, &dev_attr_erase); } static struct spi_driver eeprom_93xx46_driver = { .driver = { .name = "93xx46", .of_match_table = of_match_ptr(eeprom_93xx46_of_table), }, .probe = eeprom_93xx46_probe, .remove = eeprom_93xx46_remove, .id_table = eeprom_93xx46_spi_ids, }; module_spi_driver(eeprom_93xx46_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Driver for 93xx46 EEPROMs"); MODULE_AUTHOR("Anatolij Gustschin <agust@denx.de>"); MODULE_ALIAS("spi:93xx46"); MODULE_ALIAS("spi:eeprom-93xx46"); MODULE_ALIAS("spi:93lc46b");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1