Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Frank Haverkamp | 1462 | 97.60% | 5 | 38.46% |
Guilherme G. Piccoli | 25 | 1.67% | 2 | 15.38% |
Kleber Sacilotto de Souza | 4 | 0.27% | 1 | 7.69% |
Thomas Gleixner | 2 | 0.13% | 1 | 7.69% |
Eric W. Biedermann | 2 | 0.13% | 1 | 7.69% |
Geliang Tang | 1 | 0.07% | 1 | 7.69% |
Greg Kroah-Hartman | 1 | 0.07% | 1 | 7.69% |
Gustavo A. R. Silva | 1 | 0.07% | 1 | 7.69% |
Total | 1498 | 13 |
/* SPDX-License-Identifier: GPL-2.0-only */ #ifndef __CARD_BASE_H__ #define __CARD_BASE_H__ /** * IBM Accelerator Family 'GenWQE' * * (C) Copyright IBM Corp. 2013 * * Author: Frank Haverkamp <haver@linux.vnet.ibm.com> * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com> * Author: Michael Jung <mijung@gmx.net> * Author: Michael Ruettger <michael@ibmra.de> */ /* * Interfaces within the GenWQE module. Defines genwqe_card and * ddcb_queue as well as ddcb_requ. */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/cdev.h> #include <linux/stringify.h> #include <linux/pci.h> #include <linux/semaphore.h> #include <linux/uaccess.h> #include <linux/io.h> #include <linux/debugfs.h> #include <linux/slab.h> #include <linux/genwqe/genwqe_card.h> #include "genwqe_driver.h" #define GENWQE_MSI_IRQS 4 /* Just one supported, no MSIx */ #define GENWQE_MAX_VFS 15 /* maximum 15 VFs are possible */ #define GENWQE_MAX_FUNCS 16 /* 1 PF and 15 VFs */ #define GENWQE_CARD_NO_MAX (16 * GENWQE_MAX_FUNCS) /* Compile parameters, some of them appear in debugfs for later adjustment */ #define GENWQE_DDCB_MAX 32 /* DDCBs on the work-queue */ #define GENWQE_POLLING_ENABLED 0 /* in case of irqs not working */ #define GENWQE_DDCB_SOFTWARE_TIMEOUT 10 /* timeout per DDCB in seconds */ #define GENWQE_KILL_TIMEOUT 8 /* time until process gets killed */ #define GENWQE_VF_JOBTIMEOUT_MSEC 250 /* 250 msec */ #define GENWQE_PF_JOBTIMEOUT_MSEC 8000 /* 8 sec should be ok */ #define GENWQE_HEALTH_CHECK_INTERVAL 4 /* <= 0: disabled */ /* Sysfs attribute groups used when we create the genwqe device */ extern const struct attribute_group *genwqe_attribute_groups[]; /* * Config space for Genwqe5 A7: * 00:[14 10 4b 04]40 00 10 00[00 00 00 12]00 00 00 00 * 10: 0c 00 00 f0 07 3c 00 00 00 00 00 00 00 00 00 00 * 20: 00 00 00 00 00 00 00 00 00 00 00 00[14 10 4b 04] * 30: 00 00 00 00 50 00 00 00 00 00 00 00 00 00 00 00 */ #define PCI_DEVICE_GENWQE 0x044b /* Genwqe DeviceID */ #define PCI_SUBSYSTEM_ID_GENWQE5 0x035f /* Genwqe A5 Subsystem-ID */ #define PCI_SUBSYSTEM_ID_GENWQE5_NEW 0x044b /* Genwqe A5 Subsystem-ID */ #define PCI_CLASSCODE_GENWQE5 0x1200 /* UNKNOWN */ #define PCI_SUBVENDOR_ID_IBM_SRIOV 0x0000 #define PCI_SUBSYSTEM_ID_GENWQE5_SRIOV 0x0000 /* Genwqe A5 Subsystem-ID */ #define PCI_CLASSCODE_GENWQE5_SRIOV 0x1200 /* UNKNOWN */ #define GENWQE_SLU_ARCH_REQ 2 /* Required SLU architecture level */ /** * struct genwqe_reg - Genwqe data dump functionality */ struct genwqe_reg { u32 addr; u32 idx; u64 val; }; /* * enum genwqe_dbg_type - Specify chip unit to dump/debug */ enum genwqe_dbg_type { GENWQE_DBG_UNIT0 = 0, /* captured before prev errs cleared */ GENWQE_DBG_UNIT1 = 1, GENWQE_DBG_UNIT2 = 2, GENWQE_DBG_UNIT3 = 3, GENWQE_DBG_UNIT4 = 4, GENWQE_DBG_UNIT5 = 5, GENWQE_DBG_UNIT6 = 6, GENWQE_DBG_UNIT7 = 7, GENWQE_DBG_REGS = 8, GENWQE_DBG_DMA = 9, GENWQE_DBG_UNITS = 10, /* max number of possible debug units */ }; /* Software error injection to simulate card failures */ #define GENWQE_INJECT_HARDWARE_FAILURE 0x00000001 /* injects -1 reg reads */ #define GENWQE_INJECT_BUS_RESET_FAILURE 0x00000002 /* pci_bus_reset fail */ #define GENWQE_INJECT_GFIR_FATAL 0x00000004 /* GFIR = 0x0000ffff */ #define GENWQE_INJECT_GFIR_INFO 0x00000008 /* GFIR = 0xffff0000 */ /* * Genwqe card description and management data. * * Error-handling in case of card malfunction * ------------------------------------------ * * If the card is detected to be defective the outside environment * will cause the PCI layer to call deinit (the cleanup function for * probe). This is the same effect like doing a unbind/bind operation * on the card. * * The genwqe card driver implements a health checking thread which * verifies the card function. If this detects a problem the cards * device is being shutdown and restarted again, along with a reset of * the card and queue. * * All functions accessing the card device return either -EIO or -ENODEV * code to indicate the malfunction to the user. The user has to close * the file descriptor and open a new one, once the card becomes * available again. * * If the open file descriptor is setup to receive SIGIO, the signal is * genereated for the application which has to provide a handler to * react on it. If the application does not close the open * file descriptor a SIGKILL is send to enforce freeing the cards * resources. * * I did not find a different way to prevent kernel problems due to * reference counters for the cards character devices getting out of * sync. The character device deallocation does not block, even if * there is still an open file descriptor pending. If this pending * descriptor is closed, the data structures used by the character * device is reinstantiated, which will lead to the reference counter * dropping below the allowed values. * * Card recovery * ------------- * * To test the internal driver recovery the following command can be used: * sudo sh -c 'echo 0xfffff > /sys/class/genwqe/genwqe0_card/err_inject' */ /** * struct dma_mapping_type - Mapping type definition * * To avoid memcpying data arround we use user memory directly. To do * this we need to pin/swap-in the memory and request a DMA address * for it. */ enum dma_mapping_type { GENWQE_MAPPING_RAW = 0, /* contignous memory buffer */ GENWQE_MAPPING_SGL_TEMP, /* sglist dynamically used */ GENWQE_MAPPING_SGL_PINNED, /* sglist used with pinning */ }; /** * struct dma_mapping - Information about memory mappings done by the driver */ struct dma_mapping { enum dma_mapping_type type; void *u_vaddr; /* user-space vaddr/non-aligned */ void *k_vaddr; /* kernel-space vaddr/non-aligned */ dma_addr_t dma_addr; /* physical DMA address */ struct page **page_list; /* list of pages used by user buff */ dma_addr_t *dma_list; /* list of dma addresses per page */ unsigned int nr_pages; /* number of pages */ unsigned int size; /* size in bytes */ struct list_head card_list; /* list of usr_maps for card */ struct list_head pin_list; /* list of pinned memory for dev */ int write; /* writable map? useful in unmapping */ }; static inline void genwqe_mapping_init(struct dma_mapping *m, enum dma_mapping_type type) { memset(m, 0, sizeof(*m)); m->type = type; m->write = 1; /* Assume the maps we create are R/W */ } /** * struct ddcb_queue - DDCB queue data * @ddcb_max: Number of DDCBs on the queue * @ddcb_next: Next free DDCB * @ddcb_act: Next DDCB supposed to finish * @ddcb_seq: Sequence number of last DDCB * @ddcbs_in_flight: Currently enqueued DDCBs * @ddcbs_completed: Number of already completed DDCBs * @return_on_busy: Number of -EBUSY returns on full queue * @wait_on_busy: Number of waits on full queue * @ddcb_daddr: DMA address of first DDCB in the queue * @ddcb_vaddr: Kernel virtual address of first DDCB in the queue * @ddcb_req: Associated requests (one per DDCB) * @ddcb_waitqs: Associated wait queues (one per DDCB) * @ddcb_lock: Lock to protect queuing operations * @ddcb_waitq: Wait on next DDCB finishing */ struct ddcb_queue { int ddcb_max; /* amount of DDCBs */ int ddcb_next; /* next available DDCB num */ int ddcb_act; /* DDCB to be processed */ u16 ddcb_seq; /* slc seq num */ unsigned int ddcbs_in_flight; /* number of ddcbs in processing */ unsigned int ddcbs_completed; unsigned int ddcbs_max_in_flight; unsigned int return_on_busy; /* how many times -EBUSY? */ unsigned int wait_on_busy; dma_addr_t ddcb_daddr; /* DMA address */ struct ddcb *ddcb_vaddr; /* kernel virtual addr for DDCBs */ struct ddcb_requ **ddcb_req; /* ddcb processing parameter */ wait_queue_head_t *ddcb_waitqs; /* waitqueue per ddcb */ spinlock_t ddcb_lock; /* exclusive access to queue */ wait_queue_head_t busy_waitq; /* wait for ddcb processing */ /* registers or the respective queue to be used */ u32 IO_QUEUE_CONFIG; u32 IO_QUEUE_STATUS; u32 IO_QUEUE_SEGMENT; u32 IO_QUEUE_INITSQN; u32 IO_QUEUE_WRAP; u32 IO_QUEUE_OFFSET; u32 IO_QUEUE_WTIME; u32 IO_QUEUE_ERRCNTS; u32 IO_QUEUE_LRW; }; /* * GFIR, SLU_UNITCFG, APP_UNITCFG * 8 Units with FIR/FEC + 64 * 2ndary FIRS/FEC. */ #define GENWQE_FFDC_REGS (3 + (8 * (2 + 2 * 64))) struct genwqe_ffdc { unsigned int entries; struct genwqe_reg *regs; }; /** * struct genwqe_dev - GenWQE device information * @card_state: Card operation state, see above * @ffdc: First Failure Data Capture buffers for each unit * @card_thread: Working thread to operate the DDCB queue * @card_waitq: Wait queue used in card_thread * @queue: DDCB queue * @health_thread: Card monitoring thread (only for PFs) * @health_waitq: Wait queue used in health_thread * @pci_dev: Associated PCI device (function) * @mmio: Base address of 64-bit register space * @mmio_len: Length of register area * @file_lock: Lock to protect access to file_list * @file_list: List of all processes with open GenWQE file descriptors * * This struct contains all information needed to communicate with a * GenWQE card. It is initialized when a GenWQE device is found and * destroyed when it goes away. It holds data to maintain the queue as * well as data needed to feed the user interfaces. */ struct genwqe_dev { enum genwqe_card_state card_state; spinlock_t print_lock; int card_idx; /* card index 0..CARD_NO_MAX-1 */ u64 flags; /* general flags */ /* FFDC data gathering */ struct genwqe_ffdc ffdc[GENWQE_DBG_UNITS]; /* DDCB workqueue */ struct task_struct *card_thread; wait_queue_head_t queue_waitq; struct ddcb_queue queue; /* genwqe DDCB queue */ unsigned int irqs_processed; /* Card health checking thread */ struct task_struct *health_thread; wait_queue_head_t health_waitq; int use_platform_recovery; /* use platform recovery mechanisms */ /* char device */ dev_t devnum_genwqe; /* major/minor num card */ struct class *class_genwqe; /* reference to class object */ struct device *dev; /* for device creation */ struct cdev cdev_genwqe; /* char device for card */ struct dentry *debugfs_root; /* debugfs card root directory */ struct dentry *debugfs_genwqe; /* debugfs driver root directory */ /* pci resources */ struct pci_dev *pci_dev; /* PCI device */ void __iomem *mmio; /* BAR-0 MMIO start */ unsigned long mmio_len; int num_vfs; u32 vf_jobtimeout_msec[GENWQE_MAX_VFS]; int is_privileged; /* access to all regs possible */ /* config regs which we need often */ u64 slu_unitcfg; u64 app_unitcfg; u64 softreset; u64 err_inject; u64 last_gfir; char app_name[5]; spinlock_t file_lock; /* lock for open files */ struct list_head file_list; /* list of open files */ /* debugfs parameters */ int ddcb_software_timeout; /* wait until DDCB times out */ int skip_recovery; /* circumvention if recovery fails */ int kill_timeout; /* wait after sending SIGKILL */ }; /** * enum genwqe_requ_state - State of a DDCB execution request */ enum genwqe_requ_state { GENWQE_REQU_NEW = 0, GENWQE_REQU_ENQUEUED = 1, GENWQE_REQU_TAPPED = 2, GENWQE_REQU_FINISHED = 3, GENWQE_REQU_STATE_MAX, }; /** * struct genwqe_sgl - Scatter gather list describing user-space memory * @sgl: scatter gather list needs to be 128 byte aligned * @sgl_dma_addr: dma address of sgl * @sgl_size: size of area used for sgl * @user_addr: user-space address of memory area * @user_size: size of user-space memory area * @page: buffer for partial pages if needed * @page_dma_addr: dma address partial pages * @write: should we write it back to userspace? */ struct genwqe_sgl { dma_addr_t sgl_dma_addr; struct sg_entry *sgl; size_t sgl_size; /* size of sgl */ void __user *user_addr; /* user-space base-address */ size_t user_size; /* size of memory area */ int write; unsigned long nr_pages; unsigned long fpage_offs; size_t fpage_size; size_t lpage_size; void *fpage; dma_addr_t fpage_dma_addr; void *lpage; dma_addr_t lpage_dma_addr; }; int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, void __user *user_addr, size_t user_size, int write); int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, dma_addr_t *dma_list); int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl); /** * struct ddcb_requ - Kernel internal representation of the DDCB request * @cmd: User space representation of the DDCB execution request */ struct ddcb_requ { /* kernel specific content */ enum genwqe_requ_state req_state; /* request status */ int num; /* ddcb_no for this request */ struct ddcb_queue *queue; /* associated queue */ struct dma_mapping dma_mappings[DDCB_FIXUPS]; struct genwqe_sgl sgls[DDCB_FIXUPS]; /* kernel/user shared content */ struct genwqe_ddcb_cmd cmd; /* ddcb_no for this request */ struct genwqe_debug_data debug_data; }; /** * struct genwqe_file - Information for open GenWQE devices */ struct genwqe_file { struct genwqe_dev *cd; struct genwqe_driver *client; struct file *filp; struct fasync_struct *async_queue; struct pid *opener; struct list_head list; /* entry in list of open files */ spinlock_t map_lock; /* lock for dma_mappings */ struct list_head map_list; /* list of dma_mappings */ spinlock_t pin_lock; /* lock for pinned memory */ struct list_head pin_list; /* list of pinned memory */ }; int genwqe_setup_service_layer(struct genwqe_dev *cd); /* for PF only */ int genwqe_finish_queue(struct genwqe_dev *cd); int genwqe_release_service_layer(struct genwqe_dev *cd); /** * genwqe_get_slu_id() - Read Service Layer Unit Id * Return: 0x00: Development code * 0x01: SLC1 (old) * 0x02: SLC2 (sept2012) * 0x03: SLC2 (feb2013, generic driver) */ static inline int genwqe_get_slu_id(struct genwqe_dev *cd) { return (int)((cd->slu_unitcfg >> 32) & 0xff); } int genwqe_ddcbs_in_flight(struct genwqe_dev *cd); u8 genwqe_card_type(struct genwqe_dev *cd); int genwqe_card_reset(struct genwqe_dev *cd); int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count); void genwqe_reset_interrupt_capability(struct genwqe_dev *cd); int genwqe_device_create(struct genwqe_dev *cd); int genwqe_device_remove(struct genwqe_dev *cd); /* debugfs */ void genwqe_init_debugfs(struct genwqe_dev *cd); void genqwe_exit_debugfs(struct genwqe_dev *cd); int genwqe_read_softreset(struct genwqe_dev *cd); /* Hardware Circumventions */ int genwqe_recovery_on_fatal_gfir_required(struct genwqe_dev *cd); int genwqe_flash_readback_fails(struct genwqe_dev *cd); /** * genwqe_write_vreg() - Write register in VF window * @cd: genwqe device * @reg: register address * @val: value to write * @func: 0: PF, 1: VF0, ..., 15: VF14 */ int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func); /** * genwqe_read_vreg() - Read register in VF window * @cd: genwqe device * @reg: register address * @func: 0: PF, 1: VF0, ..., 15: VF14 * * Return: content of the register */ u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func); /* FFDC Buffer Management */ int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int unit_id); int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int unit_id, struct genwqe_reg *regs, unsigned int max_regs); int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs, unsigned int max_regs, int all); int genwqe_ffdc_dump_dma(struct genwqe_dev *cd, struct genwqe_reg *regs, unsigned int max_regs); int genwqe_init_debug_data(struct genwqe_dev *cd, struct genwqe_debug_data *d); void genwqe_init_crc32(void); int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len); /* Memory allocation/deallocation; dma address handling */ int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr, unsigned long size); int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m); static inline bool dma_mapping_used(struct dma_mapping *m) { if (!m) return false; return m->size != 0; } /** * __genwqe_execute_ddcb() - Execute DDCB request with addr translation * * This function will do the address translation changes to the DDCBs * according to the definitions required by the ATS field. It looks up * the memory allocation buffer or does vmap/vunmap for the respective * user-space buffers, inclusive page pinning and scatter gather list * buildup and teardown. */ int __genwqe_execute_ddcb(struct genwqe_dev *cd, struct genwqe_ddcb_cmd *cmd, unsigned int f_flags); /** * __genwqe_execute_raw_ddcb() - Execute DDCB request without addr translation * * This version will not do address translation or any modification of * the DDCB data. It is used e.g. for the MoveFlash DDCB which is * entirely prepared by the driver itself. That means the appropriate * DMA addresses are already in the DDCB and do not need any * modification. */ int __genwqe_execute_raw_ddcb(struct genwqe_dev *cd, struct genwqe_ddcb_cmd *cmd, unsigned int f_flags); int __genwqe_enqueue_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req, unsigned int f_flags); int __genwqe_wait_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req); int __genwqe_purge_ddcb(struct genwqe_dev *cd, struct ddcb_requ *req); /* register access */ int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val); u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs); int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val); u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs); void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size, dma_addr_t *dma_handle); void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size, void *vaddr, dma_addr_t dma_handle); /* Base clock frequency in MHz */ int genwqe_base_clock_frequency(struct genwqe_dev *cd); /* Before FFDC is captured the traps should be stopped. */ void genwqe_stop_traps(struct genwqe_dev *cd); void genwqe_start_traps(struct genwqe_dev *cd); /* Hardware circumvention */ bool genwqe_need_err_masking(struct genwqe_dev *cd); /** * genwqe_is_privileged() - Determine operation mode for PCI function * * On Intel with SRIOV support we see: * PF: is_physfn = 1 is_virtfn = 0 * VF: is_physfn = 0 is_virtfn = 1 * * On Systems with no SRIOV support _and_ virtualized systems we get: * is_physfn = 0 is_virtfn = 0 * * Other vendors have individual pci device ids to distinguish between * virtual function drivers and physical function drivers. GenWQE * unfortunately has just on pci device id for both, VFs and PF. * * The following code is used to distinguish if the card is running in * privileged mode, either as true PF or in a virtualized system with * full register access e.g. currently on PowerPC. * * if (pci_dev->is_virtfn) * cd->is_privileged = 0; * else * cd->is_privileged = (__genwqe_readq(cd, IO_SLU_BITSTREAM) * != IO_ILLEGAL_VALUE); */ static inline int genwqe_is_privileged(struct genwqe_dev *cd) { return cd->is_privileged; } #endif /* __CARD_BASE_H__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1