Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 4893 | 51.48% | 19 | 27.54% |
Yuri Nudelman | 1000 | 10.52% | 7 | 10.14% |
Dafna Hirschfeld | 856 | 9.01% | 3 | 4.35% |
Moti Haimovski | 786 | 8.27% | 6 | 8.70% |
Ofir Bitton | 774 | 8.14% | 7 | 10.14% |
Ohad Sharabi | 323 | 3.40% | 4 | 5.80% |
Omer Shpigelman | 295 | 3.10% | 4 | 5.80% |
Tomer Tayar | 281 | 2.96% | 10 | 14.49% |
Dani Liberman | 99 | 1.04% | 2 | 2.90% |
Sagiv Ozeri | 86 | 0.90% | 1 | 1.45% |
farah kassabri | 49 | 0.52% | 1 | 1.45% |
Jann Horn | 44 | 0.46% | 1 | 1.45% |
Jiasheng Jiang | 9 | 0.09% | 1 | 1.45% |
Robin Murphy | 6 | 0.06% | 1 | 1.45% |
Alon Mizrahi | 2 | 0.02% | 1 | 1.45% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 1.45% |
Total | 9504 | 69 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2021 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include "../include/hw_ip/mmu/mmu_general.h" #include <linux/pci.h> #include <linux/uaccess.h> #include <linux/vmalloc.h> #include <linux/iommu.h> #define MMU_ADDR_BUF_SIZE 40 #define MMU_ASID_BUF_SIZE 10 #define MMU_KBUF_SIZE (MMU_ADDR_BUF_SIZE + MMU_ASID_BUF_SIZE) #define I2C_MAX_TRANSACTION_LEN 8 static struct dentry *hl_debug_root; static int hl_debugfs_i2c_read(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr, u8 i2c_reg, u8 i2c_len, u64 *val) { struct cpucp_packet pkt; int rc; if (!hl_device_operational(hdev, NULL)) return -EBUSY; if (i2c_len > I2C_MAX_TRANSACTION_LEN) { dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n", i2c_len, I2C_MAX_TRANSACTION_LEN); return -EINVAL; } memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_RD << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.i2c_bus = i2c_bus; pkt.i2c_addr = i2c_addr; pkt.i2c_reg = i2c_reg; pkt.i2c_len = i2c_len; rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, val); if (rc) dev_err(hdev->dev, "Failed to read from I2C, error %d\n", rc); return rc; } static int hl_debugfs_i2c_write(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr, u8 i2c_reg, u8 i2c_len, u64 val) { struct cpucp_packet pkt; int rc; if (!hl_device_operational(hdev, NULL)) return -EBUSY; if (i2c_len > I2C_MAX_TRANSACTION_LEN) { dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n", i2c_len, I2C_MAX_TRANSACTION_LEN); return -EINVAL; } memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_WR << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.i2c_bus = i2c_bus; pkt.i2c_addr = i2c_addr; pkt.i2c_reg = i2c_reg; pkt.i2c_len = i2c_len; pkt.value = cpu_to_le64(val); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); if (rc) dev_err(hdev->dev, "Failed to write to I2C, error %d\n", rc); return rc; } static void hl_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state) { struct cpucp_packet pkt; int rc; if (!hl_device_operational(hdev, NULL)) return; memset(&pkt, 0, sizeof(pkt)); pkt.ctl = cpu_to_le32(CPUCP_PACKET_LED_SET << CPUCP_PKT_CTL_OPCODE_SHIFT); pkt.led_index = cpu_to_le32(led); pkt.value = cpu_to_le64(state); rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt), 0, NULL); if (rc) dev_err(hdev->dev, "Failed to set LED %d, error %d\n", led, rc); } static int command_buffers_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_cb *cb; bool first = true; spin_lock(&dev_entry->cb_spinlock); list_for_each_entry(cb, &dev_entry->cb_list, debugfs_list) { if (first) { first = false; seq_puts(s, "\n"); seq_puts(s, " CB ID CTX ID CB size CB RefCnt mmap? CS counter\n"); seq_puts(s, "---------------------------------------------------------------\n"); } seq_printf(s, " %03llu %d 0x%08x %d %d %d\n", cb->buf->handle, cb->ctx->asid, cb->size, kref_read(&cb->buf->refcount), atomic_read(&cb->buf->mmap), atomic_read(&cb->cs_cnt)); } spin_unlock(&dev_entry->cb_spinlock); if (!first) seq_puts(s, "\n"); return 0; } static int command_submission_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_cs *cs; bool first = true; spin_lock(&dev_entry->cs_spinlock); list_for_each_entry(cs, &dev_entry->cs_list, debugfs_list) { if (first) { first = false; seq_puts(s, "\n"); seq_puts(s, " CS ID CS TYPE CTX ASID CS RefCnt Submitted Completed\n"); seq_puts(s, "----------------------------------------------------------------\n"); } seq_printf(s, " %llu %d %d %d %d %d\n", cs->sequence, cs->type, cs->ctx->asid, kref_read(&cs->refcount), cs->submitted, cs->completed); } spin_unlock(&dev_entry->cs_spinlock); if (!first) seq_puts(s, "\n"); return 0; } static int command_submission_jobs_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_cs_job *job; bool first = true; spin_lock(&dev_entry->cs_job_spinlock); list_for_each_entry(job, &dev_entry->cs_job_list, debugfs_list) { if (first) { first = false; seq_puts(s, "\n"); seq_puts(s, " JOB ID CS ID CS TYPE CTX ASID JOB RefCnt H/W Queue\n"); seq_puts(s, "---------------------------------------------------------------\n"); } if (job->cs) seq_printf(s, " %02d %llu %d %d %d %d\n", job->id, job->cs->sequence, job->cs->type, job->cs->ctx->asid, kref_read(&job->refcount), job->hw_queue_id); else seq_printf(s, " %02d 0 0 %d %d %d\n", job->id, HL_KERNEL_ASID_ID, kref_read(&job->refcount), job->hw_queue_id); } spin_unlock(&dev_entry->cs_job_spinlock); if (!first) seq_puts(s, "\n"); return 0; } static int userptr_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_userptr *userptr; char dma_dir[4][30] = {"DMA_BIDIRECTIONAL", "DMA_TO_DEVICE", "DMA_FROM_DEVICE", "DMA_NONE"}; bool first = true; spin_lock(&dev_entry->userptr_spinlock); list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) { if (first) { first = false; seq_puts(s, "\n"); seq_puts(s, " pid user virtual address size dma dir\n"); seq_puts(s, "----------------------------------------------------------\n"); } seq_printf(s, " %-7d 0x%-14llx %-10llu %-30s\n", userptr->pid, userptr->addr, userptr->size, dma_dir[userptr->dir]); } spin_unlock(&dev_entry->userptr_spinlock); if (!first) seq_puts(s, "\n"); return 0; } static int vm_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_vm_hw_block_list_node *lnode; struct hl_ctx *ctx; struct hl_vm *vm; struct hl_vm_hash_node *hnode; struct hl_userptr *userptr; struct hl_vm_phys_pg_pack *phys_pg_pack = NULL; struct hl_va_range *va_range; struct hl_vm_va_block *va_block; enum vm_type *vm_type; bool once = true; u64 j; int i; if (!dev_entry->hdev->mmu_enable) return 0; spin_lock(&dev_entry->ctx_mem_hash_spinlock); list_for_each_entry(ctx, &dev_entry->ctx_mem_hash_list, debugfs_list) { once = false; seq_puts(s, "\n\n----------------------------------------------------"); seq_puts(s, "\n----------------------------------------------------\n\n"); seq_printf(s, "ctx asid: %u\n", ctx->asid); seq_puts(s, "\nmappings:\n\n"); seq_puts(s, " virtual address size handle\n"); seq_puts(s, "----------------------------------------------------\n"); mutex_lock(&ctx->mem_hash_lock); hash_for_each(ctx->mem_hash, i, hnode, node) { vm_type = hnode->ptr; if (*vm_type == VM_TYPE_USERPTR) { userptr = hnode->ptr; seq_printf(s, " 0x%-14llx %-10llu\n", hnode->vaddr, userptr->size); } else { phys_pg_pack = hnode->ptr; seq_printf(s, " 0x%-14llx %-10llu %-4u\n", hnode->vaddr, phys_pg_pack->total_size, phys_pg_pack->handle); } } mutex_unlock(&ctx->mem_hash_lock); if (ctx->asid != HL_KERNEL_ASID_ID && !list_empty(&ctx->hw_block_mem_list)) { seq_puts(s, "\nhw_block mappings:\n\n"); seq_puts(s, " virtual address block size mapped size HW block id\n"); seq_puts(s, "---------------------------------------------------------------\n"); mutex_lock(&ctx->hw_block_list_lock); list_for_each_entry(lnode, &ctx->hw_block_mem_list, node) { seq_printf(s, " 0x%-14lx %-6u %-6u %-9u\n", lnode->vaddr, lnode->block_size, lnode->mapped_size, lnode->id); } mutex_unlock(&ctx->hw_block_list_lock); } vm = &ctx->hdev->vm; spin_lock(&vm->idr_lock); if (!idr_is_empty(&vm->phys_pg_pack_handles)) seq_puts(s, "\n\nallocations:\n"); idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_pack, i) { if (phys_pg_pack->asid != ctx->asid) continue; seq_printf(s, "\nhandle: %u\n", phys_pg_pack->handle); seq_printf(s, "page size: %u\n\n", phys_pg_pack->page_size); seq_puts(s, " physical address\n"); seq_puts(s, "---------------------\n"); for (j = 0 ; j < phys_pg_pack->npages ; j++) { seq_printf(s, " 0x%-14llx\n", phys_pg_pack->pages[j]); } } spin_unlock(&vm->idr_lock); } spin_unlock(&dev_entry->ctx_mem_hash_spinlock); ctx = hl_get_compute_ctx(dev_entry->hdev); if (ctx) { seq_puts(s, "\nVA ranges:\n\n"); for (i = HL_VA_RANGE_TYPE_HOST ; i < HL_VA_RANGE_TYPE_MAX ; ++i) { va_range = ctx->va_range[i]; seq_printf(s, " va_range %d\n", i); seq_puts(s, "---------------------\n"); mutex_lock(&va_range->lock); list_for_each_entry(va_block, &va_range->list, node) { seq_printf(s, "%#16llx - %#16llx (%#llx)\n", va_block->start, va_block->end, va_block->size); } mutex_unlock(&va_range->lock); seq_puts(s, "\n"); } hl_ctx_put(ctx); } if (!once) seq_puts(s, "\n"); return 0; } static int userptr_lookup_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct scatterlist *sg; struct hl_userptr *userptr; bool first = true; u64 total_npages, npages, sg_start, sg_end; dma_addr_t dma_addr; int i; spin_lock(&dev_entry->userptr_spinlock); list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) { if (dev_entry->userptr_lookup >= userptr->addr && dev_entry->userptr_lookup < userptr->addr + userptr->size) { total_npages = 0; for_each_sgtable_dma_sg(userptr->sgt, sg, i) { npages = hl_get_sg_info(sg, &dma_addr); sg_start = userptr->addr + total_npages * PAGE_SIZE; sg_end = userptr->addr + (total_npages + npages) * PAGE_SIZE; if (dev_entry->userptr_lookup >= sg_start && dev_entry->userptr_lookup < sg_end) { dma_addr += (dev_entry->userptr_lookup - sg_start); if (first) { first = false; seq_puts(s, "\n"); seq_puts(s, " user virtual address dma address pid region start region size\n"); seq_puts(s, "---------------------------------------------------------------------------------------\n"); } seq_printf(s, " 0x%-18llx 0x%-16llx %-8u 0x%-16llx %-12llu\n", dev_entry->userptr_lookup, (u64)dma_addr, userptr->pid, userptr->addr, userptr->size); } total_npages += npages; } } } spin_unlock(&dev_entry->userptr_spinlock); if (!first) seq_puts(s, "\n"); return 0; } static ssize_t userptr_lookup_write(struct file *file, const char __user *buf, size_t count, loff_t *f_pos) { struct seq_file *s = file->private_data; struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; ssize_t rc; u64 value; rc = kstrtoull_from_user(buf, count, 16, &value); if (rc) return rc; dev_entry->userptr_lookup = value; return count; } static int mmu_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_device *hdev = dev_entry->hdev; struct hl_ctx *ctx; struct hl_mmu_hop_info hops_info = {0}; u64 virt_addr = dev_entry->mmu_addr, phys_addr; int i; if (!hdev->mmu_enable) return 0; if (dev_entry->mmu_asid == HL_KERNEL_ASID_ID) ctx = hdev->kernel_ctx; else ctx = hl_get_compute_ctx(hdev); if (!ctx) { dev_err(hdev->dev, "no ctx available\n"); return 0; } if (hl_mmu_get_tlb_info(ctx, virt_addr, &hops_info)) { dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); goto put_ctx; } hl_mmu_va_to_pa(ctx, virt_addr, &phys_addr); if (hops_info.scrambled_vaddr && (dev_entry->mmu_addr != hops_info.scrambled_vaddr)) seq_printf(s, "asid: %u, virt_addr: 0x%llx, scrambled virt_addr: 0x%llx,\nphys_addr: 0x%llx, scrambled_phys_addr: 0x%llx\n", dev_entry->mmu_asid, dev_entry->mmu_addr, hops_info.scrambled_vaddr, hops_info.unscrambled_paddr, phys_addr); else seq_printf(s, "asid: %u, virt_addr: 0x%llx, phys_addr: 0x%llx\n", dev_entry->mmu_asid, dev_entry->mmu_addr, phys_addr); for (i = 0 ; i < hops_info.used_hops ; i++) { seq_printf(s, "hop%d_addr: 0x%llx\n", i, hops_info.hop_info[i].hop_addr); seq_printf(s, "hop%d_pte_addr: 0x%llx\n", i, hops_info.hop_info[i].hop_pte_addr); seq_printf(s, "hop%d_pte: 0x%llx\n", i, hops_info.hop_info[i].hop_pte_val); } put_ctx: if (dev_entry->mmu_asid != HL_KERNEL_ASID_ID) hl_ctx_put(ctx); return 0; } static ssize_t mmu_asid_va_write(struct file *file, const char __user *buf, size_t count, loff_t *f_pos) { struct seq_file *s = file->private_data; struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_device *hdev = dev_entry->hdev; char kbuf[MMU_KBUF_SIZE]; char *c; ssize_t rc; if (!hdev->mmu_enable) return count; if (count > sizeof(kbuf) - 1) goto err; if (copy_from_user(kbuf, buf, count)) goto err; kbuf[count] = 0; c = strchr(kbuf, ' '); if (!c) goto err; *c = '\0'; rc = kstrtouint(kbuf, 10, &dev_entry->mmu_asid); if (rc) goto err; if (strncmp(c+1, "0x", 2)) goto err; rc = kstrtoull(c+3, 16, &dev_entry->mmu_addr); if (rc) goto err; return count; err: dev_err(hdev->dev, "usage: echo <asid> <0xaddr> > mmu\n"); return -EINVAL; } static int mmu_ack_error(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_device *hdev = dev_entry->hdev; int rc; if (!hdev->mmu_enable) return 0; if (!dev_entry->mmu_cap_mask) { dev_err(hdev->dev, "mmu_cap_mask is not set\n"); goto err; } rc = hdev->asic_funcs->ack_mmu_errors(hdev, dev_entry->mmu_cap_mask); if (rc) goto err; return 0; err: return -EINVAL; } static ssize_t mmu_ack_error_value_write(struct file *file, const char __user *buf, size_t count, loff_t *f_pos) { struct seq_file *s = file->private_data; struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_device *hdev = dev_entry->hdev; char kbuf[MMU_KBUF_SIZE]; ssize_t rc; if (!hdev->mmu_enable) return count; if (count > sizeof(kbuf) - 1) goto err; if (copy_from_user(kbuf, buf, count)) goto err; kbuf[count] = 0; if (strncmp(kbuf, "0x", 2)) goto err; rc = kstrtoull(kbuf, 16, &dev_entry->mmu_cap_mask); if (rc) goto err; return count; err: dev_err(hdev->dev, "usage: echo <0xmmu_cap_mask > > mmu_error\n"); return -EINVAL; } static int engines_show(struct seq_file *s, void *data) { struct hl_debugfs_entry *entry = s->private; struct hl_dbg_device_entry *dev_entry = entry->dev_entry; struct hl_device *hdev = dev_entry->hdev; struct engines_data eng_data; if (hdev->reset_info.in_reset) { dev_warn_ratelimited(hdev->dev, "Can't check device idle during reset\n"); return 0; } eng_data.actual_size = 0; eng_data.allocated_buf_size = HL_ENGINES_DATA_MAX_SIZE; eng_data.buf = vmalloc(eng_data.allocated_buf_size); if (!eng_data.buf) return -ENOMEM; hdev->asic_funcs->is_device_idle(hdev, NULL, 0, &eng_data); if (eng_data.actual_size > eng_data.allocated_buf_size) { dev_err(hdev->dev, "Engines data size (%d Bytes) is bigger than allocated size (%u Bytes)\n", eng_data.actual_size, eng_data.allocated_buf_size); vfree(eng_data.buf); return -ENOMEM; } seq_write(s, eng_data.buf, eng_data.actual_size); vfree(eng_data.buf); return 0; } static ssize_t hl_memory_scrub(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 val = hdev->memory_scrub_val; int rc; if (!hl_device_operational(hdev, NULL)) { dev_warn_ratelimited(hdev->dev, "Can't scrub memory, device is not operational\n"); return -EIO; } mutex_lock(&hdev->fpriv_list_lock); if (hdev->is_compute_ctx_active) { mutex_unlock(&hdev->fpriv_list_lock); dev_err(hdev->dev, "can't scrub dram, context exist\n"); return -EBUSY; } hdev->is_in_dram_scrub = true; mutex_unlock(&hdev->fpriv_list_lock); rc = hdev->asic_funcs->scrub_device_dram(hdev, val); mutex_lock(&hdev->fpriv_list_lock); hdev->is_in_dram_scrub = false; mutex_unlock(&hdev->fpriv_list_lock); if (rc) return rc; return count; } static bool hl_is_device_va(struct hl_device *hdev, u64 addr) { struct asic_fixed_properties *prop = &hdev->asic_prop; if (!hdev->mmu_enable) goto out; if (prop->dram_supports_virtual_memory && (addr >= prop->dmmu.start_addr && addr < prop->dmmu.end_addr)) return true; if (addr >= prop->pmmu.start_addr && addr < prop->pmmu.end_addr) return true; if (addr >= prop->pmmu_huge.start_addr && addr < prop->pmmu_huge.end_addr) return true; out: return false; } static bool hl_is_device_internal_memory_va(struct hl_device *hdev, u64 addr, u32 size) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 dram_start_addr, dram_end_addr; if (!hdev->mmu_enable) return false; if (prop->dram_supports_virtual_memory) { dram_start_addr = prop->dmmu.start_addr; dram_end_addr = prop->dmmu.end_addr; } else { dram_start_addr = prop->dram_base_address; dram_end_addr = prop->dram_end_address; } if (hl_mem_area_inside_range(addr, size, dram_start_addr, dram_end_addr)) return true; if (hl_mem_area_inside_range(addr, size, prop->sram_base_address, prop->sram_end_address)) return true; return false; } static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr, u32 size, u64 *phys_addr) { struct hl_vm_phys_pg_pack *phys_pg_pack; struct hl_ctx *ctx; struct hl_vm_hash_node *hnode; u64 end_address, range_size; struct hl_userptr *userptr; enum vm_type *vm_type; bool valid = false; int i, rc = 0; ctx = hl_get_compute_ctx(hdev); if (!ctx) { dev_err(hdev->dev, "no ctx available\n"); return -EINVAL; } /* Verify address is mapped */ mutex_lock(&ctx->mem_hash_lock); hash_for_each(ctx->mem_hash, i, hnode, node) { vm_type = hnode->ptr; if (*vm_type == VM_TYPE_USERPTR) { userptr = hnode->ptr; range_size = userptr->size; } else { phys_pg_pack = hnode->ptr; range_size = phys_pg_pack->total_size; } end_address = virt_addr + size; if ((virt_addr >= hnode->vaddr) && (end_address <= hnode->vaddr + range_size)) { valid = true; break; } } mutex_unlock(&ctx->mem_hash_lock); if (!valid) { dev_err(hdev->dev, "virt addr 0x%llx is not mapped\n", virt_addr); rc = -EINVAL; goto put_ctx; } rc = hl_mmu_va_to_pa(ctx, virt_addr, phys_addr); if (rc) { dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n", virt_addr); rc = -EINVAL; } put_ctx: hl_ctx_put(ctx); return rc; } static int hl_access_dev_mem_by_region(struct hl_device *hdev, u64 addr, u64 *val, enum debugfs_access_type acc_type, bool *found) { size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ? sizeof(u64) : sizeof(u32); struct pci_mem_region *mem_reg; int i; for (i = 0; i < PCI_REGION_NUMBER; i++) { mem_reg = &hdev->pci_mem_region[i]; if (!mem_reg->used) continue; if (addr >= mem_reg->region_base && addr <= mem_reg->region_base + mem_reg->region_size - acc_size) { *found = true; return hdev->asic_funcs->access_dev_mem(hdev, i, addr, val, acc_type); } } return 0; } static void hl_access_host_mem(struct hl_device *hdev, u64 addr, u64 *val, enum debugfs_access_type acc_type) { struct asic_fixed_properties *prop = &hdev->asic_prop; u64 offset = prop->device_dma_offset_for_host_access; switch (acc_type) { case DEBUGFS_READ32: *val = *(u32 *) phys_to_virt(addr - offset); break; case DEBUGFS_WRITE32: *(u32 *) phys_to_virt(addr - offset) = *val; break; case DEBUGFS_READ64: *val = *(u64 *) phys_to_virt(addr - offset); break; case DEBUGFS_WRITE64: *(u64 *) phys_to_virt(addr - offset) = *val; break; default: dev_err(hdev->dev, "hostmem access-type %d id not supported\n", acc_type); break; } } static int hl_access_mem(struct hl_device *hdev, u64 addr, u64 *val, enum debugfs_access_type acc_type) { size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ? sizeof(u64) : sizeof(u32); u64 host_start = hdev->asic_prop.host_base_address; u64 host_end = hdev->asic_prop.host_end_address; bool user_address, found = false; int rc; user_address = hl_is_device_va(hdev, addr); if (user_address) { rc = device_va_to_pa(hdev, addr, acc_size, &addr); if (rc) return rc; } rc = hl_access_dev_mem_by_region(hdev, addr, val, acc_type, &found); if (rc) { dev_err(hdev->dev, "Failed reading addr %#llx from dev mem (%d)\n", addr, rc); return rc; } if (found) return 0; if (!user_address || device_iommu_mapped(&hdev->pdev->dev)) { rc = -EINVAL; goto err; } if (addr >= host_start && addr <= host_end - acc_size) { hl_access_host_mem(hdev, addr, val, acc_type); } else { rc = -EINVAL; goto err; } return 0; err: dev_err(hdev->dev, "invalid addr %#llx\n", addr); return rc; } static ssize_t hl_data_read32(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 value64, addr = entry->addr; char tmp_buf[32]; ssize_t rc; u32 val; if (hdev->reset_info.in_reset) { dev_warn_ratelimited(hdev->dev, "Can't read during reset\n"); return 0; } if (*ppos) return 0; rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_READ32); if (rc) return rc; val = value64; /* downcast back to 32 */ sprintf(tmp_buf, "0x%08x\n", val); return simple_read_from_buffer(buf, count, ppos, tmp_buf, strlen(tmp_buf)); } static ssize_t hl_data_write32(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 value64, addr = entry->addr; u32 value; ssize_t rc; if (hdev->reset_info.in_reset) { dev_warn_ratelimited(hdev->dev, "Can't write during reset\n"); return 0; } rc = kstrtouint_from_user(buf, count, 16, &value); if (rc) return rc; value64 = value; rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_WRITE32); if (rc) return rc; return count; } static ssize_t hl_data_read64(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 addr = entry->addr; char tmp_buf[32]; ssize_t rc; u64 val; if (hdev->reset_info.in_reset) { dev_warn_ratelimited(hdev->dev, "Can't read during reset\n"); return 0; } if (*ppos) return 0; rc = hl_access_mem(hdev, addr, &val, DEBUGFS_READ64); if (rc) return rc; sprintf(tmp_buf, "0x%016llx\n", val); return simple_read_from_buffer(buf, count, ppos, tmp_buf, strlen(tmp_buf)); } static ssize_t hl_data_write64(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 addr = entry->addr; u64 value; ssize_t rc; if (hdev->reset_info.in_reset) { dev_warn_ratelimited(hdev->dev, "Can't write during reset\n"); return 0; } rc = kstrtoull_from_user(buf, count, 16, &value); if (rc) return rc; rc = hl_access_mem(hdev, addr, &value, DEBUGFS_WRITE64); if (rc) return rc; return count; } static ssize_t hl_dma_size_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 addr = entry->addr; ssize_t rc; u32 size; if (hdev->reset_info.in_reset) { dev_warn_ratelimited(hdev->dev, "Can't DMA during reset\n"); return 0; } rc = kstrtouint_from_user(buf, count, 16, &size); if (rc) return rc; if (!size) { dev_err(hdev->dev, "DMA read failed. size can't be 0\n"); return -EINVAL; } if (size > SZ_128M) { dev_err(hdev->dev, "DMA read failed. size can't be larger than 128MB\n"); return -EINVAL; } if (!hl_is_device_internal_memory_va(hdev, addr, size)) { dev_err(hdev->dev, "DMA read failed. Invalid 0x%010llx + 0x%08x\n", addr, size); return -EINVAL; } /* Free the previous allocation, if there was any */ entry->data_dma_blob_desc.size = 0; vfree(entry->data_dma_blob_desc.data); entry->data_dma_blob_desc.data = vmalloc(size); if (!entry->data_dma_blob_desc.data) return -ENOMEM; rc = hdev->asic_funcs->debugfs_read_dma(hdev, addr, size, entry->data_dma_blob_desc.data); if (rc) { dev_err(hdev->dev, "Failed to DMA from 0x%010llx\n", addr); vfree(entry->data_dma_blob_desc.data); entry->data_dma_blob_desc.data = NULL; return -EIO; } entry->data_dma_blob_desc.size = size; return count; } static ssize_t hl_monitor_dump_trigger(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 size, trig; ssize_t rc; if (hdev->reset_info.in_reset) { dev_warn_ratelimited(hdev->dev, "Can't dump monitors during reset\n"); return 0; } rc = kstrtouint_from_user(buf, count, 10, &trig); if (rc) return rc; if (trig != 1) { dev_err(hdev->dev, "Must write 1 to trigger monitor dump\n"); return -EINVAL; } size = sizeof(struct cpucp_monitor_dump); /* Free the previous allocation, if there was any */ entry->mon_dump_blob_desc.size = 0; vfree(entry->mon_dump_blob_desc.data); entry->mon_dump_blob_desc.data = vmalloc(size); if (!entry->mon_dump_blob_desc.data) return -ENOMEM; rc = hdev->asic_funcs->get_monitor_dump(hdev, entry->mon_dump_blob_desc.data); if (rc) { dev_err(hdev->dev, "Failed to dump monitors\n"); vfree(entry->mon_dump_blob_desc.data); entry->mon_dump_blob_desc.data = NULL; return -EIO; } entry->mon_dump_blob_desc.size = size; return count; } static ssize_t hl_get_power_state(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; char tmp_buf[200]; int i; if (*ppos) return 0; if (hdev->pdev->current_state == PCI_D0) i = 1; else if (hdev->pdev->current_state == PCI_D3hot) i = 2; else i = 3; sprintf(tmp_buf, "current power state: %d\n1 - D0\n2 - D3hot\n3 - Unknown\n", i); return simple_read_from_buffer(buf, count, ppos, tmp_buf, strlen(tmp_buf)); } static ssize_t hl_set_power_state(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; if (value == 1) { pci_set_power_state(hdev->pdev, PCI_D0); pci_restore_state(hdev->pdev); rc = pci_enable_device(hdev->pdev); if (rc < 0) return rc; } else if (value == 2) { pci_save_state(hdev->pdev); pci_disable_device(hdev->pdev); pci_set_power_state(hdev->pdev, PCI_D3hot); } else { dev_dbg(hdev->dev, "invalid power state value %u\n", value); return -EINVAL; } return count; } static ssize_t hl_i2c_data_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; char tmp_buf[32]; u64 val; ssize_t rc; if (*ppos) return 0; rc = hl_debugfs_i2c_read(hdev, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len, &val); if (rc) { dev_err(hdev->dev, "Failed to read from I2C bus %d, addr %d, reg %d, len %d\n", entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len); return rc; } sprintf(tmp_buf, "%#02llx\n", val); rc = simple_read_from_buffer(buf, count, ppos, tmp_buf, strlen(tmp_buf)); return rc; } static ssize_t hl_i2c_data_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u64 value; ssize_t rc; rc = kstrtou64_from_user(buf, count, 16, &value); if (rc) return rc; rc = hl_debugfs_i2c_write(hdev, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len, value); if (rc) { dev_err(hdev->dev, "Failed to write %#02llx to I2C bus %d, addr %d, reg %d, len %d\n", value, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len); return rc; } return count; } static ssize_t hl_led0_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; value = value ? 1 : 0; hl_debugfs_led_set(hdev, 0, value); return count; } static ssize_t hl_led1_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; value = value ? 1 : 0; hl_debugfs_led_set(hdev, 1, value); return count; } static ssize_t hl_led2_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; value = value ? 1 : 0; hl_debugfs_led_set(hdev, 2, value); return count; } static ssize_t hl_device_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { static const char *help = "Valid values: disable, enable, suspend, resume, cpu_timeout\n"; return simple_read_from_buffer(buf, count, ppos, help, strlen(help)); } static ssize_t hl_device_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; char data[30] = {0}; /* don't allow partial writes */ if (*ppos != 0) return 0; simple_write_to_buffer(data, 29, ppos, buf, count); if (strncmp("disable", data, strlen("disable")) == 0) { hdev->disabled = true; } else if (strncmp("enable", data, strlen("enable")) == 0) { hdev->disabled = false; } else if (strncmp("suspend", data, strlen("suspend")) == 0) { hdev->asic_funcs->suspend(hdev); } else if (strncmp("resume", data, strlen("resume")) == 0) { hdev->asic_funcs->resume(hdev); } else if (strncmp("cpu_timeout", data, strlen("cpu_timeout")) == 0) { hdev->device_cpu_disabled = true; } else { dev_err(hdev->dev, "Valid values: disable, enable, suspend, resume, cpu_timeout\n"); count = -EINVAL; } return count; } static ssize_t hl_clk_gate_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { return 0; } static ssize_t hl_clk_gate_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { return count; } static ssize_t hl_stop_on_err_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; char tmp_buf[200]; ssize_t rc; if (!hdev->asic_prop.configurable_stop_on_err) return -EOPNOTSUPP; if (*ppos) return 0; sprintf(tmp_buf, "%d\n", hdev->stop_on_err); rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf, strlen(tmp_buf) + 1); return rc; } static ssize_t hl_stop_on_err_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; if (!hdev->asic_prop.configurable_stop_on_err) return -EOPNOTSUPP; if (hdev->reset_info.in_reset) { dev_warn_ratelimited(hdev->dev, "Can't change stop on error during reset\n"); return 0; } rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; hdev->stop_on_err = value ? 1 : 0; hl_device_reset(hdev, 0); return count; } static ssize_t hl_security_violations_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; hdev->asic_funcs->ack_protection_bits_errors(hdev); return 0; } static ssize_t hl_state_dump_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; ssize_t rc; down_read(&entry->state_dump_sem); if (!entry->state_dump[entry->state_dump_head]) rc = 0; else rc = simple_read_from_buffer( buf, count, ppos, entry->state_dump[entry->state_dump_head], strlen(entry->state_dump[entry->state_dump_head])); up_read(&entry->state_dump_sem); return rc; } static ssize_t hl_state_dump_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; ssize_t rc; u32 size; int i; rc = kstrtouint_from_user(buf, count, 10, &size); if (rc) return rc; if (size <= 0 || size >= ARRAY_SIZE(entry->state_dump)) { dev_err(hdev->dev, "Invalid number of dumps to skip\n"); return -EINVAL; } if (entry->state_dump[entry->state_dump_head]) { down_write(&entry->state_dump_sem); for (i = 0; i < size; ++i) { vfree(entry->state_dump[entry->state_dump_head]); entry->state_dump[entry->state_dump_head] = NULL; if (entry->state_dump_head > 0) entry->state_dump_head--; else entry->state_dump_head = ARRAY_SIZE(entry->state_dump) - 1; } up_write(&entry->state_dump_sem); } return count; } static ssize_t hl_timeout_locked_read(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; char tmp_buf[200]; ssize_t rc; if (*ppos) return 0; sprintf(tmp_buf, "%d\n", jiffies_to_msecs(hdev->timeout_jiffies) / 1000); rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf, strlen(tmp_buf) + 1); return rc; } static ssize_t hl_timeout_locked_write(struct file *f, const char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; u32 value; ssize_t rc; rc = kstrtouint_from_user(buf, count, 10, &value); if (rc) return rc; if (value) hdev->timeout_jiffies = msecs_to_jiffies(value * 1000); else hdev->timeout_jiffies = MAX_SCHEDULE_TIMEOUT; return count; } static ssize_t hl_check_razwi_happened(struct file *f, char __user *buf, size_t count, loff_t *ppos) { struct hl_dbg_device_entry *entry = file_inode(f)->i_private; struct hl_device *hdev = entry->hdev; hdev->asic_funcs->check_if_razwi_happened(hdev); return 0; } static const struct file_operations hl_mem_scrub_fops = { .owner = THIS_MODULE, .write = hl_memory_scrub, }; static const struct file_operations hl_data32b_fops = { .owner = THIS_MODULE, .read = hl_data_read32, .write = hl_data_write32 }; static const struct file_operations hl_data64b_fops = { .owner = THIS_MODULE, .read = hl_data_read64, .write = hl_data_write64 }; static const struct file_operations hl_dma_size_fops = { .owner = THIS_MODULE, .write = hl_dma_size_write }; static const struct file_operations hl_monitor_dump_fops = { .owner = THIS_MODULE, .write = hl_monitor_dump_trigger }; static const struct file_operations hl_i2c_data_fops = { .owner = THIS_MODULE, .read = hl_i2c_data_read, .write = hl_i2c_data_write }; static const struct file_operations hl_power_fops = { .owner = THIS_MODULE, .read = hl_get_power_state, .write = hl_set_power_state }; static const struct file_operations hl_led0_fops = { .owner = THIS_MODULE, .write = hl_led0_write }; static const struct file_operations hl_led1_fops = { .owner = THIS_MODULE, .write = hl_led1_write }; static const struct file_operations hl_led2_fops = { .owner = THIS_MODULE, .write = hl_led2_write }; static const struct file_operations hl_device_fops = { .owner = THIS_MODULE, .read = hl_device_read, .write = hl_device_write }; static const struct file_operations hl_clk_gate_fops = { .owner = THIS_MODULE, .read = hl_clk_gate_read, .write = hl_clk_gate_write }; static const struct file_operations hl_stop_on_err_fops = { .owner = THIS_MODULE, .read = hl_stop_on_err_read, .write = hl_stop_on_err_write }; static const struct file_operations hl_security_violations_fops = { .owner = THIS_MODULE, .read = hl_security_violations_read }; static const struct file_operations hl_state_dump_fops = { .owner = THIS_MODULE, .read = hl_state_dump_read, .write = hl_state_dump_write }; static const struct file_operations hl_timeout_locked_fops = { .owner = THIS_MODULE, .read = hl_timeout_locked_read, .write = hl_timeout_locked_write }; static const struct file_operations hl_razwi_check_fops = { .owner = THIS_MODULE, .read = hl_check_razwi_happened }; static const struct hl_info_list hl_debugfs_list[] = { {"command_buffers", command_buffers_show, NULL}, {"command_submission", command_submission_show, NULL}, {"command_submission_jobs", command_submission_jobs_show, NULL}, {"userptr", userptr_show, NULL}, {"vm", vm_show, NULL}, {"userptr_lookup", userptr_lookup_show, userptr_lookup_write}, {"mmu", mmu_show, mmu_asid_va_write}, {"mmu_error", mmu_ack_error, mmu_ack_error_value_write}, {"engines", engines_show, NULL}, }; static int hl_debugfs_open(struct inode *inode, struct file *file) { struct hl_debugfs_entry *node = inode->i_private; return single_open(file, node->info_ent->show, node); } static ssize_t hl_debugfs_write(struct file *file, const char __user *buf, size_t count, loff_t *f_pos) { struct hl_debugfs_entry *node = file->f_inode->i_private; if (node->info_ent->write) return node->info_ent->write(file, buf, count, f_pos); else return -EINVAL; } static const struct file_operations hl_debugfs_fops = { .owner = THIS_MODULE, .open = hl_debugfs_open, .read = seq_read, .write = hl_debugfs_write, .llseek = seq_lseek, .release = single_release, }; static void add_secured_nodes(struct hl_dbg_device_entry *dev_entry) { debugfs_create_u8("i2c_bus", 0644, dev_entry->root, &dev_entry->i2c_bus); debugfs_create_u8("i2c_addr", 0644, dev_entry->root, &dev_entry->i2c_addr); debugfs_create_u8("i2c_reg", 0644, dev_entry->root, &dev_entry->i2c_reg); debugfs_create_u8("i2c_len", 0644, dev_entry->root, &dev_entry->i2c_len); debugfs_create_file("i2c_data", 0644, dev_entry->root, dev_entry, &hl_i2c_data_fops); debugfs_create_file("led0", 0200, dev_entry->root, dev_entry, &hl_led0_fops); debugfs_create_file("led1", 0200, dev_entry->root, dev_entry, &hl_led1_fops); debugfs_create_file("led2", 0200, dev_entry->root, dev_entry, &hl_led2_fops); } void hl_debugfs_add_device(struct hl_device *hdev) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; int count = ARRAY_SIZE(hl_debugfs_list); struct hl_debugfs_entry *entry; int i; dev_entry->hdev = hdev; dev_entry->entry_arr = kmalloc_array(count, sizeof(struct hl_debugfs_entry), GFP_KERNEL); if (!dev_entry->entry_arr) return; dev_entry->data_dma_blob_desc.size = 0; dev_entry->data_dma_blob_desc.data = NULL; dev_entry->mon_dump_blob_desc.size = 0; dev_entry->mon_dump_blob_desc.data = NULL; INIT_LIST_HEAD(&dev_entry->file_list); INIT_LIST_HEAD(&dev_entry->cb_list); INIT_LIST_HEAD(&dev_entry->cs_list); INIT_LIST_HEAD(&dev_entry->cs_job_list); INIT_LIST_HEAD(&dev_entry->userptr_list); INIT_LIST_HEAD(&dev_entry->ctx_mem_hash_list); mutex_init(&dev_entry->file_mutex); init_rwsem(&dev_entry->state_dump_sem); spin_lock_init(&dev_entry->cb_spinlock); spin_lock_init(&dev_entry->cs_spinlock); spin_lock_init(&dev_entry->cs_job_spinlock); spin_lock_init(&dev_entry->userptr_spinlock); spin_lock_init(&dev_entry->ctx_mem_hash_spinlock); dev_entry->root = debugfs_create_dir(dev_name(hdev->dev), hl_debug_root); debugfs_create_x64("memory_scrub_val", 0644, dev_entry->root, &hdev->memory_scrub_val); debugfs_create_file("memory_scrub", 0200, dev_entry->root, dev_entry, &hl_mem_scrub_fops); debugfs_create_x64("addr", 0644, dev_entry->root, &dev_entry->addr); debugfs_create_file("data32", 0644, dev_entry->root, dev_entry, &hl_data32b_fops); debugfs_create_file("data64", 0644, dev_entry->root, dev_entry, &hl_data64b_fops); debugfs_create_file("set_power_state", 0200, dev_entry->root, dev_entry, &hl_power_fops); debugfs_create_file("device", 0200, dev_entry->root, dev_entry, &hl_device_fops); debugfs_create_file("clk_gate", 0200, dev_entry->root, dev_entry, &hl_clk_gate_fops); debugfs_create_file("stop_on_err", 0644, dev_entry->root, dev_entry, &hl_stop_on_err_fops); debugfs_create_file("dump_security_violations", 0644, dev_entry->root, dev_entry, &hl_security_violations_fops); debugfs_create_file("dump_razwi_events", 0644, dev_entry->root, dev_entry, &hl_razwi_check_fops); debugfs_create_file("dma_size", 0200, dev_entry->root, dev_entry, &hl_dma_size_fops); debugfs_create_blob("data_dma", 0400, dev_entry->root, &dev_entry->data_dma_blob_desc); debugfs_create_file("monitor_dump_trig", 0200, dev_entry->root, dev_entry, &hl_monitor_dump_fops); debugfs_create_blob("monitor_dump", 0400, dev_entry->root, &dev_entry->mon_dump_blob_desc); debugfs_create_x8("skip_reset_on_timeout", 0644, dev_entry->root, &hdev->reset_info.skip_reset_on_timeout); debugfs_create_file("state_dump", 0600, dev_entry->root, dev_entry, &hl_state_dump_fops); debugfs_create_file("timeout_locked", 0644, dev_entry->root, dev_entry, &hl_timeout_locked_fops); for (i = 0, entry = dev_entry->entry_arr ; i < count ; i++, entry++) { debugfs_create_file(hl_debugfs_list[i].name, 0444, dev_entry->root, entry, &hl_debugfs_fops); entry->info_ent = &hl_debugfs_list[i]; entry->dev_entry = dev_entry; } if (!hdev->asic_prop.fw_security_enabled) add_secured_nodes(dev_entry); } void hl_debugfs_remove_device(struct hl_device *hdev) { struct hl_dbg_device_entry *entry = &hdev->hl_debugfs; int i; debugfs_remove_recursive(entry->root); mutex_destroy(&entry->file_mutex); vfree(entry->data_dma_blob_desc.data); vfree(entry->mon_dump_blob_desc.data); for (i = 0; i < ARRAY_SIZE(entry->state_dump); ++i) vfree(entry->state_dump[i]); kfree(entry->entry_arr); } void hl_debugfs_add_file(struct hl_fpriv *hpriv) { struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs; mutex_lock(&dev_entry->file_mutex); list_add(&hpriv->debugfs_list, &dev_entry->file_list); mutex_unlock(&dev_entry->file_mutex); } void hl_debugfs_remove_file(struct hl_fpriv *hpriv) { struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs; mutex_lock(&dev_entry->file_mutex); list_del(&hpriv->debugfs_list); mutex_unlock(&dev_entry->file_mutex); } void hl_debugfs_add_cb(struct hl_cb *cb) { struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs; spin_lock(&dev_entry->cb_spinlock); list_add(&cb->debugfs_list, &dev_entry->cb_list); spin_unlock(&dev_entry->cb_spinlock); } void hl_debugfs_remove_cb(struct hl_cb *cb) { struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs; spin_lock(&dev_entry->cb_spinlock); list_del(&cb->debugfs_list); spin_unlock(&dev_entry->cb_spinlock); } void hl_debugfs_add_cs(struct hl_cs *cs) { struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs; spin_lock(&dev_entry->cs_spinlock); list_add(&cs->debugfs_list, &dev_entry->cs_list); spin_unlock(&dev_entry->cs_spinlock); } void hl_debugfs_remove_cs(struct hl_cs *cs) { struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs; spin_lock(&dev_entry->cs_spinlock); list_del(&cs->debugfs_list); spin_unlock(&dev_entry->cs_spinlock); } void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->cs_job_spinlock); list_add(&job->debugfs_list, &dev_entry->cs_job_list); spin_unlock(&dev_entry->cs_job_spinlock); } void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->cs_job_spinlock); list_del(&job->debugfs_list); spin_unlock(&dev_entry->cs_job_spinlock); } void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->userptr_spinlock); list_add(&userptr->debugfs_list, &dev_entry->userptr_list); spin_unlock(&dev_entry->userptr_spinlock); } void hl_debugfs_remove_userptr(struct hl_device *hdev, struct hl_userptr *userptr) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->userptr_spinlock); list_del(&userptr->debugfs_list); spin_unlock(&dev_entry->userptr_spinlock); } void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->ctx_mem_hash_spinlock); list_add(&ctx->debugfs_list, &dev_entry->ctx_mem_hash_list); spin_unlock(&dev_entry->ctx_mem_hash_spinlock); } void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; spin_lock(&dev_entry->ctx_mem_hash_spinlock); list_del(&ctx->debugfs_list); spin_unlock(&dev_entry->ctx_mem_hash_spinlock); } /** * hl_debugfs_set_state_dump - register state dump making it accessible via * debugfs * @hdev: pointer to the device structure * @data: the actual dump data * @length: the length of the data */ void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data, unsigned long length) { struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs; down_write(&dev_entry->state_dump_sem); dev_entry->state_dump_head = (dev_entry->state_dump_head + 1) % ARRAY_SIZE(dev_entry->state_dump); vfree(dev_entry->state_dump[dev_entry->state_dump_head]); dev_entry->state_dump[dev_entry->state_dump_head] = data; up_write(&dev_entry->state_dump_sem); } void __init hl_debugfs_init(void) { hl_debug_root = debugfs_create_dir("habanalabs", NULL); } void hl_debugfs_fini(void) { debugfs_remove_recursive(hl_debug_root); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1