Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 2188 | 49.31% | 14 | 29.79% |
Ofir Bitton | 973 | 21.93% | 13 | 27.66% |
farah kassabri | 495 | 11.16% | 6 | 12.77% |
Tomer Tayar | 473 | 10.66% | 4 | 8.51% |
Omer Shpigelman | 246 | 5.54% | 2 | 4.26% |
Ohad Sharabi | 26 | 0.59% | 3 | 6.38% |
Dani Liberman | 22 | 0.50% | 1 | 2.13% |
Koby Elbaz | 6 | 0.14% | 1 | 2.13% |
Yuri Nudelman | 4 | 0.09% | 1 | 2.13% |
Alon Mizrahi | 4 | 0.09% | 2 | 4.26% |
Total | 4437 | 47 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #include "habanalabs.h" #include <linux/slab.h> /* * hl_queue_add_ptr - add to pi or ci and checks if it wraps around * * @ptr: the current pi/ci value * @val: the amount to add * * Add val to ptr. It can go until twice the queue length. */ inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val) { ptr += val; ptr &= ((HL_QUEUE_LENGTH << 1) - 1); return ptr; } static inline int queue_ci_get(atomic_t *ci, u32 queue_len) { return atomic_read(ci) & ((queue_len << 1) - 1); } static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len) { int delta = (q->pi - queue_ci_get(&q->ci, queue_len)); if (delta >= 0) return (queue_len - delta); else return (abs(delta) - queue_len); } void hl_hw_queue_update_ci(struct hl_cs *cs) { struct hl_device *hdev = cs->ctx->hdev; struct hl_hw_queue *q; int i; if (hdev->disabled) return; q = &hdev->kernel_queues[0]; /* There are no internal queues if H/W queues are being used */ if (!hdev->asic_prop.max_queues || q->queue_type == QUEUE_TYPE_HW) return; /* We must increment CI for every queue that will never get a * completion, there are 2 scenarios this can happen: * 1. All queues of a non completion CS will never get a completion. * 2. Internal queues never gets completion. */ for (i = 0 ; i < hdev->asic_prop.max_queues ; i++, q++) { if (!cs_needs_completion(cs) || q->queue_type == QUEUE_TYPE_INT) atomic_add(cs->jobs_in_queue_cnt[i], &q->ci); } } /* * hl_hw_queue_submit_bd() - Submit a buffer descriptor to an external or a * H/W queue. * @hdev: pointer to habanalabs device structure * @q: pointer to habanalabs queue structure * @ctl: BD's control word * @len: BD's length * @ptr: BD's pointer * * This function assumes there is enough space on the queue to submit a new * BD to it. It initializes the next BD and calls the device specific * function to set the pi (and doorbell) * * This function must be called when the scheduler mutex is taken * */ void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q, u32 ctl, u32 len, u64 ptr) { struct hl_bd *bd; bd = q->kernel_address; bd += hl_pi_2_offset(q->pi); bd->ctl = cpu_to_le32(ctl); bd->len = cpu_to_le32(len); bd->ptr = cpu_to_le64(ptr); q->pi = hl_queue_inc_ptr(q->pi); hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi); } /* * ext_queue_sanity_checks - perform some sanity checks on external queue * * @hdev : pointer to hl_device structure * @q : pointer to hl_hw_queue structure * @num_of_entries : how many entries to check for space * @reserve_cq_entry : whether to reserve an entry in the cq * * H/W queues spinlock should be taken before calling this function * * Perform the following: * - Make sure we have enough space in the h/w queue * - Make sure we have enough space in the completion queue * - Reserve space in the completion queue (needs to be reversed if there * is a failure down the road before the actual submission of work). Only * do this action if reserve_cq_entry is true * */ static int ext_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q, int num_of_entries, bool reserve_cq_entry) { atomic_t *free_slots = &hdev->completion_queue[q->cq_id].free_slots_cnt; int free_slots_cnt; /* Check we have enough space in the queue */ free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH); if (free_slots_cnt < num_of_entries) { dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n", q->hw_queue_id, num_of_entries); return -EAGAIN; } if (reserve_cq_entry) { /* * Check we have enough space in the completion queue * Add -1 to counter (decrement) unless counter was already 0 * In that case, CQ is full so we can't submit a new CB because * we won't get ack on its completion * atomic_add_unless will return 0 if counter was already 0 */ if (atomic_add_negative(num_of_entries * -1, free_slots)) { dev_dbg(hdev->dev, "No space for %d on CQ %d\n", num_of_entries, q->hw_queue_id); atomic_add(num_of_entries, free_slots); return -EAGAIN; } } return 0; } /* * int_queue_sanity_checks - perform some sanity checks on internal queue * * @hdev : pointer to hl_device structure * @q : pointer to hl_hw_queue structure * @num_of_entries : how many entries to check for space * * H/W queues spinlock should be taken before calling this function * * Perform the following: * - Make sure we have enough space in the h/w queue * */ static int int_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q, int num_of_entries) { int free_slots_cnt; if (num_of_entries > q->int_queue_len) { dev_err(hdev->dev, "Cannot populate queue %u with %u jobs\n", q->hw_queue_id, num_of_entries); return -ENOMEM; } /* Check we have enough space in the queue */ free_slots_cnt = queue_free_slots(q, q->int_queue_len); if (free_slots_cnt < num_of_entries) { dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n", q->hw_queue_id, num_of_entries); return -EAGAIN; } return 0; } /* * hw_queue_sanity_checks() - Make sure we have enough space in the h/w queue * @hdev: Pointer to hl_device structure. * @q: Pointer to hl_hw_queue structure. * @num_of_entries: How many entries to check for space. * * Notice: We do not reserve queue entries so this function mustn't be called * more than once per CS for the same queue * */ static int hw_queue_sanity_checks(struct hl_device *hdev, struct hl_hw_queue *q, int num_of_entries) { int free_slots_cnt; /* Check we have enough space in the queue */ free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH); if (free_slots_cnt < num_of_entries) { dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n", q->hw_queue_id, num_of_entries); return -EAGAIN; } return 0; } /* * hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion * * @hdev: pointer to hl_device structure * @hw_queue_id: Queue's type * @cb_size: size of CB * @cb_ptr: pointer to CB location * * This function sends a single CB, that must NOT generate a completion entry. * Sending CPU messages can be done instead via 'hl_hw_queue_submit_bd()' */ int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id, u32 cb_size, u64 cb_ptr) { struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id]; int rc = 0; hdev->asic_funcs->hw_queues_lock(hdev); if (hdev->disabled) { rc = -EPERM; goto out; } /* * hl_hw_queue_send_cb_no_cmpl() is called for queues of a H/W queue * type only on init phase, when the queues are empty and being tested, * so there is no need for sanity checks. */ if (q->queue_type != QUEUE_TYPE_HW) { rc = ext_queue_sanity_checks(hdev, q, 1, false); if (rc) goto out; } hl_hw_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr); out: hdev->asic_funcs->hw_queues_unlock(hdev); return rc; } /* * ext_queue_schedule_job - submit a JOB to an external queue * * @job: pointer to the job that needs to be submitted to the queue * * This function must be called when the scheduler mutex is taken * */ static void ext_queue_schedule_job(struct hl_cs_job *job) { struct hl_device *hdev = job->cs->ctx->hdev; struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id]; struct hl_cq_entry cq_pkt; struct hl_cq *cq; u64 cq_addr; struct hl_cb *cb; u32 ctl; u32 len; u64 ptr; /* * Update the JOB ID inside the BD CTL so the device would know what * to write in the completion queue */ ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK); cb = job->patched_cb; len = job->job_cb_size; ptr = cb->bus_address; /* Skip completion flow in case this is a non completion CS */ if (!cs_needs_completion(job->cs)) goto submit_bd; cq_pkt.data = cpu_to_le32( ((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT) & CQ_ENTRY_SHADOW_INDEX_MASK) | FIELD_PREP(CQ_ENTRY_SHADOW_INDEX_VALID_MASK, 1) | FIELD_PREP(CQ_ENTRY_READY_MASK, 1)); /* * No need to protect pi_offset because scheduling to the * H/W queues is done under the scheduler mutex * * No need to check if CQ is full because it was already * checked in ext_queue_sanity_checks */ cq = &hdev->completion_queue[q->cq_id]; cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry); hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len, job->user_cb_size, cq_addr, le32_to_cpu(cq_pkt.data), q->msi_vec, job->contains_dma_pkt); q->shadow_queue[hl_pi_2_offset(q->pi)] = job; cq->pi = hl_cq_inc_ptr(cq->pi); submit_bd: hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr); } /* * int_queue_schedule_job - submit a JOB to an internal queue * * @job: pointer to the job that needs to be submitted to the queue * * This function must be called when the scheduler mutex is taken * */ static void int_queue_schedule_job(struct hl_cs_job *job) { struct hl_device *hdev = job->cs->ctx->hdev; struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id]; struct hl_bd bd; __le64 *pi; bd.ctl = 0; bd.len = cpu_to_le32(job->job_cb_size); if (job->is_kernel_allocated_cb) /* bus_address is actually a mmu mapped address * allocated from an internal pool */ bd.ptr = cpu_to_le64(job->user_cb->bus_address); else bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb); pi = q->kernel_address + (q->pi & (q->int_queue_len - 1)) * sizeof(bd); q->pi++; q->pi &= ((q->int_queue_len << 1) - 1); hdev->asic_funcs->pqe_write(hdev, pi, &bd); hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi); } /* * hw_queue_schedule_job - submit a JOB to a H/W queue * * @job: pointer to the job that needs to be submitted to the queue * * This function must be called when the scheduler mutex is taken * */ static void hw_queue_schedule_job(struct hl_cs_job *job) { struct hl_device *hdev = job->cs->ctx->hdev; struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id]; u64 ptr; u32 offset, ctl, len; /* * Upon PQE completion, COMP_DATA is used as the write data to the * completion queue (QMAN HBW message), and COMP_OFFSET is used as the * write address offset in the SM block (QMAN LBW message). * The write address offset is calculated as "COMP_OFFSET << 2". */ offset = job->cs->sequence & (hdev->asic_prop.max_pending_cs - 1); ctl = ((offset << BD_CTL_COMP_OFFSET_SHIFT) & BD_CTL_COMP_OFFSET_MASK) | ((q->pi << BD_CTL_COMP_DATA_SHIFT) & BD_CTL_COMP_DATA_MASK); len = job->job_cb_size; /* * A patched CB is created only if a user CB was allocated by driver and * MMU is disabled. If MMU is enabled, the user CB should be used * instead. If the user CB wasn't allocated by driver, assume that it * holds an address. */ if (job->patched_cb) ptr = job->patched_cb->bus_address; else if (job->is_kernel_allocated_cb) ptr = job->user_cb->bus_address; else ptr = (u64) (uintptr_t) job->user_cb; hl_hw_queue_submit_bd(hdev, q, ctl, len, ptr); } static int init_signal_cs(struct hl_device *hdev, struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl) { struct hl_sync_stream_properties *prop; struct hl_hw_sob *hw_sob; u32 q_idx; int rc = 0; q_idx = job->hw_queue_id; prop = &hdev->kernel_queues[q_idx].sync_stream_prop; hw_sob = &prop->hw_sob[prop->curr_sob_offset]; cs_cmpl->hw_sob = hw_sob; cs_cmpl->sob_val = prop->next_sob_val; dev_dbg(hdev->dev, "generate signal CB, sob_id: %d, sob val: %u, q_idx: %d, seq: %llu\n", cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, q_idx, cs_cmpl->cs_seq); /* we set an EB since we must make sure all oeprations are done * when sending the signal */ hdev->asic_funcs->gen_signal_cb(hdev, job->patched_cb, cs_cmpl->hw_sob->sob_id, 0, true); rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, 1, false); job->cs->sob_addr_offset = hw_sob->sob_addr; job->cs->initial_sob_count = prop->next_sob_val - 1; return rc; } void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev, struct hl_cs *cs, struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl) { struct hl_cs_encaps_sig_handle *handle = cs->encaps_sig_hdl; u32 offset = 0; cs_cmpl->hw_sob = handle->hw_sob; /* Note that encaps_sig_wait_offset was validated earlier in the flow * for offset value which exceeds the max reserved signal count. * always decrement 1 of the offset since when the user * set offset 1 for example he mean to wait only for the first * signal only, which will be pre_sob_val, and if he set offset 2 * then the value required is (pre_sob_val + 1) and so on... * if user set wait offset to 0, then treat it as legacy wait cs, * wait for the next signal. */ if (job->encaps_sig_wait_offset) offset = job->encaps_sig_wait_offset - 1; cs_cmpl->sob_val = handle->pre_sob_val + offset; } static int init_wait_cs(struct hl_device *hdev, struct hl_cs *cs, struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl) { struct hl_gen_wait_properties wait_prop; struct hl_sync_stream_properties *prop; struct hl_cs_compl *signal_cs_cmpl; u32 q_idx; q_idx = job->hw_queue_id; prop = &hdev->kernel_queues[q_idx].sync_stream_prop; signal_cs_cmpl = container_of(cs->signal_fence, struct hl_cs_compl, base_fence); if (cs->encaps_signals) { /* use the encaps signal handle stored earlier in the flow * and set the SOB information from the encaps * signals handle */ hl_hw_queue_encaps_sig_set_sob_info(hdev, cs, job, cs_cmpl); dev_dbg(hdev->dev, "Wait for encaps signals handle, qidx(%u), CS sequence(%llu), sob val: 0x%x, offset: %u\n", cs->encaps_sig_hdl->q_idx, cs->encaps_sig_hdl->cs_seq, cs_cmpl->sob_val, job->encaps_sig_wait_offset); } else { /* Copy the SOB id and value of the signal CS */ cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob; cs_cmpl->sob_val = signal_cs_cmpl->sob_val; } /* check again if the signal cs already completed. * if yes then don't send any wait cs since the hw_sob * could be in reset already. if signal is not completed * then get refcount to hw_sob to prevent resetting the sob * while wait cs is not submitted. * note that this check is protected by two locks, * hw queue lock and completion object lock, * and the same completion object lock also protects * the hw_sob reset handler function. * The hw_queue lock prevent out of sync of hw_sob * refcount value, changed by signal/wait flows. */ spin_lock(&signal_cs_cmpl->lock); if (completion_done(&cs->signal_fence->completion)) { spin_unlock(&signal_cs_cmpl->lock); return -EINVAL; } kref_get(&cs_cmpl->hw_sob->kref); spin_unlock(&signal_cs_cmpl->lock); dev_dbg(hdev->dev, "generate wait CB, sob_id: %d, sob_val: 0x%x, mon_id: %d, q_idx: %d, seq: %llu\n", cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val, prop->base_mon_id, q_idx, cs->sequence); wait_prop.data = (void *) job->patched_cb; wait_prop.sob_base = cs_cmpl->hw_sob->sob_id; wait_prop.sob_mask = 0x1; wait_prop.sob_val = cs_cmpl->sob_val; wait_prop.mon_id = prop->base_mon_id; wait_prop.q_idx = q_idx; wait_prop.size = 0; hdev->asic_funcs->gen_wait_cb(hdev, &wait_prop); mb(); hl_fence_put(cs->signal_fence); cs->signal_fence = NULL; return 0; } /* * init_signal_wait_cs - initialize a signal/wait CS * @cs: pointer to the signal/wait CS * * H/W queues spinlock should be taken before calling this function */ static int init_signal_wait_cs(struct hl_cs *cs) { struct hl_ctx *ctx = cs->ctx; struct hl_device *hdev = ctx->hdev; struct hl_cs_job *job; struct hl_cs_compl *cs_cmpl = container_of(cs->fence, struct hl_cs_compl, base_fence); int rc = 0; /* There is only one job in a signal/wait CS */ job = list_first_entry(&cs->job_list, struct hl_cs_job, cs_node); if (cs->type & CS_TYPE_SIGNAL) rc = init_signal_cs(hdev, job, cs_cmpl); else if (cs->type & CS_TYPE_WAIT) rc = init_wait_cs(hdev, cs, job, cs_cmpl); return rc; } static int encaps_sig_first_staged_cs_handler (struct hl_device *hdev, struct hl_cs *cs) { struct hl_cs_compl *cs_cmpl = container_of(cs->fence, struct hl_cs_compl, base_fence); struct hl_cs_encaps_sig_handle *encaps_sig_hdl; struct hl_encaps_signals_mgr *mgr; int rc = 0; mgr = &cs->ctx->sig_mgr; spin_lock(&mgr->lock); encaps_sig_hdl = idr_find(&mgr->handles, cs->encaps_sig_hdl_id); if (encaps_sig_hdl) { /* * Set handler CS sequence, * the CS which contains the encapsulated signals. */ encaps_sig_hdl->cs_seq = cs->sequence; /* store the handle and set encaps signal indication, * to be used later in cs_do_release to put the last * reference to encaps signals handlers. */ cs_cmpl->encaps_signals = true; cs_cmpl->encaps_sig_hdl = encaps_sig_hdl; /* set hw_sob pointer in completion object * since it's used in cs_do_release flow to put * refcount to sob */ cs_cmpl->hw_sob = encaps_sig_hdl->hw_sob; cs_cmpl->sob_val = encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count; dev_dbg(hdev->dev, "CS seq (%llu) added to encaps signal handler id (%u), count(%u), qidx(%u), sob(%u), val(%u)\n", cs->sequence, encaps_sig_hdl->id, encaps_sig_hdl->count, encaps_sig_hdl->q_idx, cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val); } else { dev_err(hdev->dev, "encaps handle id(%u) wasn't found!\n", cs->encaps_sig_hdl_id); rc = -EINVAL; } spin_unlock(&mgr->lock); return rc; } /* * hl_hw_queue_schedule_cs - schedule a command submission * @cs: pointer to the CS */ int hl_hw_queue_schedule_cs(struct hl_cs *cs) { enum hl_device_status status; struct hl_cs_counters_atomic *cntr; struct hl_ctx *ctx = cs->ctx; struct hl_device *hdev = ctx->hdev; struct hl_cs_job *job, *tmp; struct hl_hw_queue *q; int rc = 0, i, cq_cnt; bool first_entry; u32 max_queues; cntr = &hdev->aggregated_cs_counters; hdev->asic_funcs->hw_queues_lock(hdev); if (!hl_device_operational(hdev, &status)) { atomic64_inc(&cntr->device_in_reset_drop_cnt); atomic64_inc(&ctx->cs_counters.device_in_reset_drop_cnt); dev_err(hdev->dev, "device is %s, CS rejected!\n", hdev->status[status]); rc = -EPERM; goto out; } max_queues = hdev->asic_prop.max_queues; q = &hdev->kernel_queues[0]; for (i = 0, cq_cnt = 0 ; i < max_queues ; i++, q++) { if (cs->jobs_in_queue_cnt[i]) { switch (q->queue_type) { case QUEUE_TYPE_EXT: rc = ext_queue_sanity_checks(hdev, q, cs->jobs_in_queue_cnt[i], cs_needs_completion(cs) ? true : false); break; case QUEUE_TYPE_INT: rc = int_queue_sanity_checks(hdev, q, cs->jobs_in_queue_cnt[i]); break; case QUEUE_TYPE_HW: rc = hw_queue_sanity_checks(hdev, q, cs->jobs_in_queue_cnt[i]); break; default: dev_err(hdev->dev, "Queue type %d is invalid\n", q->queue_type); rc = -EINVAL; break; } if (rc) { atomic64_inc( &ctx->cs_counters.queue_full_drop_cnt); atomic64_inc(&cntr->queue_full_drop_cnt); goto unroll_cq_resv; } if (q->queue_type == QUEUE_TYPE_EXT) cq_cnt++; } } if ((cs->type == CS_TYPE_SIGNAL) || (cs->type == CS_TYPE_WAIT)) { rc = init_signal_wait_cs(cs); if (rc) goto unroll_cq_resv; } else if (cs->type == CS_TYPE_COLLECTIVE_WAIT) { rc = hdev->asic_funcs->collective_wait_init_cs(cs); if (rc) goto unroll_cq_resv; } rc = hdev->asic_funcs->pre_schedule_cs(cs); if (rc) { dev_err(hdev->dev, "Failed in pre-submission operations of CS %d.%llu\n", ctx->asid, cs->sequence); goto unroll_cq_resv; } hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = cs; if (cs->encaps_signals && cs->staged_first) { rc = encaps_sig_first_staged_cs_handler(hdev, cs); if (rc) goto unroll_cq_resv; } spin_lock(&hdev->cs_mirror_lock); /* Verify staged CS exists and add to the staged list */ if (cs->staged_cs && !cs->staged_first) { struct hl_cs *staged_cs; staged_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence); if (!staged_cs) { dev_err(hdev->dev, "Cannot find staged submission sequence %llu", cs->staged_sequence); rc = -EINVAL; goto unlock_cs_mirror; } if (is_staged_cs_last_exists(hdev, staged_cs)) { dev_err(hdev->dev, "Staged submission sequence %llu already submitted", cs->staged_sequence); rc = -EINVAL; goto unlock_cs_mirror; } list_add_tail(&cs->staged_cs_node, &staged_cs->staged_cs_node); /* update stream map of the first CS */ if (hdev->supports_wait_for_multi_cs) staged_cs->fence->stream_master_qid_map |= cs->fence->stream_master_qid_map; } list_add_tail(&cs->mirror_node, &hdev->cs_mirror_list); /* Queue TDR if the CS is the first entry and if timeout is wanted */ first_entry = list_first_entry(&hdev->cs_mirror_list, struct hl_cs, mirror_node) == cs; if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) && first_entry && cs_needs_timeout(cs)) { cs->tdr_active = true; schedule_delayed_work(&cs->work_tdr, cs->timeout_jiffies); } spin_unlock(&hdev->cs_mirror_lock); list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) switch (job->queue_type) { case QUEUE_TYPE_EXT: ext_queue_schedule_job(job); break; case QUEUE_TYPE_INT: int_queue_schedule_job(job); break; case QUEUE_TYPE_HW: hw_queue_schedule_job(job); break; default: break; } cs->submitted = true; goto out; unlock_cs_mirror: spin_unlock(&hdev->cs_mirror_lock); unroll_cq_resv: q = &hdev->kernel_queues[0]; for (i = 0 ; (i < max_queues) && (cq_cnt > 0) ; i++, q++) { if ((q->queue_type == QUEUE_TYPE_EXT) && (cs->jobs_in_queue_cnt[i])) { atomic_t *free_slots = &hdev->completion_queue[i].free_slots_cnt; atomic_add(cs->jobs_in_queue_cnt[i], free_slots); cq_cnt--; } } out: hdev->asic_funcs->hw_queues_unlock(hdev); return rc; } /* * hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue * * @hdev: pointer to hl_device structure * @hw_queue_id: which queue to increment its ci */ void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id) { struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id]; atomic_inc(&q->ci); } static int ext_and_cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q, bool is_cpu_queue) { void *p; int rc; if (is_cpu_queue) p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address); else p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address, GFP_KERNEL | __GFP_ZERO); if (!p) return -ENOMEM; q->kernel_address = p; q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH, sizeof(struct hl_cs_job *), GFP_KERNEL); if (!q->shadow_queue) { dev_err(hdev->dev, "Failed to allocate shadow queue for H/W queue %d\n", q->hw_queue_id); rc = -ENOMEM; goto free_queue; } /* Make sure read/write pointers are initialized to start of queue */ atomic_set(&q->ci, 0); q->pi = 0; return 0; free_queue: if (is_cpu_queue) hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address); else hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address, q->bus_address); return rc; } static int int_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) { void *p; p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id, &q->bus_address, &q->int_queue_len); if (!p) { dev_err(hdev->dev, "Failed to get base address for internal queue %d\n", q->hw_queue_id); return -EFAULT; } q->kernel_address = p; q->pi = 0; atomic_set(&q->ci, 0); return 0; } static int cpu_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) { return ext_and_cpu_queue_init(hdev, q, true); } static int ext_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) { return ext_and_cpu_queue_init(hdev, q, false); } static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q) { void *p; p = hl_asic_dma_alloc_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, &q->bus_address, GFP_KERNEL | __GFP_ZERO); if (!p) return -ENOMEM; q->kernel_address = p; /* Make sure read/write pointers are initialized to start of queue */ atomic_set(&q->ci, 0); q->pi = 0; return 0; } static void sync_stream_queue_init(struct hl_device *hdev, u32 q_idx) { struct hl_sync_stream_properties *sync_stream_prop; struct asic_fixed_properties *prop = &hdev->asic_prop; struct hl_hw_sob *hw_sob; int sob, reserved_mon_idx, queue_idx; sync_stream_prop = &hdev->kernel_queues[q_idx].sync_stream_prop; /* We use 'collective_mon_idx' as a running index in order to reserve * monitors for collective master/slave queues. * collective master queue gets 2 reserved monitors * collective slave queue gets 1 reserved monitor */ if (hdev->kernel_queues[q_idx].collective_mode == HL_COLLECTIVE_MASTER) { reserved_mon_idx = hdev->collective_mon_idx; /* reserve the first monitor for collective master queue */ sync_stream_prop->collective_mstr_mon_id[0] = prop->collective_first_mon + reserved_mon_idx; /* reserve the second monitor for collective master queue */ sync_stream_prop->collective_mstr_mon_id[1] = prop->collective_first_mon + reserved_mon_idx + 1; hdev->collective_mon_idx += HL_COLLECTIVE_RSVD_MSTR_MONS; } else if (hdev->kernel_queues[q_idx].collective_mode == HL_COLLECTIVE_SLAVE) { reserved_mon_idx = hdev->collective_mon_idx++; /* reserve a monitor for collective slave queue */ sync_stream_prop->collective_slave_mon_id = prop->collective_first_mon + reserved_mon_idx; } if (!hdev->kernel_queues[q_idx].supports_sync_stream) return; queue_idx = hdev->sync_stream_queue_idx++; sync_stream_prop->base_sob_id = prop->sync_stream_first_sob + (queue_idx * HL_RSVD_SOBS); sync_stream_prop->base_mon_id = prop->sync_stream_first_mon + (queue_idx * HL_RSVD_MONS); sync_stream_prop->next_sob_val = 1; sync_stream_prop->curr_sob_offset = 0; for (sob = 0 ; sob < HL_RSVD_SOBS ; sob++) { hw_sob = &sync_stream_prop->hw_sob[sob]; hw_sob->hdev = hdev; hw_sob->sob_id = sync_stream_prop->base_sob_id + sob; hw_sob->sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id); hw_sob->q_idx = q_idx; kref_init(&hw_sob->kref); } } static void sync_stream_queue_reset(struct hl_device *hdev, u32 q_idx) { struct hl_sync_stream_properties *prop = &hdev->kernel_queues[q_idx].sync_stream_prop; /* * In case we got here due to a stuck CS, the refcnt might be bigger * than 1 and therefore we reset it. */ kref_init(&prop->hw_sob[prop->curr_sob_offset].kref); prop->curr_sob_offset = 0; prop->next_sob_val = 1; } /* * queue_init - main initialization function for H/W queue object * * @hdev: pointer to hl_device device structure * @q: pointer to hl_hw_queue queue structure * @hw_queue_id: The id of the H/W queue * * Allocate dma-able memory for the queue and initialize fields * Returns 0 on success */ static int queue_init(struct hl_device *hdev, struct hl_hw_queue *q, u32 hw_queue_id) { int rc; q->hw_queue_id = hw_queue_id; switch (q->queue_type) { case QUEUE_TYPE_EXT: rc = ext_queue_init(hdev, q); break; case QUEUE_TYPE_INT: rc = int_queue_init(hdev, q); break; case QUEUE_TYPE_CPU: rc = cpu_queue_init(hdev, q); break; case QUEUE_TYPE_HW: rc = hw_queue_init(hdev, q); break; case QUEUE_TYPE_NA: q->valid = 0; return 0; default: dev_crit(hdev->dev, "wrong queue type %d during init\n", q->queue_type); rc = -EINVAL; break; } sync_stream_queue_init(hdev, q->hw_queue_id); if (rc) return rc; q->valid = 1; return 0; } /* * hw_queue_fini - destroy queue * * @hdev: pointer to hl_device device structure * @q: pointer to hl_hw_queue queue structure * * Free the queue memory */ static void queue_fini(struct hl_device *hdev, struct hl_hw_queue *q) { if (!q->valid) return; /* * If we arrived here, there are no jobs waiting on this queue * so we can safely remove it. * This is because this function can only called when: * 1. Either a context is deleted, which only can occur if all its * jobs were finished * 2. A context wasn't able to be created due to failure or timeout, * which means there are no jobs on the queue yet * * The only exception are the queues of the kernel context, but * if they are being destroyed, it means that the entire module is * being removed. If the module is removed, it means there is no open * user context. It also means that if a job was submitted by * the kernel driver (e.g. context creation), the job itself was * released by the kernel driver when a timeout occurred on its * Completion. Thus, we don't need to release it again. */ if (q->queue_type == QUEUE_TYPE_INT) return; kfree(q->shadow_queue); if (q->queue_type == QUEUE_TYPE_CPU) hl_cpu_accessible_dma_pool_free(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address); else hl_asic_dma_free_coherent(hdev, HL_QUEUE_SIZE_IN_BYTES, q->kernel_address, q->bus_address); } int hl_hw_queues_create(struct hl_device *hdev) { struct asic_fixed_properties *asic = &hdev->asic_prop; struct hl_hw_queue *q; int i, rc, q_ready_cnt; hdev->kernel_queues = kcalloc(asic->max_queues, sizeof(*hdev->kernel_queues), GFP_KERNEL); if (!hdev->kernel_queues) { dev_err(hdev->dev, "Not enough memory for H/W queues\n"); return -ENOMEM; } /* Initialize the H/W queues */ for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues; i < asic->max_queues ; i++, q_ready_cnt++, q++) { q->queue_type = asic->hw_queues_props[i].type; q->supports_sync_stream = asic->hw_queues_props[i].supports_sync_stream; q->collective_mode = asic->hw_queues_props[i].collective_mode; rc = queue_init(hdev, q, i); if (rc) { dev_err(hdev->dev, "failed to initialize queue %d\n", i); goto release_queues; } } return 0; release_queues: for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++) queue_fini(hdev, q); kfree(hdev->kernel_queues); return rc; } void hl_hw_queues_destroy(struct hl_device *hdev) { struct hl_hw_queue *q; u32 max_queues = hdev->asic_prop.max_queues; int i; for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) queue_fini(hdev, q); kfree(hdev->kernel_queues); } void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset) { struct hl_hw_queue *q; u32 max_queues = hdev->asic_prop.max_queues; int i; for (i = 0, q = hdev->kernel_queues ; i < max_queues ; i++, q++) { if ((!q->valid) || ((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU))) continue; q->pi = 0; atomic_set(&q->ci, 0); if (q->supports_sync_stream) sync_stream_queue_reset(hdev, q->hw_queue_id); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1