Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Omer Shpigelman | 4745 | 97.67% | 1 | 11.11% |
Ohad Sharabi | 44 | 0.91% | 2 | 22.22% |
Ofir Bitton | 27 | 0.56% | 1 | 11.11% |
Adam Aharon | 23 | 0.47% | 1 | 11.11% |
Oded Gabbay | 14 | 0.29% | 2 | 22.22% |
Greg Kroah-Hartman | 3 | 0.06% | 1 | 11.11% |
Tal Albo | 2 | 0.04% | 1 | 11.11% |
Total | 4858 | 9 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2018 HabanaLabs, Ltd. * All Rights Reserved. */ #include "gaudiP.h" #include "../include/gaudi/gaudi_coresight.h" #include "../include/gaudi/asic_reg/gaudi_regs.h" #include "../include/gaudi/gaudi_masks.h" #include "../include/gaudi/gaudi_reg_map.h" #include <uapi/misc/habanalabs.h> #define SPMU_SECTION_SIZE MME0_ACC_SPMU_MAX_OFFSET #define SPMU_EVENT_TYPES_OFFSET 0x400 #define SPMU_MAX_COUNTERS 6 static u64 debug_stm_regs[GAUDI_STM_LAST + 1] = { [GAUDI_STM_MME0_ACC] = mmMME0_ACC_STM_BASE, [GAUDI_STM_MME0_SBAB] = mmMME0_SBAB_STM_BASE, [GAUDI_STM_MME0_CTRL] = mmMME0_CTRL_STM_BASE, [GAUDI_STM_MME1_ACC] = mmMME1_ACC_STM_BASE, [GAUDI_STM_MME1_SBAB] = mmMME1_SBAB_STM_BASE, [GAUDI_STM_MME1_CTRL] = mmMME1_CTRL_STM_BASE, [GAUDI_STM_MME2_ACC] = mmMME2_ACC_STM_BASE, [GAUDI_STM_MME2_SBAB] = mmMME2_SBAB_STM_BASE, [GAUDI_STM_MME2_CTRL] = mmMME2_CTRL_STM_BASE, [GAUDI_STM_MME3_ACC] = mmMME3_ACC_STM_BASE, [GAUDI_STM_MME3_SBAB] = mmMME3_SBAB_STM_BASE, [GAUDI_STM_MME3_CTRL] = mmMME3_CTRL_STM_BASE, [GAUDI_STM_DMA_IF_W_S] = mmDMA_IF_W_S_STM_BASE, [GAUDI_STM_DMA_IF_E_S] = mmDMA_IF_E_S_STM_BASE, [GAUDI_STM_DMA_IF_W_N] = mmDMA_IF_W_N_STM_BASE, [GAUDI_STM_DMA_IF_E_N] = mmDMA_IF_E_N_STM_BASE, [GAUDI_STM_CPU] = mmCPU_STM_BASE, [GAUDI_STM_DMA_CH_0_CS] = mmDMA_CH_0_CS_STM_BASE, [GAUDI_STM_DMA_CH_1_CS] = mmDMA_CH_1_CS_STM_BASE, [GAUDI_STM_DMA_CH_2_CS] = mmDMA_CH_2_CS_STM_BASE, [GAUDI_STM_DMA_CH_3_CS] = mmDMA_CH_3_CS_STM_BASE, [GAUDI_STM_DMA_CH_4_CS] = mmDMA_CH_4_CS_STM_BASE, [GAUDI_STM_DMA_CH_5_CS] = mmDMA_CH_5_CS_STM_BASE, [GAUDI_STM_DMA_CH_6_CS] = mmDMA_CH_6_CS_STM_BASE, [GAUDI_STM_DMA_CH_7_CS] = mmDMA_CH_7_CS_STM_BASE, [GAUDI_STM_PCIE] = mmPCIE_STM_BASE, [GAUDI_STM_MMU_CS] = mmMMU_CS_STM_BASE, [GAUDI_STM_PSOC] = mmPSOC_STM_BASE, [GAUDI_STM_NIC0_0] = mmSTM_0_NIC0_DBG_BASE, [GAUDI_STM_NIC0_1] = mmSTM_1_NIC0_DBG_BASE, [GAUDI_STM_NIC1_0] = mmSTM_0_NIC1_DBG_BASE, [GAUDI_STM_NIC1_1] = mmSTM_1_NIC1_DBG_BASE, [GAUDI_STM_NIC2_0] = mmSTM_0_NIC2_DBG_BASE, [GAUDI_STM_NIC2_1] = mmSTM_1_NIC2_DBG_BASE, [GAUDI_STM_NIC3_0] = mmSTM_0_NIC3_DBG_BASE, [GAUDI_STM_NIC3_1] = mmSTM_1_NIC3_DBG_BASE, [GAUDI_STM_NIC4_0] = mmSTM_0_NIC4_DBG_BASE, [GAUDI_STM_NIC4_1] = mmSTM_1_NIC4_DBG_BASE, [GAUDI_STM_TPC0_EML] = mmTPC0_EML_STM_BASE, [GAUDI_STM_TPC1_EML] = mmTPC1_EML_STM_BASE, [GAUDI_STM_TPC2_EML] = mmTPC2_EML_STM_BASE, [GAUDI_STM_TPC3_EML] = mmTPC3_EML_STM_BASE, [GAUDI_STM_TPC4_EML] = mmTPC4_EML_STM_BASE, [GAUDI_STM_TPC5_EML] = mmTPC5_EML_STM_BASE, [GAUDI_STM_TPC6_EML] = mmTPC6_EML_STM_BASE, [GAUDI_STM_TPC7_EML] = mmTPC7_EML_STM_BASE }; static u64 debug_etf_regs[GAUDI_ETF_LAST + 1] = { [GAUDI_ETF_MME0_ACC] = mmMME0_ACC_ETF_BASE, [GAUDI_ETF_MME0_SBAB] = mmMME0_SBAB_ETF_BASE, [GAUDI_ETF_MME0_CTRL] = mmMME0_CTRL_ETF_BASE, [GAUDI_ETF_MME1_ACC] = mmMME1_ACC_ETF_BASE, [GAUDI_ETF_MME1_SBAB] = mmMME1_SBAB_ETF_BASE, [GAUDI_ETF_MME1_CTRL] = mmMME1_CTRL_ETF_BASE, [GAUDI_ETF_MME2_ACC] = mmMME2_MME2_ACC_ETF_BASE, [GAUDI_ETF_MME2_SBAB] = mmMME2_SBAB_ETF_BASE, [GAUDI_ETF_MME2_CTRL] = mmMME2_CTRL_ETF_BASE, [GAUDI_ETF_MME3_ACC] = mmMME3_ACC_ETF_BASE, [GAUDI_ETF_MME3_SBAB] = mmMME3_SBAB_ETF_BASE, [GAUDI_ETF_MME3_CTRL] = mmMME3_CTRL_ETF_BASE, [GAUDI_ETF_DMA_IF_W_S] = mmDMA_IF_W_S_ETF_BASE, [GAUDI_ETF_DMA_IF_E_S] = mmDMA_IF_E_S_ETF_BASE, [GAUDI_ETF_DMA_IF_W_N] = mmDMA_IF_W_N_ETF_BASE, [GAUDI_ETF_DMA_IF_E_N] = mmDMA_IF_E_N_ETF_BASE, [GAUDI_ETF_CPU_0] = mmCPU_ETF_0_BASE, [GAUDI_ETF_CPU_1] = mmCPU_ETF_1_BASE, [GAUDI_ETF_CPU_TRACE] = mmCPU_ETF_TRACE_BASE, [GAUDI_ETF_DMA_CH_0_CS] = mmDMA_CH_0_CS_ETF_BASE, [GAUDI_ETF_DMA_CH_1_CS] = mmDMA_CH_1_CS_ETF_BASE, [GAUDI_ETF_DMA_CH_2_CS] = mmDMA_CH_2_CS_ETF_BASE, [GAUDI_ETF_DMA_CH_3_CS] = mmDMA_CH_3_CS_ETF_BASE, [GAUDI_ETF_DMA_CH_4_CS] = mmDMA_CH_4_CS_ETF_BASE, [GAUDI_ETF_DMA_CH_5_CS] = mmDMA_CH_5_CS_ETF_BASE, [GAUDI_ETF_DMA_CH_6_CS] = mmDMA_CH_6_CS_ETF_BASE, [GAUDI_ETF_DMA_CH_7_CS] = mmDMA_CH_7_CS_ETF_BASE, [GAUDI_ETF_PCIE] = mmPCIE_ETF_BASE, [GAUDI_ETF_MMU_CS] = mmMMU_CS_ETF_BASE, [GAUDI_ETF_PSOC] = mmPSOC_ETF_BASE, [GAUDI_ETF_NIC0_0] = mmETF_0_NIC0_DBG_BASE, [GAUDI_ETF_NIC0_1] = mmETF_1_NIC0_DBG_BASE, [GAUDI_ETF_NIC1_0] = mmETF_0_NIC1_DBG_BASE, [GAUDI_ETF_NIC1_1] = mmETF_1_NIC1_DBG_BASE, [GAUDI_ETF_NIC2_0] = mmETF_0_NIC2_DBG_BASE, [GAUDI_ETF_NIC2_1] = mmETF_1_NIC2_DBG_BASE, [GAUDI_ETF_NIC3_0] = mmETF_0_NIC3_DBG_BASE, [GAUDI_ETF_NIC3_1] = mmETF_1_NIC3_DBG_BASE, [GAUDI_ETF_NIC4_0] = mmETF_0_NIC4_DBG_BASE, [GAUDI_ETF_NIC4_1] = mmETF_1_NIC4_DBG_BASE, [GAUDI_ETF_TPC0_EML] = mmTPC0_EML_ETF_BASE, [GAUDI_ETF_TPC1_EML] = mmTPC1_EML_ETF_BASE, [GAUDI_ETF_TPC2_EML] = mmTPC2_EML_ETF_BASE, [GAUDI_ETF_TPC3_EML] = mmTPC3_EML_ETF_BASE, [GAUDI_ETF_TPC4_EML] = mmTPC4_EML_ETF_BASE, [GAUDI_ETF_TPC5_EML] = mmTPC5_EML_ETF_BASE, [GAUDI_ETF_TPC6_EML] = mmTPC6_EML_ETF_BASE, [GAUDI_ETF_TPC7_EML] = mmTPC7_EML_ETF_BASE }; static u64 debug_funnel_regs[GAUDI_FUNNEL_LAST + 1] = { [GAUDI_FUNNEL_MME0_ACC] = mmMME0_ACC_FUNNEL_BASE, [GAUDI_FUNNEL_MME1_ACC] = mmMME1_ACC_FUNNEL_BASE, [GAUDI_FUNNEL_MME2_ACC] = mmMME2_ACC_FUNNEL_BASE, [GAUDI_FUNNEL_MME3_ACC] = mmMME3_ACC_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y0_X0] = mmSRAM_Y0_X0_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y0_X1] = mmSRAM_Y0_X1_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y0_X2] = mmSRAM_Y0_X2_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y0_X3] = mmSRAM_Y0_X3_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y0_X4] = mmSRAM_Y0_X4_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y0_X5] = mmSRAM_Y0_X5_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y0_X6] = mmSRAM_Y0_X6_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y0_X7] = mmSRAM_Y0_X7_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y1_X0] = mmSRAM_Y1_X0_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y1_X1] = mmSRAM_Y1_X1_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y1_X2] = mmSRAM_Y1_X2_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y1_X3] = mmSRAM_Y1_X3_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y1_X4] = mmSRAM_Y1_X4_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y1_X5] = mmSRAM_Y1_X5_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y1_X6] = mmSRAM_Y1_X6_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y1_X7] = mmSRAM_Y1_X7_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y2_X0] = mmSRAM_Y2_X0_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y2_X1] = mmSRAM_Y2_X1_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y2_X2] = mmSRAM_Y2_X2_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y2_X3] = mmSRAM_Y2_X3_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y2_X4] = mmSRAM_Y2_X4_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y2_X5] = mmSRAM_Y2_X5_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y2_X6] = mmSRAM_Y2_X6_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y2_X7] = mmSRAM_Y2_X7_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y3_X0] = mmSRAM_Y3_X0_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y3_X1] = mmSRAM_Y3_X1_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y3_X2] = mmSRAM_Y3_X2_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y3_X4] = mmSRAM_Y3_X4_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y3_X3] = mmSRAM_Y3_X3_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y3_X5] = mmSRAM_Y3_X5_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y3_X6] = mmSRAM_Y3_X6_FUNNEL_BASE, [GAUDI_FUNNEL_SRAM_Y3_X7] = mmSRAM_Y3_X7_FUNNEL_BASE, [GAUDI_FUNNEL_SIF_0] = mmSIF_FUNNEL_0_BASE, [GAUDI_FUNNEL_SIF_1] = mmSIF_FUNNEL_1_BASE, [GAUDI_FUNNEL_SIF_2] = mmSIF_FUNNEL_2_BASE, [GAUDI_FUNNEL_SIF_3] = mmSIF_FUNNEL_3_BASE, [GAUDI_FUNNEL_SIF_4] = mmSIF_FUNNEL_4_BASE, [GAUDI_FUNNEL_SIF_5] = mmSIF_FUNNEL_5_BASE, [GAUDI_FUNNEL_SIF_6] = mmSIF_FUNNEL_6_BASE, [GAUDI_FUNNEL_SIF_7] = mmSIF_FUNNEL_7_BASE, [GAUDI_FUNNEL_NIF_0] = mmNIF_FUNNEL_0_BASE, [GAUDI_FUNNEL_NIF_1] = mmNIF_FUNNEL_1_BASE, [GAUDI_FUNNEL_NIF_2] = mmNIF_FUNNEL_2_BASE, [GAUDI_FUNNEL_NIF_3] = mmNIF_FUNNEL_3_BASE, [GAUDI_FUNNEL_NIF_4] = mmNIF_FUNNEL_4_BASE, [GAUDI_FUNNEL_NIF_5] = mmNIF_FUNNEL_5_BASE, [GAUDI_FUNNEL_NIF_6] = mmNIF_FUNNEL_6_BASE, [GAUDI_FUNNEL_NIF_7] = mmNIF_FUNNEL_7_BASE, [GAUDI_FUNNEL_DMA_IF_W_S] = mmDMA_IF_W_S_FUNNEL_BASE, [GAUDI_FUNNEL_DMA_IF_E_S] = mmDMA_IF_E_S_FUNNEL_BASE, [GAUDI_FUNNEL_DMA_IF_W_N] = mmDMA_IF_W_N_FUNNEL_BASE, [GAUDI_FUNNEL_DMA_IF_E_N] = mmDMA_IF_E_N_FUNNEL_BASE, [GAUDI_FUNNEL_CPU] = mmCPU_FUNNEL_BASE, [GAUDI_FUNNEL_NIC_TPC_W_S] = mmNIC_TPC_FUNNEL_W_S_BASE, [GAUDI_FUNNEL_NIC_TPC_E_S] = mmNIC_TPC_FUNNEL_E_S_BASE, [GAUDI_FUNNEL_NIC_TPC_W_N] = mmNIC_TPC_FUNNEL_W_N_BASE, [GAUDI_FUNNEL_NIC_TPC_E_N] = mmNIC_TPC_FUNNEL_E_N_BASE, [GAUDI_FUNNEL_PCIE] = mmPCIE_FUNNEL_BASE, [GAUDI_FUNNEL_PSOC] = mmPSOC_FUNNEL_BASE, [GAUDI_FUNNEL_NIC0] = mmFUNNEL_NIC0_DBG_BASE, [GAUDI_FUNNEL_NIC1] = mmFUNNEL_NIC1_DBG_BASE, [GAUDI_FUNNEL_NIC2] = mmFUNNEL_NIC2_DBG_BASE, [GAUDI_FUNNEL_NIC3] = mmFUNNEL_NIC3_DBG_BASE, [GAUDI_FUNNEL_NIC4] = mmFUNNEL_NIC4_DBG_BASE, [GAUDI_FUNNEL_TPC0_EML] = mmTPC0_EML_FUNNEL_BASE, [GAUDI_FUNNEL_TPC1_EML] = mmTPC1_EML_FUNNEL_BASE, [GAUDI_FUNNEL_TPC2_EML] = mmTPC2_EML_FUNNEL_BASE, [GAUDI_FUNNEL_TPC3_EML] = mmTPC3_EML_FUNNEL_BASE, [GAUDI_FUNNEL_TPC4_EML] = mmTPC4_EML_FUNNEL_BASE, [GAUDI_FUNNEL_TPC5_EML] = mmTPC5_EML_FUNNEL_BASE, [GAUDI_FUNNEL_TPC6_EML] = mmTPC6_EML_FUNNEL_BASE, [GAUDI_FUNNEL_TPC7_EML] = mmTPC7_EML_FUNNEL_BASE }; static u64 debug_bmon_regs[GAUDI_BMON_LAST + 1] = { [GAUDI_BMON_MME0_ACC_0] = mmMME0_ACC_BMON0_BASE, [GAUDI_BMON_MME0_SBAB_0] = mmMME0_SBAB_BMON0_BASE, [GAUDI_BMON_MME0_SBAB_1] = mmMME0_SBAB_BMON1_BASE, [GAUDI_BMON_MME0_CTRL_0] = mmMME0_CTRL_BMON0_BASE, [GAUDI_BMON_MME0_CTRL_1] = mmMME0_CTRL_BMON1_BASE, [GAUDI_BMON_MME1_ACC_0] = mmMME1_ACC_BMON0_BASE, [GAUDI_BMON_MME1_SBAB_0] = mmMME1_SBAB_BMON0_BASE, [GAUDI_BMON_MME1_SBAB_1] = mmMME1_SBAB_BMON1_BASE, [GAUDI_BMON_MME1_CTRL_0] = mmMME1_CTRL_BMON0_BASE, [GAUDI_BMON_MME1_CTRL_1] = mmMME1_CTRL_BMON1_BASE, [GAUDI_BMON_MME2_ACC_0] = mmMME2_ACC_BMON0_BASE, [GAUDI_BMON_MME2_SBAB_0] = mmMME2_SBAB_BMON0_BASE, [GAUDI_BMON_MME2_SBAB_1] = mmMME2_SBAB_BMON1_BASE, [GAUDI_BMON_MME2_CTRL_0] = mmMME2_CTRL_BMON0_BASE, [GAUDI_BMON_MME2_CTRL_1] = mmMME2_CTRL_BMON1_BASE, [GAUDI_BMON_MME3_ACC_0] = mmMME3_ACC_BMON0_BASE, [GAUDI_BMON_MME3_SBAB_0] = mmMME3_SBAB_BMON0_BASE, [GAUDI_BMON_MME3_SBAB_1] = mmMME3_SBAB_BMON1_BASE, [GAUDI_BMON_MME3_CTRL_0] = mmMME3_CTRL_BMON0_BASE, [GAUDI_BMON_MME3_CTRL_1] = mmMME3_CTRL_BMON1_BASE, [GAUDI_BMON_DMA_IF_W_S_SOB_WR] = mmDMA_IF_W_S_SOB_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_W_S_0_WR] = mmDMA_IF_W_S_HBM0_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_W_S_0_RD] = mmDMA_IF_W_S_HBM0_RD_BMON_BASE, [GAUDI_BMON_DMA_IF_W_S_1_WR] = mmDMA_IF_W_S_HBM1_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_W_S_1_RD] = mmDMA_IF_W_S_HBM1_RD_BMON_BASE, [GAUDI_BMON_DMA_IF_E_S_SOB_WR] = mmDMA_IF_E_S_SOB_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_E_S_0_WR] = mmDMA_IF_E_S_HBM0_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_E_S_0_RD] = mmDMA_IF_E_S_HBM0_RD_BMON_BASE, [GAUDI_BMON_DMA_IF_E_S_1_WR] = mmDMA_IF_E_S_HBM1_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_E_S_1_RD] = mmDMA_IF_E_S_HBM1_RD_BMON_BASE, [GAUDI_BMON_DMA_IF_W_N_SOB_WR] = mmDMA_IF_W_N_SOB_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_W_N_HBM0_WR] = mmDMA_IF_W_N_HBM0_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_W_N_HBM0_RD] = mmDMA_IF_W_N_HBM0_RD_BMON_BASE, [GAUDI_BMON_DMA_IF_W_N_HBM1_WR] = mmDMA_IF_W_N_HBM1_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_W_N_HBM1_RD] = mmDMA_IF_W_N_HBM1_RD_BMON_BASE, [GAUDI_BMON_DMA_IF_E_N_SOB_WR] = mmDMA_IF_E_N_SOB_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_E_N_HBM0_WR] = mmDMA_IF_E_N_HBM0_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_E_N_HBM0_RD] = mmDMA_IF_E_N_HBM0_RD_BMON_BASE, [GAUDI_BMON_DMA_IF_E_N_HBM1_WR] = mmDMA_IF_E_N_HBM1_WR_BMON_BASE, [GAUDI_BMON_DMA_IF_E_N_HBM1_RD] = mmDMA_IF_E_N_HBM1_RD_BMON_BASE, [GAUDI_BMON_CPU_WR] = mmCPU_WR_BMON_BASE, [GAUDI_BMON_CPU_RD] = mmCPU_RD_BMON_BASE, [GAUDI_BMON_DMA_CH_0_0] = mmDMA_CH_0_BMON_0_BASE, [GAUDI_BMON_DMA_CH_0_1] = mmDMA_CH_0_BMON_1_BASE, [GAUDI_BMON_DMA_CH_1_0] = mmDMA_CH_1_BMON_0_BASE, [GAUDI_BMON_DMA_CH_1_1] = mmDMA_CH_1_BMON_1_BASE, [GAUDI_BMON_DMA_CH_2_0] = mmDMA_CH_2_BMON_0_BASE, [GAUDI_BMON_DMA_CH_2_1] = mmDMA_CH_2_BMON_1_BASE, [GAUDI_BMON_DMA_CH_3_0] = mmDMA_CH_3_BMON_0_BASE, [GAUDI_BMON_DMA_CH_3_1] = mmDMA_CH_3_BMON_1_BASE, [GAUDI_BMON_DMA_CH_4_0] = mmDMA_CH_4_BMON_0_BASE, [GAUDI_BMON_DMA_CH_4_1] = mmDMA_CH_4_BMON_1_BASE, [GAUDI_BMON_DMA_CH_5_0] = mmDMA_CH_5_BMON_0_BASE, [GAUDI_BMON_DMA_CH_5_1] = mmDMA_CH_5_BMON_1_BASE, [GAUDI_BMON_DMA_CH_6_0] = mmDMA_CH_6_BMON_0_BASE, [GAUDI_BMON_DMA_CH_6_1] = mmDMA_CH_6_BMON_1_BASE, [GAUDI_BMON_DMA_CH_7_0] = mmDMA_CH_7_BMON_0_BASE, [GAUDI_BMON_DMA_CH_7_1] = mmDMA_CH_7_BMON_1_BASE, [GAUDI_BMON_PCIE_MSTR_WR] = mmPCIE_BMON_MSTR_WR_BASE, [GAUDI_BMON_PCIE_MSTR_RD] = mmPCIE_BMON_MSTR_RD_BASE, [GAUDI_BMON_PCIE_SLV_WR] = mmPCIE_BMON_SLV_WR_BASE, [GAUDI_BMON_PCIE_SLV_RD] = mmPCIE_BMON_SLV_RD_BASE, [GAUDI_BMON_MMU_0] = mmMMU_BMON_0_BASE, [GAUDI_BMON_MMU_1] = mmMMU_BMON_1_BASE, [GAUDI_BMON_NIC0_0] = mmBMON0_NIC0_DBG_BASE, [GAUDI_BMON_NIC0_1] = mmBMON1_NIC0_DBG_BASE, [GAUDI_BMON_NIC0_2] = mmBMON2_NIC0_DBG_BASE, [GAUDI_BMON_NIC0_3] = mmBMON3_NIC0_DBG_BASE, [GAUDI_BMON_NIC0_4] = mmBMON4_NIC0_DBG_BASE, [GAUDI_BMON_NIC1_0] = mmBMON0_NIC1_DBG_BASE, [GAUDI_BMON_NIC1_1] = mmBMON1_NIC1_DBG_BASE, [GAUDI_BMON_NIC1_2] = mmBMON2_NIC1_DBG_BASE, [GAUDI_BMON_NIC1_3] = mmBMON3_NIC1_DBG_BASE, [GAUDI_BMON_NIC1_4] = mmBMON4_NIC1_DBG_BASE, [GAUDI_BMON_NIC2_0] = mmBMON0_NIC2_DBG_BASE, [GAUDI_BMON_NIC2_1] = mmBMON1_NIC2_DBG_BASE, [GAUDI_BMON_NIC2_2] = mmBMON2_NIC2_DBG_BASE, [GAUDI_BMON_NIC2_3] = mmBMON3_NIC2_DBG_BASE, [GAUDI_BMON_NIC2_4] = mmBMON4_NIC2_DBG_BASE, [GAUDI_BMON_NIC3_0] = mmBMON0_NIC3_DBG_BASE, [GAUDI_BMON_NIC3_1] = mmBMON1_NIC3_DBG_BASE, [GAUDI_BMON_NIC3_2] = mmBMON2_NIC3_DBG_BASE, [GAUDI_BMON_NIC3_3] = mmBMON3_NIC3_DBG_BASE, [GAUDI_BMON_NIC3_4] = mmBMON4_NIC3_DBG_BASE, [GAUDI_BMON_NIC4_0] = mmBMON0_NIC4_DBG_BASE, [GAUDI_BMON_NIC4_1] = mmBMON1_NIC4_DBG_BASE, [GAUDI_BMON_NIC4_2] = mmBMON2_NIC4_DBG_BASE, [GAUDI_BMON_NIC4_3] = mmBMON3_NIC4_DBG_BASE, [GAUDI_BMON_NIC4_4] = mmBMON4_NIC4_DBG_BASE, [GAUDI_BMON_TPC0_EML_0] = mmTPC0_EML_BUSMON_0_BASE, [GAUDI_BMON_TPC0_EML_1] = mmTPC0_EML_BUSMON_1_BASE, [GAUDI_BMON_TPC0_EML_2] = mmTPC0_EML_BUSMON_2_BASE, [GAUDI_BMON_TPC0_EML_3] = mmTPC0_EML_BUSMON_3_BASE, [GAUDI_BMON_TPC1_EML_0] = mmTPC1_EML_BUSMON_0_BASE, [GAUDI_BMON_TPC1_EML_1] = mmTPC1_EML_BUSMON_1_BASE, [GAUDI_BMON_TPC1_EML_2] = mmTPC1_EML_BUSMON_2_BASE, [GAUDI_BMON_TPC1_EML_3] = mmTPC1_EML_BUSMON_3_BASE, [GAUDI_BMON_TPC2_EML_0] = mmTPC2_EML_BUSMON_0_BASE, [GAUDI_BMON_TPC2_EML_1] = mmTPC2_EML_BUSMON_1_BASE, [GAUDI_BMON_TPC2_EML_2] = mmTPC2_EML_BUSMON_2_BASE, [GAUDI_BMON_TPC2_EML_3] = mmTPC2_EML_BUSMON_3_BASE, [GAUDI_BMON_TPC3_EML_0] = mmTPC3_EML_BUSMON_0_BASE, [GAUDI_BMON_TPC3_EML_1] = mmTPC3_EML_BUSMON_1_BASE, [GAUDI_BMON_TPC3_EML_2] = mmTPC3_EML_BUSMON_2_BASE, [GAUDI_BMON_TPC3_EML_3] = mmTPC3_EML_BUSMON_3_BASE, [GAUDI_BMON_TPC4_EML_0] = mmTPC4_EML_BUSMON_0_BASE, [GAUDI_BMON_TPC4_EML_1] = mmTPC4_EML_BUSMON_1_BASE, [GAUDI_BMON_TPC4_EML_2] = mmTPC4_EML_BUSMON_2_BASE, [GAUDI_BMON_TPC4_EML_3] = mmTPC4_EML_BUSMON_3_BASE, [GAUDI_BMON_TPC5_EML_0] = mmTPC5_EML_BUSMON_0_BASE, [GAUDI_BMON_TPC5_EML_1] = mmTPC5_EML_BUSMON_1_BASE, [GAUDI_BMON_TPC5_EML_2] = mmTPC5_EML_BUSMON_2_BASE, [GAUDI_BMON_TPC5_EML_3] = mmTPC5_EML_BUSMON_3_BASE, [GAUDI_BMON_TPC6_EML_0] = mmTPC6_EML_BUSMON_0_BASE, [GAUDI_BMON_TPC6_EML_1] = mmTPC6_EML_BUSMON_1_BASE, [GAUDI_BMON_TPC6_EML_2] = mmTPC6_EML_BUSMON_2_BASE, [GAUDI_BMON_TPC6_EML_3] = mmTPC6_EML_BUSMON_3_BASE, [GAUDI_BMON_TPC7_EML_0] = mmTPC7_EML_BUSMON_0_BASE, [GAUDI_BMON_TPC7_EML_1] = mmTPC7_EML_BUSMON_1_BASE, [GAUDI_BMON_TPC7_EML_2] = mmTPC7_EML_BUSMON_2_BASE, [GAUDI_BMON_TPC7_EML_3] = mmTPC7_EML_BUSMON_3_BASE }; static u64 debug_spmu_regs[GAUDI_SPMU_LAST + 1] = { [GAUDI_SPMU_MME0_ACC] = mmMME0_ACC_SPMU_BASE, [GAUDI_SPMU_MME0_SBAB] = mmMME0_SBAB_SPMU_BASE, [GAUDI_SPMU_MME0_CTRL] = mmMME0_CTRL_SPMU_BASE, [GAUDI_SPMU_MME1_ACC] = mmMME1_ACC_SPMU_BASE, [GAUDI_SPMU_MME1_SBAB] = mmMME1_SBAB_SPMU_BASE, [GAUDI_SPMU_MME1_CTRL] = mmMME1_CTRL_SPMU_BASE, [GAUDI_SPMU_MME2_MME2_ACC] = mmMME2_ACC_SPMU_BASE, [GAUDI_SPMU_MME2_SBAB] = mmMME2_SBAB_SPMU_BASE, [GAUDI_SPMU_MME2_CTRL] = mmMME2_CTRL_SPMU_BASE, [GAUDI_SPMU_MME3_ACC] = mmMME3_ACC_SPMU_BASE, [GAUDI_SPMU_MME3_SBAB] = mmMME3_SBAB_SPMU_BASE, [GAUDI_SPMU_MME3_CTRL] = mmMME3_CTRL_SPMU_BASE, [GAUDI_SPMU_DMA_CH_0_CS] = mmDMA_CH_0_CS_SPMU_BASE, [GAUDI_SPMU_DMA_CH_1_CS] = mmDMA_CH_1_CS_SPMU_BASE, [GAUDI_SPMU_DMA_CH_2_CS] = mmDMA_CH_2_CS_SPMU_BASE, [GAUDI_SPMU_DMA_CH_3_CS] = mmDMA_CH_3_CS_SPMU_BASE, [GAUDI_SPMU_DMA_CH_4_CS] = mmDMA_CH_4_CS_SPMU_BASE, [GAUDI_SPMU_DMA_CH_5_CS] = mmDMA_CH_5_CS_SPMU_BASE, [GAUDI_SPMU_DMA_CH_6_CS] = mmDMA_CH_6_CS_SPMU_BASE, [GAUDI_SPMU_DMA_CH_7_CS] = mmDMA_CH_7_CS_SPMU_BASE, [GAUDI_SPMU_PCIE] = mmPCIE_SPMU_BASE, [GAUDI_SPMU_MMU_CS] = mmMMU_CS_SPMU_BASE, [GAUDI_SPMU_NIC0_0] = mmSPMU_0_NIC0_DBG_BASE, [GAUDI_SPMU_NIC0_1] = mmSPMU_1_NIC0_DBG_BASE, [GAUDI_SPMU_NIC1_0] = mmSPMU_0_NIC1_DBG_BASE, [GAUDI_SPMU_NIC1_1] = mmSPMU_1_NIC1_DBG_BASE, [GAUDI_SPMU_NIC2_0] = mmSPMU_0_NIC2_DBG_BASE, [GAUDI_SPMU_NIC2_1] = mmSPMU_1_NIC2_DBG_BASE, [GAUDI_SPMU_NIC3_0] = mmSPMU_0_NIC3_DBG_BASE, [GAUDI_SPMU_NIC3_1] = mmSPMU_1_NIC3_DBG_BASE, [GAUDI_SPMU_NIC4_0] = mmSPMU_0_NIC4_DBG_BASE, [GAUDI_SPMU_NIC4_1] = mmSPMU_1_NIC4_DBG_BASE, [GAUDI_SPMU_TPC0_EML] = mmTPC0_EML_SPMU_BASE, [GAUDI_SPMU_TPC1_EML] = mmTPC1_EML_SPMU_BASE, [GAUDI_SPMU_TPC2_EML] = mmTPC2_EML_SPMU_BASE, [GAUDI_SPMU_TPC3_EML] = mmTPC3_EML_SPMU_BASE, [GAUDI_SPMU_TPC4_EML] = mmTPC4_EML_SPMU_BASE, [GAUDI_SPMU_TPC5_EML] = mmTPC5_EML_SPMU_BASE, [GAUDI_SPMU_TPC6_EML] = mmTPC6_EML_SPMU_BASE, [GAUDI_SPMU_TPC7_EML] = mmTPC7_EML_SPMU_BASE }; static int gaudi_coresight_timeout(struct hl_device *hdev, u64 addr, int position, bool up) { int rc; u32 val; rc = hl_poll_timeout( hdev, addr, val, up ? val & BIT(position) : !(val & BIT(position)), 1000, CORESIGHT_TIMEOUT_USEC); if (rc) { dev_err(hdev->dev, "Timeout while waiting for coresight, addr: 0x%llx, position: %d, up: %d\n", addr, position, up); return -EFAULT; } return 0; } static int gaudi_config_stm(struct hl_device *hdev, struct hl_debug_params *params) { struct hl_debug_params_stm *input; u64 base_reg; u32 frequency; int rc; if (params->reg_idx >= ARRAY_SIZE(debug_stm_regs)) { dev_err(hdev->dev, "Invalid register index in STM\n"); return -EINVAL; } base_reg = debug_stm_regs[params->reg_idx] - CFG_BASE; WREG32(base_reg + 0xFB0, CORESIGHT_UNLOCK); if (params->enable) { input = params->input; if (!input) return -EINVAL; WREG32(base_reg + 0xE80, 0x80004); WREG32(base_reg + 0xD64, 7); WREG32(base_reg + 0xD60, 0); WREG32(base_reg + 0xD00, lower_32_bits(input->he_mask)); WREG32(base_reg + 0xD60, 1); WREG32(base_reg + 0xD00, upper_32_bits(input->he_mask)); WREG32(base_reg + 0xE70, 0x10); WREG32(base_reg + 0xE60, 0); WREG32(base_reg + 0xE00, lower_32_bits(input->sp_mask)); WREG32(base_reg + 0xEF4, input->id); WREG32(base_reg + 0xDF4, 0x80); frequency = hdev->asic_prop.psoc_timestamp_frequency; if (frequency == 0) frequency = input->frequency; WREG32(base_reg + 0xE8C, frequency); WREG32(base_reg + 0xE90, 0x1F00); /* SW-2176 - SW WA for HW bug */ if ((CFG_BASE + base_reg) >= mmDMA_CH_0_CS_STM_BASE && (CFG_BASE + base_reg) <= mmDMA_CH_7_CS_STM_BASE) { WREG32(base_reg + 0xE68, 0xffff8005); WREG32(base_reg + 0xE6C, 0x0); } WREG32(base_reg + 0xE80, 0x23 | (input->id << 16)); } else { WREG32(base_reg + 0xE80, 4); WREG32(base_reg + 0xD64, 0); WREG32(base_reg + 0xD60, 1); WREG32(base_reg + 0xD00, 0); WREG32(base_reg + 0xD20, 0); WREG32(base_reg + 0xD60, 0); WREG32(base_reg + 0xE20, 0); WREG32(base_reg + 0xE00, 0); WREG32(base_reg + 0xDF4, 0x80); WREG32(base_reg + 0xE70, 0); WREG32(base_reg + 0xE60, 0); WREG32(base_reg + 0xE64, 0); WREG32(base_reg + 0xE8C, 0); rc = gaudi_coresight_timeout(hdev, base_reg + 0xE80, 23, false); if (rc) { dev_err(hdev->dev, "Failed to disable STM on timeout, error %d\n", rc); return rc; } WREG32(base_reg + 0xE80, 4); } return 0; } static int gaudi_config_etf(struct hl_device *hdev, struct hl_debug_params *params) { struct hl_debug_params_etf *input; u64 base_reg; u32 val; int rc; if (params->reg_idx >= ARRAY_SIZE(debug_etf_regs)) { dev_err(hdev->dev, "Invalid register index in ETF\n"); return -EINVAL; } base_reg = debug_etf_regs[params->reg_idx] - CFG_BASE; WREG32(base_reg + 0xFB0, CORESIGHT_UNLOCK); val = RREG32(base_reg + 0x304); val |= 0x1000; WREG32(base_reg + 0x304, val); val |= 0x40; WREG32(base_reg + 0x304, val); rc = gaudi_coresight_timeout(hdev, base_reg + 0x304, 6, false); if (rc) { dev_err(hdev->dev, "Failed to %s ETF on timeout, error %d\n", params->enable ? "enable" : "disable", rc); return rc; } rc = gaudi_coresight_timeout(hdev, base_reg + 0xC, 2, true); if (rc) { dev_err(hdev->dev, "Failed to %s ETF on timeout, error %d\n", params->enable ? "enable" : "disable", rc); return rc; } WREG32(base_reg + 0x20, 0); if (params->enable) { input = params->input; if (!input) return -EINVAL; WREG32(base_reg + 0x34, 0x3FFC); WREG32(base_reg + 0x28, input->sink_mode); WREG32(base_reg + 0x304, 0x4001); WREG32(base_reg + 0x308, 0xA); WREG32(base_reg + 0x20, 1); } else { WREG32(base_reg + 0x34, 0); WREG32(base_reg + 0x28, 0); WREG32(base_reg + 0x304, 0); } return 0; } static bool gaudi_etr_validate_address(struct hl_device *hdev, u64 addr, u64 size, bool *is_host) { struct asic_fixed_properties *prop = &hdev->asic_prop; struct gaudi_device *gaudi = hdev->asic_specific; /* maximum address length is 50 bits */ if (addr >> 50) { dev_err(hdev->dev, "ETR buffer address shouldn't exceed 50 bits\n"); return false; } if (addr > (addr + size)) { dev_err(hdev->dev, "ETR buffer size %llu overflow\n", size); return false; } /* PMMU and HPMMU addresses are equal, check only one of them */ if ((gaudi->hw_cap_initialized & HW_CAP_MMU) && hl_mem_area_inside_range(addr, size, prop->pmmu.start_addr, prop->pmmu.end_addr)) { *is_host = true; return true; } if (hl_mem_area_inside_range(addr, size, prop->dram_user_base_address, prop->dram_end_address)) return true; if (hl_mem_area_inside_range(addr, size, prop->sram_user_base_address, prop->sram_end_address)) return true; if (!(gaudi->hw_cap_initialized & HW_CAP_MMU)) dev_err(hdev->dev, "ETR buffer should be in SRAM/DRAM\n"); return false; } static int gaudi_config_etr(struct hl_device *hdev, struct hl_debug_params *params) { struct hl_debug_params_etr *input; u64 msb; u32 val; int rc; WREG32(mmPSOC_ETR_LAR, CORESIGHT_UNLOCK); val = RREG32(mmPSOC_ETR_FFCR); val |= 0x1000; WREG32(mmPSOC_ETR_FFCR, val); val |= 0x40; WREG32(mmPSOC_ETR_FFCR, val); rc = gaudi_coresight_timeout(hdev, mmPSOC_ETR_FFCR, 6, false); if (rc) { dev_err(hdev->dev, "Failed to %s ETR on timeout, error %d\n", params->enable ? "enable" : "disable", rc); return rc; } rc = gaudi_coresight_timeout(hdev, mmPSOC_ETR_STS, 2, true); if (rc) { dev_err(hdev->dev, "Failed to %s ETR on timeout, error %d\n", params->enable ? "enable" : "disable", rc); return rc; } WREG32(mmPSOC_ETR_CTL, 0); if (params->enable) { bool is_host = false; input = params->input; if (!input) return -EINVAL; if (input->buffer_size == 0) { dev_err(hdev->dev, "ETR buffer size should be bigger than 0\n"); return -EINVAL; } if (!gaudi_etr_validate_address(hdev, input->buffer_address, input->buffer_size, &is_host)) { dev_err(hdev->dev, "ETR buffer address is invalid\n"); return -EINVAL; } msb = upper_32_bits(input->buffer_address) >> 8; msb &= PSOC_GLOBAL_CONF_TRACE_ADDR_MSB_MASK; WREG32(mmPSOC_GLOBAL_CONF_TRACE_ADDR, msb); WREG32(mmPSOC_ETR_BUFWM, 0x3FFC); WREG32(mmPSOC_ETR_RSZ, input->buffer_size); WREG32(mmPSOC_ETR_MODE, input->sink_mode); if (!hdev->asic_prop.fw_security_enabled) { /* make ETR not privileged */ val = FIELD_PREP( PSOC_ETR_AXICTL_PROTCTRLBIT0_MASK, 0); /* make ETR non-secured (inverted logic) */ val |= FIELD_PREP( PSOC_ETR_AXICTL_PROTCTRLBIT1_MASK, 1); /* * Workaround for H3 #HW-2075 bug: use small data * chunks */ val |= FIELD_PREP(PSOC_ETR_AXICTL_WRBURSTLEN_MASK, is_host ? 0 : 7); WREG32(mmPSOC_ETR_AXICTL, val); } WREG32(mmPSOC_ETR_DBALO, lower_32_bits(input->buffer_address)); WREG32(mmPSOC_ETR_DBAHI, upper_32_bits(input->buffer_address)); WREG32(mmPSOC_ETR_FFCR, 3); WREG32(mmPSOC_ETR_PSCR, 0xA); WREG32(mmPSOC_ETR_CTL, 1); } else { WREG32(mmPSOC_ETR_BUFWM, 0); WREG32(mmPSOC_ETR_RSZ, 0x400); WREG32(mmPSOC_ETR_DBALO, 0); WREG32(mmPSOC_ETR_DBAHI, 0); WREG32(mmPSOC_ETR_PSCR, 0); WREG32(mmPSOC_ETR_MODE, 0); WREG32(mmPSOC_ETR_FFCR, 0); if (params->output_size >= sizeof(u64)) { u32 rwp, rwphi; /* * The trace buffer address is 50 bits wide. The end of * the buffer is set in the RWP register (lower 32 * bits), and in the RWPHI register (upper 8 bits). * The 10 msb of the 50-bit address are stored in a * global configuration register. */ rwp = RREG32(mmPSOC_ETR_RWP); rwphi = RREG32(mmPSOC_ETR_RWPHI) & 0xff; msb = RREG32(mmPSOC_GLOBAL_CONF_TRACE_ADDR) & PSOC_GLOBAL_CONF_TRACE_ADDR_MSB_MASK; *(u64 *) params->output = ((u64) msb << 40) | ((u64) rwphi << 32) | rwp; } } return 0; } static int gaudi_config_funnel(struct hl_device *hdev, struct hl_debug_params *params) { u64 base_reg; if (params->reg_idx >= ARRAY_SIZE(debug_funnel_regs)) { dev_err(hdev->dev, "Invalid register index in FUNNEL\n"); return -EINVAL; } base_reg = debug_funnel_regs[params->reg_idx] - CFG_BASE; WREG32(base_reg + 0xFB0, CORESIGHT_UNLOCK); WREG32(base_reg, params->enable ? 0x33F : 0); return 0; } static int gaudi_config_bmon(struct hl_device *hdev, struct hl_debug_params *params) { struct hl_debug_params_bmon *input; u64 base_reg; if (params->reg_idx >= ARRAY_SIZE(debug_bmon_regs)) { dev_err(hdev->dev, "Invalid register index in BMON\n"); return -EINVAL; } base_reg = debug_bmon_regs[params->reg_idx] - CFG_BASE; WREG32(base_reg + 0x104, 1); if (params->enable) { input = params->input; if (!input) return -EINVAL; WREG32(base_reg + 0x200, lower_32_bits(input->start_addr0)); WREG32(base_reg + 0x204, upper_32_bits(input->start_addr0)); WREG32(base_reg + 0x208, lower_32_bits(input->addr_mask0)); WREG32(base_reg + 0x20C, upper_32_bits(input->addr_mask0)); WREG32(base_reg + 0x240, lower_32_bits(input->start_addr1)); WREG32(base_reg + 0x244, upper_32_bits(input->start_addr1)); WREG32(base_reg + 0x248, lower_32_bits(input->addr_mask1)); WREG32(base_reg + 0x24C, upper_32_bits(input->addr_mask1)); WREG32(base_reg + 0x224, 0); WREG32(base_reg + 0x234, 0); WREG32(base_reg + 0x30C, input->bw_win); WREG32(base_reg + 0x308, input->win_capture); WREG32(base_reg + 0x700, 0xA000B00 | (input->id << 12)); WREG32(base_reg + 0x708, 0xA000A00 | (input->id << 12)); WREG32(base_reg + 0x70C, 0xA000C00 | (input->id << 12)); WREG32(base_reg + 0x100, 0x11); WREG32(base_reg + 0x304, 0x1); } else { WREG32(base_reg + 0x200, 0); WREG32(base_reg + 0x204, 0); WREG32(base_reg + 0x208, 0xFFFFFFFF); WREG32(base_reg + 0x20C, 0xFFFFFFFF); WREG32(base_reg + 0x240, 0); WREG32(base_reg + 0x244, 0); WREG32(base_reg + 0x248, 0xFFFFFFFF); WREG32(base_reg + 0x24C, 0xFFFFFFFF); WREG32(base_reg + 0x224, 0xFFFFFFFF); WREG32(base_reg + 0x234, 0x1070F); WREG32(base_reg + 0x30C, 0); WREG32(base_reg + 0x308, 0xFFFF); WREG32(base_reg + 0x700, 0xA000B00); WREG32(base_reg + 0x708, 0xA000A00); WREG32(base_reg + 0x70C, 0xA000C00); WREG32(base_reg + 0x100, 1); WREG32(base_reg + 0x304, 0); WREG32(base_reg + 0x104, 0); } return 0; } static int gaudi_config_spmu(struct hl_device *hdev, struct hl_debug_params *params) { u64 base_reg; struct hl_debug_params_spmu *input = params->input; u64 *output; u32 output_arr_len; u32 events_num; u32 overflow_idx; u32 cycle_cnt_idx; int i; if (params->reg_idx >= ARRAY_SIZE(debug_spmu_regs)) { dev_err(hdev->dev, "Invalid register index in SPMU\n"); return -EINVAL; } base_reg = debug_spmu_regs[params->reg_idx] - CFG_BASE; if (params->enable) { input = params->input; if (!input) return -EINVAL; if (input->event_types_num < 3) { dev_err(hdev->dev, "not enough event types values for SPMU enable\n"); return -EINVAL; } if (input->event_types_num > SPMU_MAX_COUNTERS) { dev_err(hdev->dev, "too many event types values for SPMU enable\n"); return -EINVAL; } WREG32(base_reg + 0xE04, 0x41013046); WREG32(base_reg + 0xE04, 0x41013040); for (i = 0 ; i < input->event_types_num ; i++) WREG32(base_reg + SPMU_EVENT_TYPES_OFFSET + i * 4, input->event_types[i]); WREG32(base_reg + 0xE04, 0x41013041); WREG32(base_reg + 0xC00, 0x8000003F); } else { output = params->output; output_arr_len = params->output_size / 8; events_num = output_arr_len - 2; overflow_idx = output_arr_len - 2; cycle_cnt_idx = output_arr_len - 1; if (!output) return -EINVAL; if (output_arr_len < 3) { dev_err(hdev->dev, "not enough values for SPMU disable\n"); return -EINVAL; } if (events_num > SPMU_MAX_COUNTERS) { dev_err(hdev->dev, "too many events values for SPMU disable\n"); return -EINVAL; } WREG32(base_reg + 0xE04, 0x41013040); for (i = 0 ; i < events_num ; i++) output[i] = RREG32(base_reg + i * 8); output[overflow_idx] = RREG32(base_reg + 0xCC0); output[cycle_cnt_idx] = RREG32(base_reg + 0xFC); output[cycle_cnt_idx] <<= 32; output[cycle_cnt_idx] |= RREG32(base_reg + 0xF8); WREG32(base_reg + 0xCC0, 0); } return 0; } int gaudi_debug_coresight(struct hl_device *hdev, struct hl_ctx *ctx, void *data) { struct hl_debug_params *params = data; int rc = 0; switch (params->op) { case HL_DEBUG_OP_STM: rc = gaudi_config_stm(hdev, params); break; case HL_DEBUG_OP_ETF: rc = gaudi_config_etf(hdev, params); break; case HL_DEBUG_OP_ETR: rc = gaudi_config_etr(hdev, params); break; case HL_DEBUG_OP_FUNNEL: rc = gaudi_config_funnel(hdev, params); break; case HL_DEBUG_OP_BMON: rc = gaudi_config_bmon(hdev, params); break; case HL_DEBUG_OP_SPMU: rc = gaudi_config_spmu(hdev, params); break; case HL_DEBUG_OP_TIMESTAMP: /* Do nothing as this opcode is deprecated */ break; default: dev_err(hdev->dev, "Unknown coresight id %d\n", params->op); return -EINVAL; } /* Perform read from the device to flush all configuration */ RREG32(mmHW_STATE); return rc; } void gaudi_halt_coresight(struct hl_device *hdev, struct hl_ctx *ctx) { struct hl_debug_params params = {}; int i, rc; for (i = GAUDI_ETF_FIRST ; i <= GAUDI_ETF_LAST ; i++) { params.reg_idx = i; rc = gaudi_config_etf(hdev, ¶ms); if (rc) dev_err(hdev->dev, "halt ETF failed, %d/%d\n", rc, i); } rc = gaudi_config_etr(hdev, ¶ms); if (rc) dev_err(hdev->dev, "halt ETR failed, %d\n", rc); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1