Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Woodhouse | 3006 | 93.15% | 4 | 13.79% |
Thomas Gleixner | 83 | 2.57% | 4 | 13.79% |
Kees Cook | 60 | 1.86% | 2 | 6.90% |
Brian Norris | 27 | 0.84% | 4 | 13.79% |
Al Viro | 13 | 0.40% | 2 | 6.90% |
Greg Ungerer | 9 | 0.28% | 1 | 3.45% |
Artem B. Bityutskiy | 7 | 0.22% | 4 | 13.79% |
Boris Brezillon | 6 | 0.19% | 1 | 3.45% |
Adrian Hunter | 6 | 0.19% | 1 | 3.45% |
Roel Kluin | 4 | 0.12% | 1 | 3.45% |
Mariusz Kozlowski | 2 | 0.06% | 1 | 3.45% |
Colin Ian King | 1 | 0.03% | 1 | 3.45% |
Dan Carpenter | 1 | 0.03% | 1 | 3.45% |
Linus Torvalds | 1 | 0.03% | 1 | 3.45% |
Li Yang | 1 | 0.03% | 1 | 3.45% |
Total | 3227 | 29 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * inftlmount.c -- INFTL mount code with extensive checks. * * Author: Greg Ungerer (gerg@snapgear.com) * Copyright © 2002-2003, Greg Ungerer (gerg@snapgear.com) * * Based heavily on the nftlmount.c code which is: * Author: Fabrice Bellard (fabrice.bellard@netgem.com) * Copyright © 2000 Netgem S.A. */ #include <linux/kernel.h> #include <linux/module.h> #include <asm/errno.h> #include <asm/io.h> #include <linux/uaccess.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/mtd/mtd.h> #include <linux/mtd/nftl.h> #include <linux/mtd/inftl.h> /* * find_boot_record: Find the INFTL Media Header and its Spare copy which * contains the various device information of the INFTL partition and * Bad Unit Table. Update the PUtable[] table according to the Bad * Unit Table. PUtable[] is used for management of Erase Unit in * other routines in inftlcore.c and inftlmount.c. */ static int find_boot_record(struct INFTLrecord *inftl) { struct inftl_unittail h1; //struct inftl_oob oob; unsigned int i, block; u8 buf[SECTORSIZE]; struct INFTLMediaHeader *mh = &inftl->MediaHdr; struct mtd_info *mtd = inftl->mbd.mtd; struct INFTLPartition *ip; size_t retlen; pr_debug("INFTL: find_boot_record(inftl=%p)\n", inftl); /* * Assume logical EraseSize == physical erasesize for starting the * scan. We'll sort it out later if we find a MediaHeader which says * otherwise. */ inftl->EraseSize = inftl->mbd.mtd->erasesize; inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; inftl->MediaUnit = BLOCK_NIL; /* Search for a valid boot record */ for (block = 0; block < inftl->nb_blocks; block++) { int ret; /* * Check for BNAND header first. Then whinge if it's found * but later checks fail. */ ret = mtd_read(mtd, block * inftl->EraseSize, SECTORSIZE, &retlen, buf); /* We ignore ret in case the ECC of the MediaHeader is invalid (which is apparently acceptable) */ if (retlen != SECTORSIZE) { static int warncount = 5; if (warncount) { printk(KERN_WARNING "INFTL: block read at 0x%x " "of mtd%d failed: %d\n", block * inftl->EraseSize, inftl->mbd.mtd->index, ret); if (!--warncount) printk(KERN_WARNING "INFTL: further " "failures for this block will " "not be printed\n"); } continue; } if (retlen < 6 || memcmp(buf, "BNAND", 6)) { /* BNAND\0 not found. Continue */ continue; } /* To be safer with BIOS, also use erase mark as discriminant */ ret = inftl_read_oob(mtd, block * inftl->EraseSize + SECTORSIZE + 8, 8, &retlen,(char *)&h1); if (ret < 0) { printk(KERN_WARNING "INFTL: ANAND header found at " "0x%x in mtd%d, but OOB data read failed " "(err %d)\n", block * inftl->EraseSize, inftl->mbd.mtd->index, ret); continue; } /* * This is the first we've seen. * Copy the media header structure into place. */ memcpy(mh, buf, sizeof(struct INFTLMediaHeader)); /* Read the spare media header at offset 4096 */ mtd_read(mtd, block * inftl->EraseSize + 4096, SECTORSIZE, &retlen, buf); if (retlen != SECTORSIZE) { printk(KERN_WARNING "INFTL: Unable to read spare " "Media Header\n"); return -1; } /* Check if this one is the same as the first one we found. */ if (memcmp(mh, buf, sizeof(struct INFTLMediaHeader))) { printk(KERN_WARNING "INFTL: Primary and spare Media " "Headers disagree.\n"); return -1; } mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks); mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions); mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions); mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits); mh->FormatFlags = le32_to_cpu(mh->FormatFlags); mh->PercentUsed = le32_to_cpu(mh->PercentUsed); pr_debug("INFTL: Media Header ->\n" " bootRecordID = %s\n" " NoOfBootImageBlocks = %d\n" " NoOfBinaryPartitions = %d\n" " NoOfBDTLPartitions = %d\n" " BlockMultiplierBits = %d\n" " FormatFlgs = %d\n" " OsakVersion = 0x%x\n" " PercentUsed = %d\n", mh->bootRecordID, mh->NoOfBootImageBlocks, mh->NoOfBinaryPartitions, mh->NoOfBDTLPartitions, mh->BlockMultiplierBits, mh->FormatFlags, mh->OsakVersion, mh->PercentUsed); if (mh->NoOfBDTLPartitions == 0) { printk(KERN_WARNING "INFTL: Media Header sanity check " "failed: NoOfBDTLPartitions (%d) == 0, " "must be at least 1\n", mh->NoOfBDTLPartitions); return -1; } if ((mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions) > 4) { printk(KERN_WARNING "INFTL: Media Header sanity check " "failed: Total Partitions (%d) > 4, " "BDTL=%d Binary=%d\n", mh->NoOfBDTLPartitions + mh->NoOfBinaryPartitions, mh->NoOfBDTLPartitions, mh->NoOfBinaryPartitions); return -1; } if (mh->BlockMultiplierBits > 1) { printk(KERN_WARNING "INFTL: sorry, we don't support " "UnitSizeFactor 0x%02x\n", mh->BlockMultiplierBits); return -1; } else if (mh->BlockMultiplierBits == 1) { printk(KERN_WARNING "INFTL: support for INFTL with " "UnitSizeFactor 0x%02x is experimental\n", mh->BlockMultiplierBits); inftl->EraseSize = inftl->mbd.mtd->erasesize << mh->BlockMultiplierBits; inftl->nb_blocks = (u32)inftl->mbd.mtd->size / inftl->EraseSize; block >>= mh->BlockMultiplierBits; } /* Scan the partitions */ for (i = 0; (i < 4); i++) { ip = &mh->Partitions[i]; ip->virtualUnits = le32_to_cpu(ip->virtualUnits); ip->firstUnit = le32_to_cpu(ip->firstUnit); ip->lastUnit = le32_to_cpu(ip->lastUnit); ip->flags = le32_to_cpu(ip->flags); ip->spareUnits = le32_to_cpu(ip->spareUnits); ip->Reserved0 = le32_to_cpu(ip->Reserved0); pr_debug(" PARTITION[%d] ->\n" " virtualUnits = %d\n" " firstUnit = %d\n" " lastUnit = %d\n" " flags = 0x%x\n" " spareUnits = %d\n", i, ip->virtualUnits, ip->firstUnit, ip->lastUnit, ip->flags, ip->spareUnits); if (ip->Reserved0 != ip->firstUnit) { struct erase_info *instr = &inftl->instr; /* * Most likely this is using the * undocumented qiuck mount feature. * We don't support that, we will need * to erase the hidden block for full * compatibility. */ instr->addr = ip->Reserved0 * inftl->EraseSize; instr->len = inftl->EraseSize; mtd_erase(mtd, instr); } if ((ip->lastUnit - ip->firstUnit + 1) < ip->virtualUnits) { printk(KERN_WARNING "INFTL: Media Header " "Partition %d sanity check failed\n" " firstUnit %d : lastUnit %d > " "virtualUnits %d\n", i, ip->lastUnit, ip->firstUnit, ip->Reserved0); return -1; } if (ip->Reserved1 != 0) { printk(KERN_WARNING "INFTL: Media Header " "Partition %d sanity check failed: " "Reserved1 %d != 0\n", i, ip->Reserved1); return -1; } if (ip->flags & INFTL_BDTL) break; } if (i >= 4) { printk(KERN_WARNING "INFTL: Media Header Partition " "sanity check failed:\n No partition " "marked as Disk Partition\n"); return -1; } inftl->nb_boot_blocks = ip->firstUnit; inftl->numvunits = ip->virtualUnits; if (inftl->numvunits > (inftl->nb_blocks - inftl->nb_boot_blocks - 2)) { printk(KERN_WARNING "INFTL: Media Header sanity check " "failed:\n numvunits (%d) > nb_blocks " "(%d) - nb_boot_blocks(%d) - 2\n", inftl->numvunits, inftl->nb_blocks, inftl->nb_boot_blocks); return -1; } inftl->mbd.size = inftl->numvunits * (inftl->EraseSize / SECTORSIZE); /* * Block count is set to last used EUN (we won't need to keep * any meta-data past that point). */ inftl->firstEUN = ip->firstUnit; inftl->lastEUN = ip->lastUnit; inftl->nb_blocks = ip->lastUnit + 1; /* Memory alloc */ inftl->PUtable = kmalloc_array(inftl->nb_blocks, sizeof(u16), GFP_KERNEL); if (!inftl->PUtable) return -ENOMEM; inftl->VUtable = kmalloc_array(inftl->nb_blocks, sizeof(u16), GFP_KERNEL); if (!inftl->VUtable) { kfree(inftl->PUtable); return -ENOMEM; } /* Mark the blocks before INFTL MediaHeader as reserved */ for (i = 0; i < inftl->nb_boot_blocks; i++) inftl->PUtable[i] = BLOCK_RESERVED; /* Mark all remaining blocks as potentially containing data */ for (; i < inftl->nb_blocks; i++) inftl->PUtable[i] = BLOCK_NOTEXPLORED; /* Mark this boot record (NFTL MediaHeader) block as reserved */ inftl->PUtable[block] = BLOCK_RESERVED; /* Read Bad Erase Unit Table and modify PUtable[] accordingly */ for (i = 0; i < inftl->nb_blocks; i++) { int physblock; /* If any of the physical eraseblocks are bad, don't use the unit. */ for (physblock = 0; physblock < inftl->EraseSize; physblock += inftl->mbd.mtd->erasesize) { if (mtd_block_isbad(inftl->mbd.mtd, i * inftl->EraseSize + physblock)) inftl->PUtable[i] = BLOCK_RESERVED; } } inftl->MediaUnit = block; return 0; } /* Not found. */ return -1; } static int memcmpb(void *a, int c, int n) { int i; for (i = 0; i < n; i++) { if (c != ((unsigned char *)a)[i]) return 1; } return 0; } /* * check_free_sector: check if a free sector is actually FREE, * i.e. All 0xff in data and oob area. */ static int check_free_sectors(struct INFTLrecord *inftl, unsigned int address, int len, int check_oob) { struct mtd_info *mtd = inftl->mbd.mtd; size_t retlen; int i, ret; u8 *buf; buf = kmalloc(SECTORSIZE + mtd->oobsize, GFP_KERNEL); if (!buf) return -ENOMEM; ret = -1; for (i = 0; i < len; i += SECTORSIZE) { if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf)) goto out; if (memcmpb(buf, 0xff, SECTORSIZE) != 0) goto out; if (check_oob) { if(inftl_read_oob(mtd, address, mtd->oobsize, &retlen, &buf[SECTORSIZE]) < 0) goto out; if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0) goto out; } address += SECTORSIZE; } ret = 0; out: kfree(buf); return ret; } /* * INFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase * Unit and Update INFTL metadata. Each erase operation is * checked with check_free_sectors. * * Return: 0 when succeed, -1 on error. * * ToDo: 1. Is it necessary to check_free_sector after erasing ?? */ int INFTL_formatblock(struct INFTLrecord *inftl, int block) { size_t retlen; struct inftl_unittail uci; struct erase_info *instr = &inftl->instr; struct mtd_info *mtd = inftl->mbd.mtd; int physblock; pr_debug("INFTL: INFTL_formatblock(inftl=%p,block=%d)\n", inftl, block); memset(instr, 0, sizeof(struct erase_info)); /* FIXME: Shouldn't we be setting the 'discarded' flag to zero _first_? */ /* Use async erase interface, test return code */ instr->addr = block * inftl->EraseSize; instr->len = inftl->mbd.mtd->erasesize; /* Erase one physical eraseblock at a time, even though the NAND api allows us to group them. This way we if we have a failure, we can mark only the failed block in the bbt. */ for (physblock = 0; physblock < inftl->EraseSize; physblock += instr->len, instr->addr += instr->len) { int ret; ret = mtd_erase(inftl->mbd.mtd, instr); if (ret) { printk(KERN_WARNING "INFTL: error while formatting block %d\n", block); goto fail; } /* * Check the "freeness" of Erase Unit before updating metadata. * FixMe: is this check really necessary? Since we have check * the return code after the erase operation. */ if (check_free_sectors(inftl, instr->addr, instr->len, 1) != 0) goto fail; } uci.EraseMark = cpu_to_le16(ERASE_MARK); uci.EraseMark1 = cpu_to_le16(ERASE_MARK); uci.Reserved[0] = 0; uci.Reserved[1] = 0; uci.Reserved[2] = 0; uci.Reserved[3] = 0; instr->addr = block * inftl->EraseSize + SECTORSIZE * 2; if (inftl_write_oob(mtd, instr->addr + 8, 8, &retlen, (char *)&uci) < 0) goto fail; return 0; fail: /* could not format, update the bad block table (caller is responsible for setting the PUtable to BLOCK_RESERVED on failure) */ mtd_block_markbad(inftl->mbd.mtd, instr->addr); return -1; } /* * format_chain: Format an invalid Virtual Unit chain. It frees all the Erase * Units in a Virtual Unit Chain, i.e. all the units are disconnected. * * Since the chain is invalid then we will have to erase it from its * head (normally for INFTL we go from the oldest). But if it has a * loop then there is no oldest... */ static void format_chain(struct INFTLrecord *inftl, unsigned int first_block) { unsigned int block = first_block, block1; printk(KERN_WARNING "INFTL: formatting chain at block %d\n", first_block); for (;;) { block1 = inftl->PUtable[block]; printk(KERN_WARNING "INFTL: formatting block %d\n", block); if (INFTL_formatblock(inftl, block) < 0) { /* * Cannot format !!!! Mark it as Bad Unit, */ inftl->PUtable[block] = BLOCK_RESERVED; } else { inftl->PUtable[block] = BLOCK_FREE; } /* Goto next block on the chain */ block = block1; if (block == BLOCK_NIL || block >= inftl->lastEUN) break; } } void INFTL_dumptables(struct INFTLrecord *s) { int i; pr_debug("-------------------------------------------" "----------------------------------\n"); pr_debug("VUtable[%d] ->", s->nb_blocks); for (i = 0; i < s->nb_blocks; i++) { if ((i % 8) == 0) pr_debug("\n%04x: ", i); pr_debug("%04x ", s->VUtable[i]); } pr_debug("\n-------------------------------------------" "----------------------------------\n"); pr_debug("PUtable[%d-%d=%d] ->", s->firstEUN, s->lastEUN, s->nb_blocks); for (i = 0; i <= s->lastEUN; i++) { if ((i % 8) == 0) pr_debug("\n%04x: ", i); pr_debug("%04x ", s->PUtable[i]); } pr_debug("\n-------------------------------------------" "----------------------------------\n"); pr_debug("INFTL ->\n" " EraseSize = %d\n" " h/s/c = %d/%d/%d\n" " numvunits = %d\n" " firstEUN = %d\n" " lastEUN = %d\n" " numfreeEUNs = %d\n" " LastFreeEUN = %d\n" " nb_blocks = %d\n" " nb_boot_blocks = %d", s->EraseSize, s->heads, s->sectors, s->cylinders, s->numvunits, s->firstEUN, s->lastEUN, s->numfreeEUNs, s->LastFreeEUN, s->nb_blocks, s->nb_boot_blocks); pr_debug("\n-------------------------------------------" "----------------------------------\n"); } void INFTL_dumpVUchains(struct INFTLrecord *s) { int logical, block, i; pr_debug("-------------------------------------------" "----------------------------------\n"); pr_debug("INFTL Virtual Unit Chains:\n"); for (logical = 0; logical < s->nb_blocks; logical++) { block = s->VUtable[logical]; if (block >= s->nb_blocks) continue; pr_debug(" LOGICAL %d --> %d ", logical, block); for (i = 0; i < s->nb_blocks; i++) { if (s->PUtable[block] == BLOCK_NIL) break; block = s->PUtable[block]; pr_debug("%d ", block); } pr_debug("\n"); } pr_debug("-------------------------------------------" "----------------------------------\n"); } int INFTL_mount(struct INFTLrecord *s) { struct mtd_info *mtd = s->mbd.mtd; unsigned int block, first_block, prev_block, last_block; unsigned int first_logical_block, logical_block, erase_mark; int chain_length, do_format_chain; struct inftl_unithead1 h0; struct inftl_unittail h1; size_t retlen; int i; u8 *ANACtable, ANAC; pr_debug("INFTL: INFTL_mount(inftl=%p)\n", s); /* Search for INFTL MediaHeader and Spare INFTL Media Header */ if (find_boot_record(s) < 0) { printk(KERN_WARNING "INFTL: could not find valid boot record?\n"); return -ENXIO; } /* Init the logical to physical table */ for (i = 0; i < s->nb_blocks; i++) s->VUtable[i] = BLOCK_NIL; logical_block = block = BLOCK_NIL; /* Temporary buffer to store ANAC numbers. */ ANACtable = kcalloc(s->nb_blocks, sizeof(u8), GFP_KERNEL); if (!ANACtable) return -ENOMEM; /* * First pass is to explore each physical unit, and construct the * virtual chains that exist (newest physical unit goes into VUtable). * Any block that is in any way invalid will be left in the * NOTEXPLORED state. Then at the end we will try to format it and * mark it as free. */ pr_debug("INFTL: pass 1, explore each unit\n"); for (first_block = s->firstEUN; first_block <= s->lastEUN; first_block++) { if (s->PUtable[first_block] != BLOCK_NOTEXPLORED) continue; do_format_chain = 0; first_logical_block = BLOCK_NIL; last_block = BLOCK_NIL; block = first_block; for (chain_length = 0; ; chain_length++) { if ((chain_length == 0) && (s->PUtable[block] != BLOCK_NOTEXPLORED)) { /* Nothing to do here, onto next block */ break; } if (inftl_read_oob(mtd, block * s->EraseSize + 8, 8, &retlen, (char *)&h0) < 0 || inftl_read_oob(mtd, block * s->EraseSize + 2 * SECTORSIZE + 8, 8, &retlen, (char *)&h1) < 0) { /* Should never happen? */ do_format_chain++; break; } logical_block = le16_to_cpu(h0.virtualUnitNo); prev_block = le16_to_cpu(h0.prevUnitNo); erase_mark = le16_to_cpu((h1.EraseMark | h1.EraseMark1)); ANACtable[block] = h0.ANAC; /* Previous block is relative to start of Partition */ if (prev_block < s->nb_blocks) prev_block += s->firstEUN; /* Already explored partial chain? */ if (s->PUtable[block] != BLOCK_NOTEXPLORED) { /* Check if chain for this logical */ if (logical_block == first_logical_block) { if (last_block != BLOCK_NIL) s->PUtable[last_block] = block; } break; } /* Check for invalid block */ if (erase_mark != ERASE_MARK) { printk(KERN_WARNING "INFTL: corrupt block %d " "in chain %d, chain length %d, erase " "mark 0x%x?\n", block, first_block, chain_length, erase_mark); /* * Assume end of chain, probably incomplete * fold/erase... */ if (chain_length == 0) do_format_chain++; break; } /* Check for it being free already then... */ if ((logical_block == BLOCK_FREE) || (logical_block == BLOCK_NIL)) { s->PUtable[block] = BLOCK_FREE; break; } /* Sanity checks on block numbers */ if ((logical_block >= s->nb_blocks) || ((prev_block >= s->nb_blocks) && (prev_block != BLOCK_NIL))) { if (chain_length > 0) { printk(KERN_WARNING "INFTL: corrupt " "block %d in chain %d?\n", block, first_block); do_format_chain++; } break; } if (first_logical_block == BLOCK_NIL) { first_logical_block = logical_block; } else { if (first_logical_block != logical_block) { /* Normal for folded chain... */ break; } } /* * Current block is valid, so if we followed a virtual * chain to get here then we can set the previous * block pointer in our PUtable now. Then move onto * the previous block in the chain. */ s->PUtable[block] = BLOCK_NIL; if (last_block != BLOCK_NIL) s->PUtable[last_block] = block; last_block = block; block = prev_block; /* Check for end of chain */ if (block == BLOCK_NIL) break; /* Validate next block before following it... */ if (block > s->lastEUN) { printk(KERN_WARNING "INFTL: invalid previous " "block %d in chain %d?\n", block, first_block); do_format_chain++; break; } } if (do_format_chain) { format_chain(s, first_block); continue; } /* * Looks like a valid chain then. It may not really be the * newest block in the chain, but it is the newest we have * found so far. We might update it in later iterations of * this loop if we find something newer. */ s->VUtable[first_logical_block] = first_block; logical_block = BLOCK_NIL; } INFTL_dumptables(s); /* * Second pass, check for infinite loops in chains. These are * possible because we don't update the previous pointers when * we fold chains. No big deal, just fix them up in PUtable. */ pr_debug("INFTL: pass 2, validate virtual chains\n"); for (logical_block = 0; logical_block < s->numvunits; logical_block++) { block = s->VUtable[logical_block]; last_block = BLOCK_NIL; /* Check for free/reserved/nil */ if (block >= BLOCK_RESERVED) continue; ANAC = ANACtable[block]; for (i = 0; i < s->numvunits; i++) { if (s->PUtable[block] == BLOCK_NIL) break; if (s->PUtable[block] > s->lastEUN) { printk(KERN_WARNING "INFTL: invalid prev %d, " "in virtual chain %d\n", s->PUtable[block], logical_block); s->PUtable[block] = BLOCK_NIL; } if (ANACtable[block] != ANAC) { /* * Chain must point back to itself. This is ok, * but we will need adjust the tables with this * newest block and oldest block. */ s->VUtable[logical_block] = block; s->PUtable[last_block] = BLOCK_NIL; break; } ANAC--; last_block = block; block = s->PUtable[block]; } if (i >= s->nb_blocks) { /* * Uhoo, infinite chain with valid ANACS! * Format whole chain... */ format_chain(s, first_block); } } INFTL_dumptables(s); INFTL_dumpVUchains(s); /* * Third pass, format unreferenced blocks and init free block count. */ s->numfreeEUNs = 0; s->LastFreeEUN = BLOCK_NIL; pr_debug("INFTL: pass 3, format unused blocks\n"); for (block = s->firstEUN; block <= s->lastEUN; block++) { if (s->PUtable[block] == BLOCK_NOTEXPLORED) { printk("INFTL: unreferenced block %d, formatting it\n", block); if (INFTL_formatblock(s, block) < 0) s->PUtable[block] = BLOCK_RESERVED; else s->PUtable[block] = BLOCK_FREE; } if (s->PUtable[block] == BLOCK_FREE) { s->numfreeEUNs++; if (s->LastFreeEUN == BLOCK_NIL) s->LastFreeEUN = block; } } kfree(ANACtable); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1