Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Piotr Sroka | 12713 | 99.47% | 5 | 33.33% |
Miquel Raynal | 38 | 0.30% | 4 | 26.67% |
Yang Yingliang | 14 | 0.11% | 1 | 6.67% |
Boris Brezillon | 7 | 0.05% | 1 | 6.67% |
Vasyl Gomonovych | 4 | 0.03% | 1 | 6.67% |
Herbert Xu | 3 | 0.02% | 1 | 6.67% |
ye xingchen | 1 | 0.01% | 1 | 6.67% |
Yue haibing | 1 | 0.01% | 1 | 6.67% |
Total | 12781 | 15 |
// SPDX-License-Identifier: GPL-2.0+ /* * Cadence NAND flash controller driver * * Copyright (C) 2019 Cadence * * Author: Piotr Sroka <piotrs@cadence.com> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/of_device.h> #include <linux/iopoll.h> #include <linux/slab.h> /* * HPNFC can work in 3 modes: * - PIO - can work in master or slave DMA * - CDMA - needs Master DMA for accessing command descriptors. * - Generic mode - can use only slave DMA. * CDMA and PIO modes can be used to execute only base commands. * Generic mode can be used to execute any command * on NAND flash memory. Driver uses CDMA mode for * block erasing, page reading, page programing. * Generic mode is used for executing rest of commands. */ #define MAX_ADDRESS_CYC 6 #define MAX_ERASE_ADDRESS_CYC 3 #define MAX_DATA_SIZE 0xFFFC #define DMA_DATA_SIZE_ALIGN 8 /* Register definition. */ /* * Command register 0. * Writing data to this register will initiate a new transaction * of the NF controller. */ #define CMD_REG0 0x0000 /* Command type field mask. */ #define CMD_REG0_CT GENMASK(31, 30) /* Command type CDMA. */ #define CMD_REG0_CT_CDMA 0uL /* Command type generic. */ #define CMD_REG0_CT_GEN 3uL /* Command thread number field mask. */ #define CMD_REG0_TN GENMASK(27, 24) /* Command register 2. */ #define CMD_REG2 0x0008 /* Command register 3. */ #define CMD_REG3 0x000C /* Pointer register to select which thread status will be selected. */ #define CMD_STATUS_PTR 0x0010 /* Command status register for selected thread. */ #define CMD_STATUS 0x0014 /* Interrupt status register. */ #define INTR_STATUS 0x0110 #define INTR_STATUS_SDMA_ERR BIT(22) #define INTR_STATUS_SDMA_TRIGG BIT(21) #define INTR_STATUS_UNSUPP_CMD BIT(19) #define INTR_STATUS_DDMA_TERR BIT(18) #define INTR_STATUS_CDMA_TERR BIT(17) #define INTR_STATUS_CDMA_IDL BIT(16) /* Interrupt enable register. */ #define INTR_ENABLE 0x0114 #define INTR_ENABLE_INTR_EN BIT(31) #define INTR_ENABLE_SDMA_ERR_EN BIT(22) #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21) #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19) #define INTR_ENABLE_DDMA_TERR_EN BIT(18) #define INTR_ENABLE_CDMA_TERR_EN BIT(17) #define INTR_ENABLE_CDMA_IDLE_EN BIT(16) /* Controller internal state. */ #define CTRL_STATUS 0x0118 #define CTRL_STATUS_INIT_COMP BIT(9) #define CTRL_STATUS_CTRL_BUSY BIT(8) /* Command Engine threads state. */ #define TRD_STATUS 0x0120 /* Command Engine interrupt thread error status. */ #define TRD_ERR_INT_STATUS 0x0128 /* Command Engine interrupt thread error enable. */ #define TRD_ERR_INT_STATUS_EN 0x0130 /* Command Engine interrupt thread complete status. */ #define TRD_COMP_INT_STATUS 0x0138 /* * Transfer config 0 register. * Configures data transfer parameters. */ #define TRAN_CFG_0 0x0400 /* Offset value from the beginning of the page. */ #define TRAN_CFG_0_OFFSET GENMASK(31, 16) /* Numbers of sectors to transfer within singlNF device's page. */ #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0) /* * Transfer config 1 register. * Configures data transfer parameters. */ #define TRAN_CFG_1 0x0404 /* Size of last data sector. */ #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16) /* Size of not-last data sector. */ #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0) /* ECC engine configuration register 0. */ #define ECC_CONFIG_0 0x0428 /* Correction strength. */ #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8) /* Enable erased pages detection mechanism. */ #define ECC_CONFIG_0_ERASE_DET_EN BIT(1) /* Enable controller ECC check bits generation and correction. */ #define ECC_CONFIG_0_ECC_EN BIT(0) /* ECC engine configuration register 1. */ #define ECC_CONFIG_1 0x042C /* Multiplane settings register. */ #define MULTIPLANE_CFG 0x0434 /* Cache operation settings. */ #define CACHE_CFG 0x0438 /* DMA settings register. */ #define DMA_SETINGS 0x043C /* Enable SDMA error report on access unprepared slave DMA interface. */ #define DMA_SETINGS_SDMA_ERR_RSP BIT(17) /* Transferred data block size for the slave DMA module. */ #define SDMA_SIZE 0x0440 /* Thread number associated with transferred data block * for the slave DMA module. */ #define SDMA_TRD_NUM 0x0444 /* Thread number mask. */ #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0) #define CONTROL_DATA_CTRL 0x0494 /* Thread number mask. */ #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0) #define CTRL_VERSION 0x800 #define CTRL_VERSION_REV GENMASK(7, 0) /* Available hardware features of the controller. */ #define CTRL_FEATURES 0x804 /* Support for NV-DDR2/3 work mode. */ #define CTRL_FEATURES_NVDDR_2_3 BIT(28) /* Support for NV-DDR work mode. */ #define CTRL_FEATURES_NVDDR BIT(27) /* Support for asynchronous work mode. */ #define CTRL_FEATURES_ASYNC BIT(26) /* Support for asynchronous work mode. */ #define CTRL_FEATURES_N_BANKS GENMASK(25, 24) /* Slave and Master DMA data width. */ #define CTRL_FEATURES_DMA_DWITH64 BIT(21) /* Availability of Control Data feature.*/ #define CTRL_FEATURES_CONTROL_DATA BIT(10) /* BCH Engine identification register 0 - correction strengths. */ #define BCH_CFG_0 0x838 #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0) #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8) #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16) #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24) /* BCH Engine identification register 1 - correction strengths. */ #define BCH_CFG_1 0x83C #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0) #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8) #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16) #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24) /* BCH Engine identification register 2 - sector sizes. */ #define BCH_CFG_2 0x840 #define BCH_CFG_2_SECT_0 GENMASK(15, 0) #define BCH_CFG_2_SECT_1 GENMASK(31, 16) /* BCH Engine identification register 3. */ #define BCH_CFG_3 0x844 #define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16) /* Ready/Busy# line status. */ #define RBN_SETINGS 0x1004 /* Common settings. */ #define COMMON_SET 0x1008 /* 16 bit device connected to the NAND Flash interface. */ #define COMMON_SET_DEVICE_16BIT BIT(8) /* Skip_bytes registers. */ #define SKIP_BYTES_CONF 0x100C #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16) #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0) #define SKIP_BYTES_OFFSET 0x1010 #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0) /* Timings configuration. */ #define ASYNC_TOGGLE_TIMINGS 0x101c #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24) #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16) #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8) #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0) #define TIMINGS0 0x1024 #define TIMINGS0_TADL GENMASK(31, 24) #define TIMINGS0_TCCS GENMASK(23, 16) #define TIMINGS0_TWHR GENMASK(15, 8) #define TIMINGS0_TRHW GENMASK(7, 0) #define TIMINGS1 0x1028 #define TIMINGS1_TRHZ GENMASK(31, 24) #define TIMINGS1_TWB GENMASK(23, 16) #define TIMINGS1_TVDLY GENMASK(7, 0) #define TIMINGS2 0x102c #define TIMINGS2_TFEAT GENMASK(25, 16) #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8) #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0) /* Configuration of the resynchronization of slave DLL of PHY. */ #define DLL_PHY_CTRL 0x1034 #define DLL_PHY_CTRL_DLL_RST_N BIT(24) #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17) #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16) #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8) #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0) /* Register controlling DQ related timing. */ #define PHY_DQ_TIMING 0x2000 /* Register controlling DSQ related timing. */ #define PHY_DQS_TIMING 0x2004 #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0) #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16) #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20) /* Register controlling the gate and loopback control related timing. */ #define PHY_GATE_LPBK_CTRL 0x2008 #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19) /* Register holds the control for the master DLL logic. */ #define PHY_DLL_MASTER_CTRL 0x200C #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23) /* Register holds the control for the slave DLL logic. */ #define PHY_DLL_SLAVE_CTRL 0x2010 /* This register handles the global control settings for the PHY. */ #define PHY_CTRL 0x2080 #define PHY_CTRL_SDR_DQS BIT(14) #define PHY_CTRL_PHONY_DQS GENMASK(9, 4) /* * This register handles the global control settings * for the termination selects for reads. */ #define PHY_TSEL 0x2084 /* Generic command layout. */ #define GCMD_LAY_CS GENMASK_ULL(11, 8) /* * This bit informs the minicotroller if it has to wait for tWB * after sending the last CMD/ADDR/DATA in the sequence. */ #define GCMD_LAY_TWB BIT_ULL(6) /* Type of generic instruction. */ #define GCMD_LAY_INSTR GENMASK_ULL(5, 0) /* Generic CMD sequence type. */ #define GCMD_LAY_INSTR_CMD 0 /* Generic ADDR sequence type. */ #define GCMD_LAY_INSTR_ADDR 1 /* Generic data transfer sequence type. */ #define GCMD_LAY_INSTR_DATA 2 /* Input part of generic command type of input is command. */ #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16) /* Generic command address sequence - address fields. */ #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16) /* Generic command address sequence - address size. */ #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11) /* Transfer direction field of generic command data sequence. */ #define GCMD_DIR BIT_ULL(11) /* Read transfer direction of generic command data sequence. */ #define GCMD_DIR_READ 0 /* Write transfer direction of generic command data sequence. */ #define GCMD_DIR_WRITE 1 /* ECC enabled flag of generic command data sequence - ECC enabled. */ #define GCMD_ECC_EN BIT_ULL(12) /* Generic command data sequence - sector size. */ #define GCMD_SECT_SIZE GENMASK_ULL(31, 16) /* Generic command data sequence - sector count. */ #define GCMD_SECT_CNT GENMASK_ULL(39, 32) /* Generic command data sequence - last sector size. */ #define GCMD_LAST_SIZE GENMASK_ULL(55, 40) /* CDMA descriptor fields. */ /* Erase command type of CDMA descriptor. */ #define CDMA_CT_ERASE 0x1000 /* Program page command type of CDMA descriptor. */ #define CDMA_CT_WR 0x2100 /* Read page command type of CDMA descriptor. */ #define CDMA_CT_RD 0x2200 /* Flash pointer memory shift. */ #define CDMA_CFPTR_MEM_SHIFT 24 /* Flash pointer memory mask. */ #define CDMA_CFPTR_MEM GENMASK(26, 24) /* * Command DMA descriptor flags. If set causes issue interrupt after * the completion of descriptor processing. */ #define CDMA_CF_INT BIT(8) /* * Command DMA descriptor flags - the next descriptor * address field is valid and descriptor processing should continue. */ #define CDMA_CF_CONT BIT(9) /* DMA master flag of command DMA descriptor. */ #define CDMA_CF_DMA_MASTER BIT(10) /* Operation complete status of command descriptor. */ #define CDMA_CS_COMP BIT(15) /* Operation complete status of command descriptor. */ /* Command descriptor status - operation fail. */ #define CDMA_CS_FAIL BIT(14) /* Command descriptor status - page erased. */ #define CDMA_CS_ERP BIT(11) /* Command descriptor status - timeout occurred. */ #define CDMA_CS_TOUT BIT(10) /* * Maximum amount of correction applied to one ECC sector. * It is part of command descriptor status. */ #define CDMA_CS_MAXERR GENMASK(9, 2) /* Command descriptor status - uncorrectable ECC error. */ #define CDMA_CS_UNCE BIT(1) /* Command descriptor status - descriptor error. */ #define CDMA_CS_ERR BIT(0) /* Status of operation - OK. */ #define STAT_OK 0 /* Status of operation - FAIL. */ #define STAT_FAIL 2 /* Status of operation - uncorrectable ECC error. */ #define STAT_ECC_UNCORR 3 /* Status of operation - page erased. */ #define STAT_ERASED 5 /* Status of operation - correctable ECC error. */ #define STAT_ECC_CORR 6 /* Status of operation - unsuspected state. */ #define STAT_UNKNOWN 7 /* Status of operation - operation is not completed yet. */ #define STAT_BUSY 0xFF #define BCH_MAX_NUM_CORR_CAPS 8 #define BCH_MAX_NUM_SECTOR_SIZES 2 struct cadence_nand_timings { u32 async_toggle_timings; u32 timings0; u32 timings1; u32 timings2; u32 dll_phy_ctrl; u32 phy_ctrl; u32 phy_dqs_timing; u32 phy_gate_lpbk_ctrl; }; /* Command DMA descriptor. */ struct cadence_nand_cdma_desc { /* Next descriptor address. */ u64 next_pointer; /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */ u32 flash_pointer; /*field appears in HPNFC version 13*/ u16 bank; u16 rsvd0; /* Operation the controller needs to perform. */ u16 command_type; u16 rsvd1; /* Flags for operation of this command. */ u16 command_flags; u16 rsvd2; /* System/host memory address required for data DMA commands. */ u64 memory_pointer; /* Status of operation. */ u32 status; u32 rsvd3; /* Address pointer to sync buffer location. */ u64 sync_flag_pointer; /* Controls the buffer sync mechanism. */ u32 sync_arguments; u32 rsvd4; /* Control data pointer. */ u64 ctrl_data_ptr; }; /* Interrupt status. */ struct cadence_nand_irq_status { /* Thread operation complete status. */ u32 trd_status; /* Thread operation error. */ u32 trd_error; /* Controller status. */ u32 status; }; /* Cadence NAND flash controller capabilities get from driver data. */ struct cadence_nand_dt_devdata { /* Skew value of the output signals of the NAND Flash interface. */ u32 if_skew; /* It informs if slave DMA interface is connected to DMA engine. */ unsigned int has_dma:1; }; /* Cadence NAND flash controller capabilities read from registers. */ struct cdns_nand_caps { /* Maximum number of banks supported by hardware. */ u8 max_banks; /* Slave and Master DMA data width in bytes (4 or 8). */ u8 data_dma_width; /* Control Data feature supported. */ bool data_control_supp; /* Is PHY type DLL. */ bool is_phy_type_dll; }; struct cdns_nand_ctrl { struct device *dev; struct nand_controller controller; struct cadence_nand_cdma_desc *cdma_desc; /* IP capability. */ const struct cadence_nand_dt_devdata *caps1; struct cdns_nand_caps caps2; u8 ctrl_rev; dma_addr_t dma_cdma_desc; u8 *buf; u32 buf_size; u8 curr_corr_str_idx; /* Register interface. */ void __iomem *reg; struct { void __iomem *virt; dma_addr_t dma; } io; int irq; /* Interrupts that have happened. */ struct cadence_nand_irq_status irq_status; /* Interrupts we are waiting for. */ struct cadence_nand_irq_status irq_mask; struct completion complete; /* Protect irq_mask and irq_status. */ spinlock_t irq_lock; int ecc_strengths[BCH_MAX_NUM_CORR_CAPS]; struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES]; struct nand_ecc_caps ecc_caps; int curr_trans_type; struct dma_chan *dmac; u32 nf_clk_rate; /* * Estimated Board delay. The value includes the total * round trip delay for the signals and is used for deciding on values * associated with data read capture. */ u32 board_delay; struct nand_chip *selected_chip; unsigned long assigned_cs; struct list_head chips; u8 bch_metadata_size; }; struct cdns_nand_chip { struct cadence_nand_timings timings; struct nand_chip chip; u8 nsels; struct list_head node; /* * part of oob area of NAND flash memory page. * This part is available for user to read or write. */ u32 avail_oob_size; /* Sector size. There are few sectors per mtd->writesize */ u32 sector_size; u32 sector_count; /* Offset of BBM. */ u8 bbm_offs; /* Number of bytes reserved for BBM. */ u8 bbm_len; /* ECC strength index. */ u8 corr_str_idx; u8 cs[]; }; struct ecc_info { int (*calc_ecc_bytes)(int step_size, int strength); int max_step_size; }; static inline struct cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip) { return container_of(chip, struct cdns_nand_chip, chip); } static inline struct cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller) { return container_of(controller, struct cdns_nand_ctrl, controller); } static bool cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf, u32 buf_len) { u8 data_dma_width = cdns_ctrl->caps2.data_dma_width; return buf && virt_addr_valid(buf) && likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) && likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN)); } static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl, u32 reg_offset, u32 timeout_us, u32 mask, bool is_clear) { u32 val; int ret; ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset, val, !(val & mask) == is_clear, 10, timeout_us); if (ret < 0) { dev_err(cdns_ctrl->dev, "Timeout while waiting for reg %x with mask %x is clear %d\n", reg_offset, mask, is_clear); } return ret; } static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl, bool enable) { u32 reg; if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1000000, CTRL_STATUS_CTRL_BUSY, true)) return -ETIMEDOUT; reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); if (enable) reg |= ECC_CONFIG_0_ECC_EN; else reg &= ~ECC_CONFIG_0_ECC_EN; writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); return 0; } static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl, u8 corr_str_idx) { u32 reg; if (cdns_ctrl->curr_corr_str_idx == corr_str_idx) return; reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); reg &= ~ECC_CONFIG_0_CORR_STR; reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx); writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); cdns_ctrl->curr_corr_str_idx = corr_str_idx; } static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl, u8 strength) { int i, corr_str_idx = -1; for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { if (cdns_ctrl->ecc_strengths[i] == strength) { corr_str_idx = i; break; } } return corr_str_idx; } static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl, u16 marker_value) { u32 reg; if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1000000, CTRL_STATUS_CTRL_BUSY, true)) return -ETIMEDOUT; reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); reg &= ~SKIP_BYTES_MARKER_VALUE; reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE, marker_value); writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); return 0; } static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl, u8 num_of_bytes, u32 offset_value, int enable) { u32 reg, skip_bytes_offset; if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1000000, CTRL_STATUS_CTRL_BUSY, true)) return -ETIMEDOUT; if (!enable) { num_of_bytes = 0; offset_value = 0; } reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF); reg &= ~SKIP_BYTES_NUM_OF_BYTES; reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES, num_of_bytes); skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE, offset_value); writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF); writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET); return 0; } /* Functions enables/disables hardware detection of erased data */ static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl, bool enable, u8 bitflips_threshold) { u32 reg; reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0); if (enable) reg |= ECC_CONFIG_0_ERASE_DET_EN; else reg &= ~ECC_CONFIG_0_ERASE_DET_EN; writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0); writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1); } static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl, bool bit_bus16) { u32 reg; if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1000000, CTRL_STATUS_CTRL_BUSY, true)) return -ETIMEDOUT; reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET); if (!bit_bus16) reg &= ~COMMON_SET_DEVICE_16BIT; else reg |= COMMON_SET_DEVICE_16BIT; writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET); return 0; } static void cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl, struct cadence_nand_irq_status *irq_status) { writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS); writel_relaxed(irq_status->trd_status, cdns_ctrl->reg + TRD_COMP_INT_STATUS); writel_relaxed(irq_status->trd_error, cdns_ctrl->reg + TRD_ERR_INT_STATUS); } static void cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl, struct cadence_nand_irq_status *irq_status) { irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS); irq_status->trd_status = readl_relaxed(cdns_ctrl->reg + TRD_COMP_INT_STATUS); irq_status->trd_error = readl_relaxed(cdns_ctrl->reg + TRD_ERR_INT_STATUS); } static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl, struct cadence_nand_irq_status *irq_status) { cadence_nand_read_int_status(cdns_ctrl, irq_status); return irq_status->status || irq_status->trd_status || irq_status->trd_error; } static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl) { unsigned long flags; spin_lock_irqsave(&cdns_ctrl->irq_lock, flags); memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status)); memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask)); spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags); } /* * This is the interrupt service routine. It handles all interrupts * sent to this device. */ static irqreturn_t cadence_nand_isr(int irq, void *dev_id) { struct cdns_nand_ctrl *cdns_ctrl = dev_id; struct cadence_nand_irq_status irq_status; irqreturn_t result = IRQ_NONE; spin_lock(&cdns_ctrl->irq_lock); if (irq_detected(cdns_ctrl, &irq_status)) { /* Handle interrupt. */ /* First acknowledge it. */ cadence_nand_clear_interrupt(cdns_ctrl, &irq_status); /* Status in the device context for someone to read. */ cdns_ctrl->irq_status.status |= irq_status.status; cdns_ctrl->irq_status.trd_status |= irq_status.trd_status; cdns_ctrl->irq_status.trd_error |= irq_status.trd_error; /* Notify anyone who cares that it happened. */ complete(&cdns_ctrl->complete); /* Tell the OS that we've handled this. */ result = IRQ_HANDLED; } spin_unlock(&cdns_ctrl->irq_lock); return result; } static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl, struct cadence_nand_irq_status *irq_mask) { writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status, cdns_ctrl->reg + INTR_ENABLE); writel_relaxed(irq_mask->trd_error, cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN); } static void cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl, struct cadence_nand_irq_status *irq_mask, struct cadence_nand_irq_status *irq_status) { unsigned long timeout = msecs_to_jiffies(10000); unsigned long time_left; time_left = wait_for_completion_timeout(&cdns_ctrl->complete, timeout); *irq_status = cdns_ctrl->irq_status; if (time_left == 0) { /* Timeout error. */ dev_err(cdns_ctrl->dev, "timeout occurred:\n"); dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n", irq_status->status, irq_mask->status); dev_err(cdns_ctrl->dev, "\ttrd_status = 0x%x, trd_status mask = 0x%x\n", irq_status->trd_status, irq_mask->trd_status); dev_err(cdns_ctrl->dev, "\t trd_error = 0x%x, trd_error mask = 0x%x\n", irq_status->trd_error, irq_mask->trd_error); } } /* Execute generic command on NAND controller. */ static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, u64 mini_ctrl_cmd) { u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg; mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr); mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF; mini_ctrl_cmd_h = mini_ctrl_cmd >> 32; if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1000000, CTRL_STATUS_CTRL_BUSY, true)) return -ETIMEDOUT; cadence_nand_reset_irq(cdns_ctrl); writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2); writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3); /* Select generic command. */ reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN); /* Thread number. */ reg |= FIELD_PREP(CMD_REG0_TN, 0); /* Issue command. */ writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); return 0; } /* Wait for data on slave DMA interface. */ static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl, u8 *out_sdma_trd, u32 *out_sdma_size) { struct cadence_nand_irq_status irq_mask, irq_status; irq_mask.trd_status = 0; irq_mask.trd_error = 0; irq_mask.status = INTR_STATUS_SDMA_TRIGG | INTR_STATUS_SDMA_ERR | INTR_STATUS_UNSUPP_CMD; cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); if (irq_status.status == 0) { dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n"); return -ETIMEDOUT; } if (irq_status.status & INTR_STATUS_SDMA_TRIGG) { *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE); *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM); *out_sdma_trd = FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd); } else { dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n", irq_status.status); return -EIO; } return 0; } static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl) { u32 reg; reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES); cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg); if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg)) cdns_ctrl->caps2.data_dma_width = 8; else cdns_ctrl->caps2.data_dma_width = 4; if (reg & CTRL_FEATURES_CONTROL_DATA) cdns_ctrl->caps2.data_control_supp = true; if (reg & (CTRL_FEATURES_NVDDR_2_3 | CTRL_FEATURES_NVDDR)) cdns_ctrl->caps2.is_phy_type_dll = true; } /* Prepare CDMA descriptor. */ static void cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl, char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr, dma_addr_t ctrl_data_ptr, u16 ctype) { struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc; memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc)); /* Set fields for one descriptor. */ cdma_desc->flash_pointer = flash_ptr; if (cdns_ctrl->ctrl_rev >= 13) cdma_desc->bank = nf_mem; else cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT); cdma_desc->command_flags |= CDMA_CF_DMA_MASTER; cdma_desc->command_flags |= CDMA_CF_INT; cdma_desc->memory_pointer = mem_ptr; cdma_desc->status = 0; cdma_desc->sync_flag_pointer = 0; cdma_desc->sync_arguments = 0; cdma_desc->command_type = ctype; cdma_desc->ctrl_data_ptr = ctrl_data_ptr; } static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl, u32 desc_status) { if (desc_status & CDMA_CS_ERP) return STAT_ERASED; if (desc_status & CDMA_CS_UNCE) return STAT_ECC_UNCORR; if (desc_status & CDMA_CS_ERR) { dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n"); return STAT_FAIL; } if (FIELD_GET(CDMA_CS_MAXERR, desc_status)) return STAT_ECC_CORR; return STAT_FAIL; } static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl) { struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc; u8 status = STAT_BUSY; if (desc_ptr->status & CDMA_CS_FAIL) { status = cadence_nand_check_desc_error(cdns_ctrl, desc_ptr->status); dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status); } else if (desc_ptr->status & CDMA_CS_COMP) { /* Descriptor finished with no errors. */ if (desc_ptr->command_flags & CDMA_CF_CONT) { dev_info(cdns_ctrl->dev, "DMA unsupported flag is set"); status = STAT_UNKNOWN; } else { /* Last descriptor. */ status = STAT_OK; } } return status; } static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl, u8 thread) { u32 reg; int status; /* Wait for thread ready. */ status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS, 1000000, BIT(thread), true); if (status) return status; cadence_nand_reset_irq(cdns_ctrl); reinit_completion(&cdns_ctrl->complete); writel_relaxed((u32)cdns_ctrl->dma_cdma_desc, cdns_ctrl->reg + CMD_REG2); writel_relaxed(0, cdns_ctrl->reg + CMD_REG3); /* Select CDMA mode. */ reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA); /* Thread number. */ reg |= FIELD_PREP(CMD_REG0_TN, thread); /* Issue command. */ writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0); return 0; } /* Send SDMA command and wait for finish. */ static u32 cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl, u8 thread) { struct cadence_nand_irq_status irq_mask, irq_status = {0}; int status; irq_mask.trd_status = BIT(thread); irq_mask.trd_error = BIT(thread); irq_mask.status = INTR_STATUS_CDMA_TERR; cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask); status = cadence_nand_cdma_send(cdns_ctrl, thread); if (status) return status; cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status); if (irq_status.status == 0 && irq_status.trd_status == 0 && irq_status.trd_error == 0) { dev_err(cdns_ctrl->dev, "CDMA command timeout\n"); return -ETIMEDOUT; } if (irq_status.status & irq_mask.status) { dev_err(cdns_ctrl->dev, "CDMA command failed\n"); return -EIO; } return 0; } /* * ECC size depends on configured ECC strength and on maximum supported * ECC step size. */ static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength) { int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8); return ALIGN(nbytes, 2); } #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \ static int \ cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \ int strength)\ {\ return cadence_nand_calc_ecc_bytes(max_step_size, strength);\ } CADENCE_NAND_CALC_ECC_BYTES(256) CADENCE_NAND_CALC_ECC_BYTES(512) CADENCE_NAND_CALC_ECC_BYTES(1024) CADENCE_NAND_CALC_ECC_BYTES(2048) CADENCE_NAND_CALC_ECC_BYTES(4096) /* Function reads BCH capabilities. */ static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl) { struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps; int max_step_size = 0, nstrengths, i; u32 reg; reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3); cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg); if (cdns_ctrl->bch_metadata_size < 4) { dev_err(cdns_ctrl->dev, "Driver needs at least 4 bytes of BCH meta data\n"); return -EIO; } reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0); cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg); cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg); cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg); cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg); reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1); cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg); cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg); cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg); cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg); reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2); cdns_ctrl->ecc_stepinfos[0].stepsize = FIELD_GET(BCH_CFG_2_SECT_0, reg); cdns_ctrl->ecc_stepinfos[1].stepsize = FIELD_GET(BCH_CFG_2_SECT_1, reg); nstrengths = 0; for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) { if (cdns_ctrl->ecc_strengths[i] != 0) nstrengths++; } ecc_caps->nstepinfos = 0; for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) { /* ECC strengths are common for all step infos. */ cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths; cdns_ctrl->ecc_stepinfos[i].strengths = cdns_ctrl->ecc_strengths; if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0) ecc_caps->nstepinfos++; if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size) max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize; } ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0]; switch (max_step_size) { case 256: ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256; break; case 512: ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512; break; case 1024: ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024; break; case 2048: ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048; break; case 4096: ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096; break; default: dev_err(cdns_ctrl->dev, "Unsupported sector size(ecc step size) %d\n", max_step_size); return -EIO; } return 0; } /* Hardware initialization. */ static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl) { int status; u32 reg; status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1000000, CTRL_STATUS_INIT_COMP, false); if (status) return status; reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION); cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg); dev_info(cdns_ctrl->dev, "%s: cadence nand controller version reg %x\n", __func__, reg); /* Disable cache and multiplane. */ writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG); writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG); /* Clear all interrupts. */ writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS); cadence_nand_get_caps(cdns_ctrl); if (cadence_nand_read_bch_caps(cdns_ctrl)) return -EIO; /* * Set IO width access to 8. * It is because during SW device discovering width access * is expected to be 8. */ status = cadence_nand_set_access_width16(cdns_ctrl, false); return status; } #define TT_MAIN_OOB_AREAS 2 #define TT_RAW_PAGE 3 #define TT_BBM 4 #define TT_MAIN_OOB_AREA_EXT 5 /* Prepare size of data to transfer. */ static void cadence_nand_prepare_data_size(struct nand_chip *chip, int transfer_type) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); struct mtd_info *mtd = nand_to_mtd(chip); u32 sec_size = 0, offset = 0, sec_cnt = 1; u32 last_sec_size = cdns_chip->sector_size; u32 data_ctrl_size = 0; u32 reg = 0; if (cdns_ctrl->curr_trans_type == transfer_type) return; switch (transfer_type) { case TT_MAIN_OOB_AREA_EXT: sec_cnt = cdns_chip->sector_count; sec_size = cdns_chip->sector_size; data_ctrl_size = cdns_chip->avail_oob_size; break; case TT_MAIN_OOB_AREAS: sec_cnt = cdns_chip->sector_count; last_sec_size = cdns_chip->sector_size + cdns_chip->avail_oob_size; sec_size = cdns_chip->sector_size; break; case TT_RAW_PAGE: last_sec_size = mtd->writesize + mtd->oobsize; break; case TT_BBM: offset = mtd->writesize + cdns_chip->bbm_offs; last_sec_size = 8; break; } reg = 0; reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset); reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt); writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0); reg = 0; reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size); reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size); writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1); if (cdns_ctrl->caps2.data_control_supp) { reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL); reg &= ~CONTROL_DATA_CTRL_SIZE; reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size); writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL); } cdns_ctrl->curr_trans_type = transfer_type; } static int cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr, int page, void *buf, void *ctrl_dat, u32 buf_size, u32 ctrl_dat_size, enum dma_data_direction dir, bool with_ecc) { dma_addr_t dma_buf, dma_ctrl_dat = 0; u8 thread_nr = chip_nr; int status; u16 ctype; if (dir == DMA_FROM_DEVICE) ctype = CDMA_CT_RD; else ctype = CDMA_CT_WR; cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc); dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir); if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) { dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); return -EIO; } if (ctrl_dat && ctrl_dat_size) { dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat, ctrl_dat_size, dir); if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) { dma_unmap_single(cdns_ctrl->dev, dma_buf, buf_size, dir); dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); return -EIO; } } cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page, dma_buf, dma_ctrl_dat, ctype); status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); dma_unmap_single(cdns_ctrl->dev, dma_buf, buf_size, dir); if (ctrl_dat && ctrl_dat_size) dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat, ctrl_dat_size, dir); if (status) return status; return cadence_nand_cdma_finish(cdns_ctrl); } static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl, struct cadence_nand_timings *t) { writel_relaxed(t->async_toggle_timings, cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS); writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0); writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1); writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2); if (cdns_ctrl->caps2.is_phy_type_dll) writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL); writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL); if (cdns_ctrl->caps2.is_phy_type_dll) { writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL); writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING); writel_relaxed(t->phy_dqs_timing, cdns_ctrl->reg + PHY_DQS_TIMING); writel_relaxed(t->phy_gate_lpbk_ctrl, cdns_ctrl->reg + PHY_GATE_LPBK_CTRL); writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE, cdns_ctrl->reg + PHY_DLL_MASTER_CTRL); writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL); } } static int cadence_nand_select_target(struct nand_chip *chip) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); if (chip == cdns_ctrl->selected_chip) return 0; if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1000000, CTRL_STATUS_CTRL_BUSY, true)) return -ETIMEDOUT; cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings); cadence_nand_set_ecc_strength(cdns_ctrl, cdns_chip->corr_str_idx); cadence_nand_set_erase_detection(cdns_ctrl, true, chip->ecc.strength); cdns_ctrl->curr_trans_type = -1; cdns_ctrl->selected_chip = chip; return 0; } static int cadence_nand_erase(struct nand_chip *chip, u32 page) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); int status; u8 thread_nr = cdns_chip->cs[chip->cur_cs]; cadence_nand_cdma_desc_prepare(cdns_ctrl, cdns_chip->cs[chip->cur_cs], page, 0, 0, CDMA_CT_ERASE); status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr); if (status) { dev_err(cdns_ctrl->dev, "erase operation failed\n"); return -EIO; } status = cadence_nand_cdma_finish(cdns_ctrl); if (status) return status; return 0; } static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf) { int status; struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); struct mtd_info *mtd = nand_to_mtd(chip); cadence_nand_prepare_data_size(chip, TT_BBM); cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); /* * Read only bad block marker from offset * defined by a memory manufacturer. */ status = cadence_nand_cdma_transfer(cdns_ctrl, cdns_chip->cs[chip->cur_cs], page, cdns_ctrl->buf, NULL, mtd->oobsize, 0, DMA_FROM_DEVICE, false); if (status) { dev_err(cdns_ctrl->dev, "read BBM failed\n"); return -EIO; } memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len); return 0; } static int cadence_nand_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); struct mtd_info *mtd = nand_to_mtd(chip); int status; u16 marker_val = 0xFFFF; status = cadence_nand_select_target(chip); if (status) return status; cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, mtd->writesize + cdns_chip->bbm_offs, 1); if (oob_required) { marker_val = *(u16 *)(chip->oob_poi + cdns_chip->bbm_offs); } else { /* Set oob data to 0xFF. */ memset(cdns_ctrl->buf + mtd->writesize, 0xFF, cdns_chip->avail_oob_size); } cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val); cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && cdns_ctrl->caps2.data_control_supp) { u8 *oob; if (oob_required) oob = chip->oob_poi; else oob = cdns_ctrl->buf + mtd->writesize; status = cadence_nand_cdma_transfer(cdns_ctrl, cdns_chip->cs[chip->cur_cs], page, (void *)buf, oob, mtd->writesize, cdns_chip->avail_oob_size, DMA_TO_DEVICE, true); if (status) { dev_err(cdns_ctrl->dev, "write page failed\n"); return -EIO; } return 0; } if (oob_required) { /* Transfer the data to the oob area. */ memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi, cdns_chip->avail_oob_size); } memcpy(cdns_ctrl->buf, buf, mtd->writesize); cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); return cadence_nand_cdma_transfer(cdns_ctrl, cdns_chip->cs[chip->cur_cs], page, cdns_ctrl->buf, NULL, mtd->writesize + cdns_chip->avail_oob_size, 0, DMA_TO_DEVICE, true); } static int cadence_nand_write_oob(struct nand_chip *chip, int page) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); memset(cdns_ctrl->buf, 0xFF, mtd->writesize); return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page); } static int cadence_nand_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); struct mtd_info *mtd = nand_to_mtd(chip); int writesize = mtd->writesize; int oobsize = mtd->oobsize; int ecc_steps = chip->ecc.steps; int ecc_size = chip->ecc.size; int ecc_bytes = chip->ecc.bytes; void *tmp_buf = cdns_ctrl->buf; int oob_skip = cdns_chip->bbm_len; size_t size = writesize + oobsize; int i, pos, len; int status = 0; status = cadence_nand_select_target(chip); if (status) return status; /* * Fill the buffer with 0xff first except the full page transfer. * This simplifies the logic. */ if (!buf || !oob_required) memset(tmp_buf, 0xff, size); cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); /* Arrange the buffer for syndrome payload/ecc layout. */ if (buf) { for (i = 0; i < ecc_steps; i++) { pos = i * (ecc_size + ecc_bytes); len = ecc_size; if (pos >= writesize) pos += oob_skip; else if (pos + len > writesize) len = writesize - pos; memcpy(tmp_buf + pos, buf, len); buf += len; if (len < ecc_size) { len = ecc_size - len; memcpy(tmp_buf + writesize + oob_skip, buf, len); buf += len; } } } if (oob_required) { const u8 *oob = chip->oob_poi; u32 oob_data_offset = (cdns_chip->sector_count - 1) * (cdns_chip->sector_size + chip->ecc.bytes) + cdns_chip->sector_size + oob_skip; /* BBM at the beginning of the OOB area. */ memcpy(tmp_buf + writesize, oob, oob_skip); /* OOB free. */ memcpy(tmp_buf + oob_data_offset, oob, cdns_chip->avail_oob_size); oob += cdns_chip->avail_oob_size; /* OOB ECC. */ for (i = 0; i < ecc_steps; i++) { pos = ecc_size + i * (ecc_size + ecc_bytes); if (i == (ecc_steps - 1)) pos += cdns_chip->avail_oob_size; len = ecc_bytes; if (pos >= writesize) pos += oob_skip; else if (pos + len > writesize) len = writesize - pos; memcpy(tmp_buf + pos, oob, len); oob += len; if (len < ecc_bytes) { len = ecc_bytes - len; memcpy(tmp_buf + writesize + oob_skip, oob, len); oob += len; } } } cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); return cadence_nand_cdma_transfer(cdns_ctrl, cdns_chip->cs[chip->cur_cs], page, cdns_ctrl->buf, NULL, mtd->writesize + mtd->oobsize, 0, DMA_TO_DEVICE, false); } static int cadence_nand_write_oob_raw(struct nand_chip *chip, int page) { return cadence_nand_write_page_raw(chip, NULL, true, page); } static int cadence_nand_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); struct mtd_info *mtd = nand_to_mtd(chip); int status = 0; int ecc_err_count = 0; status = cadence_nand_select_target(chip); if (status) return status; cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len, mtd->writesize + cdns_chip->bbm_offs, 1); /* * If data buffer can be accessed by DMA and data_control feature * is supported then transfer data and oob directly. */ if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) && cdns_ctrl->caps2.data_control_supp) { u8 *oob; if (oob_required) oob = chip->oob_poi; else oob = cdns_ctrl->buf + mtd->writesize; cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT); status = cadence_nand_cdma_transfer(cdns_ctrl, cdns_chip->cs[chip->cur_cs], page, buf, oob, mtd->writesize, cdns_chip->avail_oob_size, DMA_FROM_DEVICE, true); /* Otherwise use bounce buffer. */ } else { cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS); status = cadence_nand_cdma_transfer(cdns_ctrl, cdns_chip->cs[chip->cur_cs], page, cdns_ctrl->buf, NULL, mtd->writesize + cdns_chip->avail_oob_size, 0, DMA_FROM_DEVICE, true); memcpy(buf, cdns_ctrl->buf, mtd->writesize); if (oob_required) memcpy(chip->oob_poi, cdns_ctrl->buf + mtd->writesize, mtd->oobsize); } switch (status) { case STAT_ECC_UNCORR: mtd->ecc_stats.failed++; ecc_err_count++; break; case STAT_ECC_CORR: ecc_err_count = FIELD_GET(CDMA_CS_MAXERR, cdns_ctrl->cdma_desc->status); mtd->ecc_stats.corrected += ecc_err_count; break; case STAT_ERASED: case STAT_OK: break; default: dev_err(cdns_ctrl->dev, "read page failed\n"); return -EIO; } if (oob_required) if (cadence_nand_read_bbm(chip, page, chip->oob_poi)) return -EIO; return ecc_err_count; } /* Reads OOB data from the device. */ static int cadence_nand_read_oob(struct nand_chip *chip, int page) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page); } static int cadence_nand_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); struct mtd_info *mtd = nand_to_mtd(chip); int oob_skip = cdns_chip->bbm_len; int writesize = mtd->writesize; int ecc_steps = chip->ecc.steps; int ecc_size = chip->ecc.size; int ecc_bytes = chip->ecc.bytes; void *tmp_buf = cdns_ctrl->buf; int i, pos, len; int status = 0; status = cadence_nand_select_target(chip); if (status) return status; cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0); cadence_nand_prepare_data_size(chip, TT_RAW_PAGE); status = cadence_nand_cdma_transfer(cdns_ctrl, cdns_chip->cs[chip->cur_cs], page, cdns_ctrl->buf, NULL, mtd->writesize + mtd->oobsize, 0, DMA_FROM_DEVICE, false); switch (status) { case STAT_ERASED: case STAT_OK: break; default: dev_err(cdns_ctrl->dev, "read raw page failed\n"); return -EIO; } /* Arrange the buffer for syndrome payload/ecc layout. */ if (buf) { for (i = 0; i < ecc_steps; i++) { pos = i * (ecc_size + ecc_bytes); len = ecc_size; if (pos >= writesize) pos += oob_skip; else if (pos + len > writesize) len = writesize - pos; memcpy(buf, tmp_buf + pos, len); buf += len; if (len < ecc_size) { len = ecc_size - len; memcpy(buf, tmp_buf + writesize + oob_skip, len); buf += len; } } } if (oob_required) { u8 *oob = chip->oob_poi; u32 oob_data_offset = (cdns_chip->sector_count - 1) * (cdns_chip->sector_size + chip->ecc.bytes) + cdns_chip->sector_size + oob_skip; /* OOB free. */ memcpy(oob, tmp_buf + oob_data_offset, cdns_chip->avail_oob_size); /* BBM at the beginning of the OOB area. */ memcpy(oob, tmp_buf + writesize, oob_skip); oob += cdns_chip->avail_oob_size; /* OOB ECC */ for (i = 0; i < ecc_steps; i++) { pos = ecc_size + i * (ecc_size + ecc_bytes); len = ecc_bytes; if (i == (ecc_steps - 1)) pos += cdns_chip->avail_oob_size; if (pos >= writesize) pos += oob_skip; else if (pos + len > writesize) len = writesize - pos; memcpy(oob, tmp_buf + pos, len); oob += len; if (len < ecc_bytes) { len = ecc_bytes - len; memcpy(oob, tmp_buf + writesize + oob_skip, len); oob += len; } } } return 0; } static int cadence_nand_read_oob_raw(struct nand_chip *chip, int page) { return cadence_nand_read_page_raw(chip, NULL, true, page); } static void cadence_nand_slave_dma_transfer_finished(void *data) { struct completion *finished = data; complete(finished); } static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl, void *buf, dma_addr_t dev_dma, size_t len, enum dma_data_direction dir) { DECLARE_COMPLETION_ONSTACK(finished); struct dma_chan *chan; struct dma_device *dma_dev; dma_addr_t src_dma, dst_dma, buf_dma; struct dma_async_tx_descriptor *tx; dma_cookie_t cookie; chan = cdns_ctrl->dmac; dma_dev = chan->device; buf_dma = dma_map_single(dma_dev->dev, buf, len, dir); if (dma_mapping_error(dma_dev->dev, buf_dma)) { dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n"); goto err; } if (dir == DMA_FROM_DEVICE) { src_dma = cdns_ctrl->io.dma; dst_dma = buf_dma; } else { src_dma = buf_dma; dst_dma = cdns_ctrl->io.dma; } tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len, DMA_CTRL_ACK | DMA_PREP_INTERRUPT); if (!tx) { dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n"); goto err_unmap; } tx->callback = cadence_nand_slave_dma_transfer_finished; tx->callback_param = &finished; cookie = dmaengine_submit(tx); if (dma_submit_error(cookie)) { dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n"); goto err_unmap; } dma_async_issue_pending(cdns_ctrl->dmac); wait_for_completion(&finished); dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); return 0; err_unmap: dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir); err: dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n"); return -EIO; } static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl, u8 *buf, int len) { u8 thread_nr = 0; u32 sdma_size; int status; /* Wait until slave DMA interface is ready to data transfer. */ status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); if (status) return status; if (!cdns_ctrl->caps1->has_dma) { int len_in_words = len >> 2; /* read alingment data */ ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words); if (sdma_size > len) { /* read rest data from slave DMA interface if any */ ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, sdma_size / 4 - len_in_words); /* copy rest of data */ memcpy(buf + (len_in_words << 2), cdns_ctrl->buf, len - (len_in_words << 2)); } return 0; } if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf, cdns_ctrl->io.dma, len, DMA_FROM_DEVICE); if (status == 0) return 0; dev_warn(cdns_ctrl->dev, "Slave DMA transfer failed. Try again using bounce buffer."); } /* If DMA transfer is not possible or failed then use bounce buffer. */ status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, cdns_ctrl->io.dma, sdma_size, DMA_FROM_DEVICE); if (status) { dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); return status; } memcpy(buf, cdns_ctrl->buf, len); return 0; } static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl, const u8 *buf, int len) { u8 thread_nr = 0; u32 sdma_size; int status; /* Wait until slave DMA interface is ready to data transfer. */ status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size); if (status) return status; if (!cdns_ctrl->caps1->has_dma) { int len_in_words = len >> 2; iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words); if (sdma_size > len) { /* copy rest of data */ memcpy(cdns_ctrl->buf, buf + (len_in_words << 2), len - (len_in_words << 2)); /* write all expected by nand controller data */ iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf, sdma_size / 4 - len_in_words); } return 0; } if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) { status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf, cdns_ctrl->io.dma, len, DMA_TO_DEVICE); if (status == 0) return 0; dev_warn(cdns_ctrl->dev, "Slave DMA transfer failed. Try again using bounce buffer."); } /* If DMA transfer is not possible or failed then use bounce buffer. */ memcpy(cdns_ctrl->buf, buf, len); status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf, cdns_ctrl->io.dma, sdma_size, DMA_TO_DEVICE); if (status) dev_err(cdns_ctrl->dev, "Slave DMA transfer failed"); return status; } static int cadence_nand_force_byte_access(struct nand_chip *chip, bool force_8bit) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); /* * Callers of this function do not verify if the NAND is using a 16-bit * an 8-bit bus for normal operations, so we need to take care of that * here by leaving the configuration unchanged if the NAND does not have * the NAND_BUSWIDTH_16 flag set. */ if (!(chip->options & NAND_BUSWIDTH_16)) return 0; return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit); } static int cadence_nand_cmd_opcode(struct nand_chip *chip, const struct nand_subop *subop) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); const struct nand_op_instr *instr; unsigned int op_id = 0; u64 mini_ctrl_cmd = 0; int ret; instr = &subop->instrs[op_id]; if (instr->delay_ns > 0) mini_ctrl_cmd |= GCMD_LAY_TWB; mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, GCMD_LAY_INSTR_CMD); mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD, instr->ctx.cmd.opcode); ret = cadence_nand_generic_cmd_send(cdns_ctrl, cdns_chip->cs[chip->cur_cs], mini_ctrl_cmd); if (ret) dev_err(cdns_ctrl->dev, "send cmd %x failed\n", instr->ctx.cmd.opcode); return ret; } static int cadence_nand_cmd_address(struct nand_chip *chip, const struct nand_subop *subop) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); const struct nand_op_instr *instr; unsigned int op_id = 0; u64 mini_ctrl_cmd = 0; unsigned int offset, naddrs; u64 address = 0; const u8 *addrs; int ret; int i; instr = &subop->instrs[op_id]; if (instr->delay_ns > 0) mini_ctrl_cmd |= GCMD_LAY_TWB; mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, GCMD_LAY_INSTR_ADDR); offset = nand_subop_get_addr_start_off(subop, op_id); naddrs = nand_subop_get_num_addr_cyc(subop, op_id); addrs = &instr->ctx.addr.addrs[offset]; for (i = 0; i < naddrs; i++) address |= (u64)addrs[i] << (8 * i); mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR, address); mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE, naddrs - 1); ret = cadence_nand_generic_cmd_send(cdns_ctrl, cdns_chip->cs[chip->cur_cs], mini_ctrl_cmd); if (ret) dev_err(cdns_ctrl->dev, "send address %llx failed\n", address); return ret; } static int cadence_nand_cmd_erase(struct nand_chip *chip, const struct nand_subop *subop) { unsigned int op_id; if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) { int i; const struct nand_op_instr *instr = NULL; unsigned int offset, naddrs; const u8 *addrs; u32 page = 0; instr = &subop->instrs[1]; offset = nand_subop_get_addr_start_off(subop, 1); naddrs = nand_subop_get_num_addr_cyc(subop, 1); addrs = &instr->ctx.addr.addrs[offset]; for (i = 0; i < naddrs; i++) page |= (u32)addrs[i] << (8 * i); return cadence_nand_erase(chip, page); } /* * If it is not an erase operation then handle operation * by calling exec_op function. */ for (op_id = 0; op_id < subop->ninstrs; op_id++) { int ret; const struct nand_operation nand_op = { .cs = chip->cur_cs, .instrs = &subop->instrs[op_id], .ninstrs = 1}; ret = chip->controller->ops->exec_op(chip, &nand_op, false); if (ret) return ret; } return 0; } static int cadence_nand_cmd_data(struct nand_chip *chip, const struct nand_subop *subop) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); const struct nand_op_instr *instr; unsigned int offset, op_id = 0; u64 mini_ctrl_cmd = 0; int len = 0; int ret; instr = &subop->instrs[op_id]; if (instr->delay_ns > 0) mini_ctrl_cmd |= GCMD_LAY_TWB; mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR, GCMD_LAY_INSTR_DATA); if (instr->type == NAND_OP_DATA_OUT_INSTR) mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR, GCMD_DIR_WRITE); len = nand_subop_get_data_len(subop, op_id); offset = nand_subop_get_data_start_off(subop, op_id); mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1); mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len); if (instr->ctx.data.force_8bit) { ret = cadence_nand_force_byte_access(chip, true); if (ret) { dev_err(cdns_ctrl->dev, "cannot change byte access generic data cmd failed\n"); return ret; } } ret = cadence_nand_generic_cmd_send(cdns_ctrl, cdns_chip->cs[chip->cur_cs], mini_ctrl_cmd); if (ret) { dev_err(cdns_ctrl->dev, "send generic data cmd failed\n"); return ret; } if (instr->type == NAND_OP_DATA_IN_INSTR) { void *buf = instr->ctx.data.buf.in + offset; ret = cadence_nand_read_buf(cdns_ctrl, buf, len); } else { const void *buf = instr->ctx.data.buf.out + offset; ret = cadence_nand_write_buf(cdns_ctrl, buf, len); } if (ret) { dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n"); return ret; } if (instr->ctx.data.force_8bit) { ret = cadence_nand_force_byte_access(chip, false); if (ret) { dev_err(cdns_ctrl->dev, "cannot change byte access generic data cmd failed\n"); } } return ret; } static int cadence_nand_cmd_waitrdy(struct nand_chip *chip, const struct nand_subop *subop) { int status; unsigned int op_id = 0; struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); const struct nand_op_instr *instr = &subop->instrs[op_id]; u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000; status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS, timeout_us, BIT(cdns_chip->cs[chip->cur_cs]), false); return status; } static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER( NAND_OP_PARSER_PATTERN( cadence_nand_cmd_erase, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC), NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), NAND_OP_PARSER_PATTERN( cadence_nand_cmd_opcode, NAND_OP_PARSER_PAT_CMD_ELEM(false)), NAND_OP_PARSER_PATTERN( cadence_nand_cmd_address, NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)), NAND_OP_PARSER_PATTERN( cadence_nand_cmd_data, NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)), NAND_OP_PARSER_PATTERN( cadence_nand_cmd_data, NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)), NAND_OP_PARSER_PATTERN( cadence_nand_cmd_waitrdy, NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)) ); static int cadence_nand_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { if (!check_only) { int status = cadence_nand_select_target(chip); if (status) return status; } return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op, check_only); } static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); if (section) return -ERANGE; oobregion->offset = cdns_chip->bbm_len; oobregion->length = cdns_chip->avail_oob_size - cdns_chip->bbm_len; return 0; } static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); if (section) return -ERANGE; oobregion->offset = cdns_chip->avail_oob_size; oobregion->length = chip->ecc.total; return 0; } static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = { .free = cadence_nand_ooblayout_free, .ecc = cadence_nand_ooblayout_ecc, }; static int calc_cycl(u32 timing, u32 clock) { if (timing == 0 || clock == 0) return 0; if ((timing % clock) > 0) return timing / clock; else return timing / clock - 1; } /* Calculate max data valid window. */ static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min, u32 board_delay_skew_min, u32 ext_mode) { if (ext_mode == 0) clk_period /= 2; return (trp_cnt + 1) * clk_period + trhoh_min + board_delay_skew_min; } /* Calculate data valid window. */ static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min, u32 trea_max, u32 ext_mode) { if (ext_mode == 0) clk_period /= 2; return (trp_cnt + 1) * clk_period + trhoh_min - trea_max; } static int cadence_nand_setup_interface(struct nand_chip *chip, int chipnr, const struct nand_interface_config *conf) { const struct nand_sdr_timings *sdr; struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); struct cadence_nand_timings *t = &cdns_chip->timings; u32 reg; u32 board_delay = cdns_ctrl->board_delay; u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL, cdns_ctrl->nf_clk_rate); u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt; u32 tfeat_cnt, trhz_cnt, tvdly_cnt; u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt; u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0; u32 if_skew = cdns_ctrl->caps1->if_skew; u32 board_delay_skew_min = board_delay - if_skew; u32 board_delay_skew_max = board_delay + if_skew; u32 dqs_sampl_res, phony_dqs_mod; u32 tdvw, tdvw_min, tdvw_max; u32 ext_rd_mode, ext_wr_mode; u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0; u32 sampling_point; sdr = nand_get_sdr_timings(conf); if (IS_ERR(sdr)) return PTR_ERR(sdr); memset(t, 0, sizeof(*t)); /* Sampling point calculation. */ if (cdns_ctrl->caps2.is_phy_type_dll) phony_dqs_mod = 2; else phony_dqs_mod = 1; dqs_sampl_res = clk_period / phony_dqs_mod; tdvw_min = sdr->tREA_max + board_delay_skew_max; /* * The idea of those calculation is to get the optimum value * for tRP and tRH timings. If it is NOT possible to sample data * with optimal tRP/tRH settings, the parameters will be extended. * If clk_period is 50ns (the lowest value) this condition is met * for SDR timing modes 1, 2, 3, 4 and 5. * If clk_period is 20ns the condition is met only for SDR timing * mode 5. */ if (sdr->tRC_min <= clk_period && sdr->tRP_min <= (clk_period / 2) && sdr->tREH_min <= (clk_period / 2)) { /* Performance mode. */ ext_rd_mode = 0; tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, sdr->tREA_max, ext_rd_mode); tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, board_delay_skew_min, ext_rd_mode); /* * Check if data valid window and sampling point can be found * and is not on the edge (ie. we have hold margin). * If not extend the tRP timings. */ if (tdvw > 0) { if (tdvw_max <= tdvw_min || (tdvw_max % dqs_sampl_res) == 0) { /* * No valid sampling point so the RE pulse need * to be widen widening by half clock cycle. */ ext_rd_mode = 1; } } else { /* * There is no valid window * to be able to sample data the tRP need to be widen. * Very safe calculations are performed here. */ trp_cnt = (sdr->tREA_max + board_delay_skew_max + dqs_sampl_res) / clk_period; ext_rd_mode = 1; } } else { /* Extended read mode. */ u32 trh; ext_rd_mode = 1; trp_cnt = calc_cycl(sdr->tRP_min, clk_period); trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period); if (sdr->tREH_min >= trh) trh_cnt = calc_cycl(sdr->tREH_min, clk_period); else trh_cnt = calc_cycl(trh, clk_period); tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min, sdr->tREA_max, ext_rd_mode); /* * Check if data valid window and sampling point can be found * or if it is at the edge check if previous is valid * - if not extend the tRP timings. */ if (tdvw > 0) { tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, board_delay_skew_min, ext_rd_mode); if ((((tdvw_max / dqs_sampl_res) * dqs_sampl_res) <= tdvw_min) || (((tdvw_max % dqs_sampl_res) == 0) && (((tdvw_max / dqs_sampl_res - 1) * dqs_sampl_res) <= tdvw_min))) { /* * Data valid window width is lower than * sampling resolution and do not hit any * sampling point to be sure the sampling point * will be found the RE low pulse width will be * extended by one clock cycle. */ trp_cnt = trp_cnt + 1; } } else { /* * There is no valid window to be able to sample data. * The tRP need to be widen. * Very safe calculations are performed here. */ trp_cnt = (sdr->tREA_max + board_delay_skew_max + dqs_sampl_res) / clk_period; } } tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min, board_delay_skew_min, ext_rd_mode); if (sdr->tWC_min <= clk_period && (sdr->tWP_min + if_skew) <= (clk_period / 2) && (sdr->tWH_min + if_skew) <= (clk_period / 2)) { ext_wr_mode = 0; } else { u32 twh; ext_wr_mode = 1; twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period); if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew)) twp_cnt = calc_cycl(sdr->tALS_min + if_skew, clk_period); twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period); if (sdr->tWH_min >= twh) twh = sdr->tWH_min; twh_cnt = calc_cycl(twh + if_skew, clk_period); } reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt); reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt); reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt); reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt); t->async_toggle_timings = reg; dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg); tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period); tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period); twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period); trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period); reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt); /* * If timing exceeds delay field in timing register * then use maximum value. */ if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt)) reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt); else reg |= TIMINGS0_TCCS; reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt); reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt); t->timings0 = reg; dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg); /* The following is related to single signal so skew is not needed. */ trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period); trhz_cnt = trhz_cnt + 1; twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period); /* * Because of the two stage syncflop the value must be increased by 3 * first value is related with sync, second value is related * with output if delay. */ twb_cnt = twb_cnt + 3 + 5; /* * The following is related to the we edge of the random data input * sequence so skew is not needed. */ tvdly_cnt = calc_cycl(500000 + if_skew, clk_period); reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt); reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt); reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt); t->timings1 = reg; dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg); tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period); if (tfeat_cnt < twb_cnt) tfeat_cnt = twb_cnt; tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period); tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period); reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt); reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt); reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt); t->timings2 = reg; dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg); if (cdns_ctrl->caps2.is_phy_type_dll) { reg = DLL_PHY_CTRL_DLL_RST_N; if (ext_wr_mode) reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE; if (ext_rd_mode) reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE; reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7); reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7); t->dll_phy_ctrl = reg; dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg); } /* Sampling point calculation. */ if ((tdvw_max % dqs_sampl_res) > 0) sampling_point = tdvw_max / dqs_sampl_res; else sampling_point = (tdvw_max / dqs_sampl_res - 1); if (sampling_point * dqs_sampl_res > tdvw_min) { dll_phy_dqs_timing = FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4); dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS; phony_dqs_timing = sampling_point / phony_dqs_mod; if ((sampling_point % 2) > 0) { dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL; if ((tdvw_max % dqs_sampl_res) == 0) /* * Calculation for sampling point at the edge * of data and being odd number. */ phony_dqs_timing = (tdvw_max / dqs_sampl_res) / phony_dqs_mod - 1; if (!cdns_ctrl->caps2.is_phy_type_dll) phony_dqs_timing--; } else { phony_dqs_timing--; } rd_del_sel = phony_dqs_timing + 3; } else { dev_warn(cdns_ctrl->dev, "ERROR : cannot find valid sampling point\n"); } reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing); if (cdns_ctrl->caps2.is_phy_type_dll) reg |= PHY_CTRL_SDR_DQS; t->phy_ctrl = reg; dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg); if (cdns_ctrl->caps2.is_phy_type_dll) { dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0); dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2); dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n", dll_phy_dqs_timing); t->phy_dqs_timing = dll_phy_dqs_timing; reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel); dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n", reg); t->phy_gate_lpbk_ctrl = reg; dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n", PHY_DLL_MASTER_CTRL_BYPASS_MODE); dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0); } return 0; } static int cadence_nand_attach_chip(struct nand_chip *chip) { struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller); struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip); u32 ecc_size; struct mtd_info *mtd = nand_to_mtd(chip); int ret; if (chip->options & NAND_BUSWIDTH_16) { ret = cadence_nand_set_access_width16(cdns_ctrl, true); if (ret) return ret; } chip->bbt_options |= NAND_BBT_USE_FLASH; chip->bbt_options |= NAND_BBT_NO_OOB; chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; chip->options |= NAND_NO_SUBPAGE_WRITE; cdns_chip->bbm_offs = chip->badblockpos; cdns_chip->bbm_offs &= ~0x01; /* this value should be even number */ cdns_chip->bbm_len = 2; ret = nand_ecc_choose_conf(chip, &cdns_ctrl->ecc_caps, mtd->oobsize - cdns_chip->bbm_len); if (ret) { dev_err(cdns_ctrl->dev, "ECC configuration failed\n"); return ret; } dev_dbg(cdns_ctrl->dev, "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); /* Error correction configuration. */ cdns_chip->sector_size = chip->ecc.size; cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size; ecc_size = cdns_chip->sector_count * chip->ecc.bytes; cdns_chip->avail_oob_size = mtd->oobsize - ecc_size; if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size) cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size; if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size) > mtd->oobsize) cdns_chip->avail_oob_size -= 4; ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength); if (ret < 0) return -EINVAL; cdns_chip->corr_str_idx = (u8)ret; if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS, 1000000, CTRL_STATUS_CTRL_BUSY, true)) return -ETIMEDOUT; cadence_nand_set_ecc_strength(cdns_ctrl, cdns_chip->corr_str_idx); cadence_nand_set_erase_detection(cdns_ctrl, true, chip->ecc.strength); /* Override the default read operations. */ chip->ecc.read_page = cadence_nand_read_page; chip->ecc.read_page_raw = cadence_nand_read_page_raw; chip->ecc.write_page = cadence_nand_write_page; chip->ecc.write_page_raw = cadence_nand_write_page_raw; chip->ecc.read_oob = cadence_nand_read_oob; chip->ecc.write_oob = cadence_nand_write_oob; chip->ecc.read_oob_raw = cadence_nand_read_oob_raw; chip->ecc.write_oob_raw = cadence_nand_write_oob_raw; if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size) cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize; /* Is 32-bit DMA supported? */ ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(cdns_ctrl->dev, "no usable DMA configuration\n"); return ret; } mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops); return 0; } static const struct nand_controller_ops cadence_nand_controller_ops = { .attach_chip = cadence_nand_attach_chip, .exec_op = cadence_nand_exec_op, .setup_interface = cadence_nand_setup_interface, }; static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl, struct device_node *np) { struct cdns_nand_chip *cdns_chip; struct mtd_info *mtd; struct nand_chip *chip; int nsels, ret, i; u32 cs; nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); if (nsels <= 0) { dev_err(cdns_ctrl->dev, "missing/invalid reg property\n"); return -EINVAL; } /* Allocate the nand chip structure. */ cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) + (nsels * sizeof(u8)), GFP_KERNEL); if (!cdns_chip) { dev_err(cdns_ctrl->dev, "could not allocate chip structure\n"); return -ENOMEM; } cdns_chip->nsels = nsels; for (i = 0; i < nsels; i++) { /* Retrieve CS id. */ ret = of_property_read_u32_index(np, "reg", i, &cs); if (ret) { dev_err(cdns_ctrl->dev, "could not retrieve reg property: %d\n", ret); return ret; } if (cs >= cdns_ctrl->caps2.max_banks) { dev_err(cdns_ctrl->dev, "invalid reg value: %u (max CS = %d)\n", cs, cdns_ctrl->caps2.max_banks); return -EINVAL; } if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) { dev_err(cdns_ctrl->dev, "CS %d already assigned\n", cs); return -EINVAL; } cdns_chip->cs[i] = cs; } chip = &cdns_chip->chip; chip->controller = &cdns_ctrl->controller; nand_set_flash_node(chip, np); mtd = nand_to_mtd(chip); mtd->dev.parent = cdns_ctrl->dev; /* * Default to HW ECC engine mode. If the nand-ecc-mode property is given * in the DT node, this entry will be overwritten in nand_scan_ident(). */ chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; ret = nand_scan(chip, cdns_chip->nsels); if (ret) { dev_err(cdns_ctrl->dev, "could not scan the nand chip\n"); return ret; } ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(cdns_ctrl->dev, "failed to register mtd device: %d\n", ret); nand_cleanup(chip); return ret; } list_add_tail(&cdns_chip->node, &cdns_ctrl->chips); return 0; } static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl) { struct cdns_nand_chip *entry, *temp; struct nand_chip *chip; int ret; list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) { chip = &entry->chip; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); list_del(&entry->node); } } static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl) { struct device_node *np = cdns_ctrl->dev->of_node; struct device_node *nand_np; int max_cs = cdns_ctrl->caps2.max_banks; int nchips, ret; nchips = of_get_child_count(np); if (nchips > max_cs) { dev_err(cdns_ctrl->dev, "too many NAND chips: %d (max = %d CS)\n", nchips, max_cs); return -EINVAL; } for_each_child_of_node(np, nand_np) { ret = cadence_nand_chip_init(cdns_ctrl, nand_np); if (ret) { of_node_put(nand_np); cadence_nand_chips_cleanup(cdns_ctrl); return ret; } } return 0; } static void cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl) { /* Disable interrupts. */ writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE); } static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl) { dma_cap_mask_t mask; int ret; cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev, sizeof(*cdns_ctrl->cdma_desc), &cdns_ctrl->dma_cdma_desc, GFP_KERNEL); if (!cdns_ctrl->dma_cdma_desc) return -ENOMEM; cdns_ctrl->buf_size = SZ_16K; cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL); if (!cdns_ctrl->buf) { ret = -ENOMEM; goto free_buf_desc; } if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr, IRQF_SHARED, "cadence-nand-controller", cdns_ctrl)) { dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n"); ret = -ENODEV; goto free_buf; } spin_lock_init(&cdns_ctrl->irq_lock); init_completion(&cdns_ctrl->complete); ret = cadence_nand_hw_init(cdns_ctrl); if (ret) goto disable_irq; dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); if (cdns_ctrl->caps1->has_dma) { cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL); if (!cdns_ctrl->dmac) { dev_err(cdns_ctrl->dev, "Unable to get a DMA channel\n"); ret = -EBUSY; goto disable_irq; } } nand_controller_init(&cdns_ctrl->controller); INIT_LIST_HEAD(&cdns_ctrl->chips); cdns_ctrl->controller.ops = &cadence_nand_controller_ops; cdns_ctrl->curr_corr_str_idx = 0xFF; ret = cadence_nand_chips_init(cdns_ctrl); if (ret) { dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n", ret); goto dma_release_chnl; } kfree(cdns_ctrl->buf); cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL); if (!cdns_ctrl->buf) { ret = -ENOMEM; goto dma_release_chnl; } return 0; dma_release_chnl: if (cdns_ctrl->dmac) dma_release_channel(cdns_ctrl->dmac); disable_irq: cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); free_buf: kfree(cdns_ctrl->buf); free_buf_desc: dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); return ret; } /* Driver exit point. */ static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl) { cadence_nand_chips_cleanup(cdns_ctrl); cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl); kfree(cdns_ctrl->buf); dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc), cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc); if (cdns_ctrl->dmac) dma_release_channel(cdns_ctrl->dmac); } struct cadence_nand_dt { struct cdns_nand_ctrl cdns_ctrl; struct clk *clk; }; static const struct cadence_nand_dt_devdata cadence_nand_default = { .if_skew = 0, .has_dma = 1, }; static const struct of_device_id cadence_nand_dt_ids[] = { { .compatible = "cdns,hp-nfc", .data = &cadence_nand_default }, {} }; MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids); static int cadence_nand_dt_probe(struct platform_device *ofdev) { struct resource *res; struct cadence_nand_dt *dt; struct cdns_nand_ctrl *cdns_ctrl; int ret; const struct of_device_id *of_id; const struct cadence_nand_dt_devdata *devdata; u32 val; of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev); if (of_id) { ofdev->id_entry = of_id->data; devdata = of_id->data; } else { pr_err("Failed to find the right device id.\n"); return -ENOMEM; } dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL); if (!dt) return -ENOMEM; cdns_ctrl = &dt->cdns_ctrl; cdns_ctrl->caps1 = devdata; cdns_ctrl->dev = &ofdev->dev; cdns_ctrl->irq = platform_get_irq(ofdev, 0); if (cdns_ctrl->irq < 0) return cdns_ctrl->irq; dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq); cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0); if (IS_ERR(cdns_ctrl->reg)) return PTR_ERR(cdns_ctrl->reg); cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res); if (IS_ERR(cdns_ctrl->io.virt)) return PTR_ERR(cdns_ctrl->io.virt); cdns_ctrl->io.dma = res->start; dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk"); if (IS_ERR(dt->clk)) return PTR_ERR(dt->clk); cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk); ret = of_property_read_u32(ofdev->dev.of_node, "cdns,board-delay-ps", &val); if (ret) { val = 4830; dev_info(cdns_ctrl->dev, "missing cdns,board-delay-ps property, %d was set\n", val); } cdns_ctrl->board_delay = val; ret = cadence_nand_init(cdns_ctrl); if (ret) return ret; platform_set_drvdata(ofdev, dt); return 0; } static int cadence_nand_dt_remove(struct platform_device *ofdev) { struct cadence_nand_dt *dt = platform_get_drvdata(ofdev); cadence_nand_remove(&dt->cdns_ctrl); return 0; } static struct platform_driver cadence_nand_dt_driver = { .probe = cadence_nand_dt_probe, .remove = cadence_nand_dt_remove, .driver = { .name = "cadence-nand-controller", .of_match_table = cadence_nand_dt_ids, }, }; module_platform_driver(cadence_nand_dt_driver); MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1