Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Woodhouse | 822 | 47.32% | 6 | 18.75% |
Boris Brezillon | 737 | 42.43% | 9 | 28.12% |
Miquel Raynal | 96 | 5.53% | 3 | 9.38% |
Richard Weinberger | 40 | 2.30% | 1 | 3.12% |
Mart Raudsepp | 20 | 1.15% | 1 | 3.12% |
Masahiro Yamada | 6 | 0.35% | 1 | 3.12% |
Shreeya Patel | 4 | 0.23% | 1 | 3.12% |
Brian Norris | 3 | 0.17% | 2 | 6.25% |
Dmitry Eremin-Solenikov | 2 | 0.12% | 2 | 6.25% |
Thomas Gleixner | 2 | 0.12% | 1 | 3.12% |
Joe Perches | 1 | 0.06% | 1 | 3.12% |
Chi Minghao | 1 | 0.06% | 1 | 3.12% |
Lucas De Marchi | 1 | 0.06% | 1 | 3.12% |
Dan Carpenter | 1 | 0.06% | 1 | 3.12% |
Rafał Miłecki | 1 | 0.06% | 1 | 3.12% |
Total | 1737 | 32 |
// SPDX-License-Identifier: GPL-2.0-only /* * (C) 2005, 2006 Red Hat Inc. * * Author: David Woodhouse <dwmw2@infradead.org> * Tom Sylla <tom.sylla@amd.com> * * Overview: * This is a device driver for the NAND flash controller found on * the AMD CS5535/CS5536 companion chipsets for the Geode processor. * mtd-id for command line partitioning is cs553x_nand_cs[0-3] * where 0-3 reflects the chip select for NAND. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/iopoll.h> #include <asm/msr.h> #define NR_CS553X_CONTROLLERS 4 #define MSR_DIVIL_GLD_CAP 0x51400000 /* DIVIL capabilitiies */ #define CAP_CS5535 0x2df000ULL #define CAP_CS5536 0x5df500ULL /* NAND Timing MSRs */ #define MSR_NANDF_DATA 0x5140001b /* NAND Flash Data Timing MSR */ #define MSR_NANDF_CTL 0x5140001c /* NAND Flash Control Timing */ #define MSR_NANDF_RSVD 0x5140001d /* Reserved */ /* NAND BAR MSRs */ #define MSR_DIVIL_LBAR_FLSH0 0x51400010 /* Flash Chip Select 0 */ #define MSR_DIVIL_LBAR_FLSH1 0x51400011 /* Flash Chip Select 1 */ #define MSR_DIVIL_LBAR_FLSH2 0x51400012 /* Flash Chip Select 2 */ #define MSR_DIVIL_LBAR_FLSH3 0x51400013 /* Flash Chip Select 3 */ /* Each made up of... */ #define FLSH_LBAR_EN (1ULL<<32) #define FLSH_NOR_NAND (1ULL<<33) /* 1 for NAND */ #define FLSH_MEM_IO (1ULL<<34) /* 1 for MMIO */ /* I/O BARs have BASE_ADDR in bits 15:4, IO_MASK in 47:36 */ /* MMIO BARs have BASE_ADDR in bits 31:12, MEM_MASK in 63:44 */ /* Pin function selection MSR (IDE vs. flash on the IDE pins) */ #define MSR_DIVIL_BALL_OPTS 0x51400015 #define PIN_OPT_IDE (1<<0) /* 0 for flash, 1 for IDE */ /* Registers within the NAND flash controller BAR -- memory mapped */ #define MM_NAND_DATA 0x00 /* 0 to 0x7ff, in fact */ #define MM_NAND_CTL 0x800 /* Any even address 0x800-0x80e */ #define MM_NAND_IO 0x801 /* Any odd address 0x801-0x80f */ #define MM_NAND_STS 0x810 #define MM_NAND_ECC_LSB 0x811 #define MM_NAND_ECC_MSB 0x812 #define MM_NAND_ECC_COL 0x813 #define MM_NAND_LAC 0x814 #define MM_NAND_ECC_CTL 0x815 /* Registers within the NAND flash controller BAR -- I/O mapped */ #define IO_NAND_DATA 0x00 /* 0 to 3, in fact */ #define IO_NAND_CTL 0x04 #define IO_NAND_IO 0x05 #define IO_NAND_STS 0x06 #define IO_NAND_ECC_CTL 0x08 #define IO_NAND_ECC_LSB 0x09 #define IO_NAND_ECC_MSB 0x0a #define IO_NAND_ECC_COL 0x0b #define IO_NAND_LAC 0x0c #define CS_NAND_CTL_DIST_EN (1<<4) /* Enable NAND Distract interrupt */ #define CS_NAND_CTL_RDY_INT_MASK (1<<3) /* Enable RDY/BUSY# interrupt */ #define CS_NAND_CTL_ALE (1<<2) #define CS_NAND_CTL_CLE (1<<1) #define CS_NAND_CTL_CE (1<<0) /* Keep low; 1 to reset */ #define CS_NAND_STS_FLASH_RDY (1<<3) #define CS_NAND_CTLR_BUSY (1<<2) #define CS_NAND_CMD_COMP (1<<1) #define CS_NAND_DIST_ST (1<<0) #define CS_NAND_ECC_PARITY (1<<2) #define CS_NAND_ECC_CLRECC (1<<1) #define CS_NAND_ECC_ENECC (1<<0) struct cs553x_nand_controller { struct nand_controller base; struct nand_chip chip; void __iomem *mmio; }; static struct cs553x_nand_controller * to_cs553x(struct nand_controller *controller) { return container_of(controller, struct cs553x_nand_controller, base); } static int cs553x_write_ctrl_byte(struct cs553x_nand_controller *cs553x, u32 ctl, u8 data) { u8 status; writeb(ctl, cs553x->mmio + MM_NAND_CTL); writeb(data, cs553x->mmio + MM_NAND_IO); return readb_poll_timeout_atomic(cs553x->mmio + MM_NAND_STS, status, !(status & CS_NAND_CTLR_BUSY), 1, 100000); } static void cs553x_data_in(struct cs553x_nand_controller *cs553x, void *buf, unsigned int len) { writeb(0, cs553x->mmio + MM_NAND_CTL); while (unlikely(len > 0x800)) { memcpy_fromio(buf, cs553x->mmio, 0x800); buf += 0x800; len -= 0x800; } memcpy_fromio(buf, cs553x->mmio, len); } static void cs553x_data_out(struct cs553x_nand_controller *cs553x, const void *buf, unsigned int len) { writeb(0, cs553x->mmio + MM_NAND_CTL); while (unlikely(len > 0x800)) { memcpy_toio(cs553x->mmio, buf, 0x800); buf += 0x800; len -= 0x800; } memcpy_toio(cs553x->mmio, buf, len); } static int cs553x_wait_ready(struct cs553x_nand_controller *cs553x, unsigned int timeout_ms) { u8 mask = CS_NAND_CTLR_BUSY | CS_NAND_STS_FLASH_RDY; u8 status; return readb_poll_timeout(cs553x->mmio + MM_NAND_STS, status, (status & mask) == CS_NAND_STS_FLASH_RDY, 100, timeout_ms * 1000); } static int cs553x_exec_instr(struct cs553x_nand_controller *cs553x, const struct nand_op_instr *instr) { unsigned int i; int ret = 0; switch (instr->type) { case NAND_OP_CMD_INSTR: ret = cs553x_write_ctrl_byte(cs553x, CS_NAND_CTL_CLE, instr->ctx.cmd.opcode); break; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) { ret = cs553x_write_ctrl_byte(cs553x, CS_NAND_CTL_ALE, instr->ctx.addr.addrs[i]); if (ret) break; } break; case NAND_OP_DATA_IN_INSTR: cs553x_data_in(cs553x, instr->ctx.data.buf.in, instr->ctx.data.len); break; case NAND_OP_DATA_OUT_INSTR: cs553x_data_out(cs553x, instr->ctx.data.buf.out, instr->ctx.data.len); break; case NAND_OP_WAITRDY_INSTR: ret = cs553x_wait_ready(cs553x, instr->ctx.waitrdy.timeout_ms); break; } if (instr->delay_ns) ndelay(instr->delay_ns); return ret; } static int cs553x_exec_op(struct nand_chip *this, const struct nand_operation *op, bool check_only) { struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); unsigned int i; int ret; if (check_only) return true; /* De-assert the CE pin */ writeb(0, cs553x->mmio + MM_NAND_CTL); for (i = 0; i < op->ninstrs; i++) { ret = cs553x_exec_instr(cs553x, &op->instrs[i]); if (ret) break; } /* Re-assert the CE pin. */ writeb(CS_NAND_CTL_CE, cs553x->mmio + MM_NAND_CTL); return ret; } static void cs_enable_hwecc(struct nand_chip *this, int mode) { struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); writeb(0x07, cs553x->mmio + MM_NAND_ECC_CTL); } static int cs_calculate_ecc(struct nand_chip *this, const u_char *dat, u_char *ecc_code) { struct cs553x_nand_controller *cs553x = to_cs553x(this->controller); uint32_t ecc; ecc = readl(cs553x->mmio + MM_NAND_STS); ecc_code[1] = ecc >> 8; ecc_code[0] = ecc >> 16; ecc_code[2] = ecc >> 24; return 0; } static struct cs553x_nand_controller *controllers[4]; static int cs553x_attach_chip(struct nand_chip *chip) { if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) return 0; chip->ecc.size = 256; chip->ecc.bytes = 3; chip->ecc.hwctl = cs_enable_hwecc; chip->ecc.calculate = cs_calculate_ecc; chip->ecc.correct = rawnand_sw_hamming_correct; chip->ecc.strength = 1; return 0; } static const struct nand_controller_ops cs553x_nand_controller_ops = { .exec_op = cs553x_exec_op, .attach_chip = cs553x_attach_chip, }; static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) { struct cs553x_nand_controller *controller; int err = 0; struct nand_chip *this; struct mtd_info *new_mtd; pr_notice("Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", cs, mmio ? "MM" : "P", adr); if (!mmio) { pr_notice("PIO mode not yet implemented for CS553X NAND controller\n"); return -ENXIO; } /* Allocate memory for MTD device structure and private data */ controller = kzalloc(sizeof(*controller), GFP_KERNEL); if (!controller) { err = -ENOMEM; goto out; } this = &controller->chip; nand_controller_init(&controller->base); controller->base.ops = &cs553x_nand_controller_ops; this->controller = &controller->base; new_mtd = nand_to_mtd(this); /* Link the private data with the MTD structure */ new_mtd->owner = THIS_MODULE; /* map physical address */ controller->mmio = ioremap(adr, 4096); if (!controller->mmio) { pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr); err = -EIO; goto out_mtd; } /* Enable the following for a flash based bad block table */ this->bbt_options = NAND_BBT_USE_FLASH; new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs); if (!new_mtd->name) { err = -ENOMEM; goto out_ior; } /* Scan to find existence of the device */ err = nand_scan(this, 1); if (err) goto out_free; controllers[cs] = controller; goto out; out_free: kfree(new_mtd->name); out_ior: iounmap(controller->mmio); out_mtd: kfree(controller); out: return err; } static int is_geode(void) { /* These are the CPUs which will have a CS553[56] companion chip */ if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && boot_cpu_data.x86 == 5 && boot_cpu_data.x86_model == 10) return 1; /* Geode LX */ if ((boot_cpu_data.x86_vendor == X86_VENDOR_NSC || boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX) && boot_cpu_data.x86 == 5 && boot_cpu_data.x86_model == 5) return 1; /* Geode GX (née GX2) */ return 0; } static int __init cs553x_init(void) { int err = -ENXIO; int i; uint64_t val; /* If the CPU isn't a Geode GX or LX, abort */ if (!is_geode()) return -ENXIO; /* If it doesn't have the CS553[56], abort */ rdmsrl(MSR_DIVIL_GLD_CAP, val); val &= ~0xFFULL; if (val != CAP_CS5535 && val != CAP_CS5536) return -ENXIO; /* If it doesn't have the NAND controller enabled, abort */ rdmsrl(MSR_DIVIL_BALL_OPTS, val); if (val & PIN_OPT_IDE) { pr_info("CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n"); return -ENXIO; } for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val); if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND)) err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF); } /* Register all devices together here. This means we can easily hack it to do mtdconcat etc. if we want to. */ for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { if (controllers[i]) { /* If any devices registered, return success. Else the last error. */ mtd_device_register(nand_to_mtd(&controllers[i]->chip), NULL, 0); err = 0; } } return err; } module_init(cs553x_init); static void __exit cs553x_cleanup(void) { int i; for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { struct cs553x_nand_controller *controller = controllers[i]; struct nand_chip *this = &controller->chip; struct mtd_info *mtd = nand_to_mtd(this); int ret; if (!mtd) continue; /* Release resources, unregister device */ ret = mtd_device_unregister(mtd); WARN_ON(ret); nand_cleanup(this); kfree(mtd->name); controllers[i] = NULL; /* unmap physical address */ iounmap(controller->mmio); /* Free the MTD device structure */ kfree(controller); } } module_exit(cs553x_cleanup); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); MODULE_DESCRIPTION("NAND controller driver for AMD CS5535/CS5536 companion chip");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1