Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Łukasz Stelmach | 6010 | 99.39% | 1 | 10.00% |
Jakub Kiciński | 26 | 0.43% | 2 | 20.00% |
Alexander Lobakin | 4 | 0.07% | 1 | 10.00% |
Nathan Chancellor | 2 | 0.03% | 1 | 10.00% |
Sebastian Andrzej Siewior | 1 | 0.02% | 1 | 10.00% |
Shang XiaoJing | 1 | 0.02% | 1 | 10.00% |
Arnd Bergmann | 1 | 0.02% | 1 | 10.00% |
Nathan Huckleberry | 1 | 0.02% | 1 | 10.00% |
Uwe Kleine-König | 1 | 0.02% | 1 | 10.00% |
Total | 6047 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2010 ASIX Electronics Corporation * Copyright (c) 2020 Samsung Electronics Co., Ltd. * * ASIX AX88796C SPI Fast Ethernet Linux driver */ #define pr_fmt(fmt) "ax88796c: " fmt #include "ax88796c_main.h" #include "ax88796c_ioctl.h" #include <linux/bitmap.h> #include <linux/etherdevice.h> #include <linux/iopoll.h> #include <linux/lockdep.h> #include <linux/mdio.h> #include <linux/minmax.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/of.h> #include <linux/phy.h> #include <linux/skbuff.h> #include <linux/spi/spi.h> static int comp = IS_ENABLED(CONFIG_SPI_AX88796C_COMPRESSION); static int msg_enable = NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR; static const char *no_regs_list = "80018001,e1918001,8001a001,fc0d0000"; unsigned long ax88796c_no_regs_mask[AX88796C_REGDUMP_LEN / (sizeof(unsigned long) * 8)]; module_param(msg_enable, int, 0444); MODULE_PARM_DESC(msg_enable, "Message mask (see linux/netdevice.h for bitmap)"); static int ax88796c_soft_reset(struct ax88796c_device *ax_local) { u16 temp; int ret; lockdep_assert_held(&ax_local->spi_lock); AX_WRITE(&ax_local->ax_spi, PSR_RESET, P0_PSR); AX_WRITE(&ax_local->ax_spi, PSR_RESET_CLR, P0_PSR); ret = read_poll_timeout(AX_READ, ret, (ret & PSR_DEV_READY), 0, jiffies_to_usecs(160 * HZ / 1000), false, &ax_local->ax_spi, P0_PSR); if (ret) return ret; temp = AX_READ(&ax_local->ax_spi, P4_SPICR); if (ax_local->priv_flags & AX_CAP_COMP) { AX_WRITE(&ax_local->ax_spi, (temp | SPICR_RCEN | SPICR_QCEN), P4_SPICR); ax_local->ax_spi.comp = 1; } else { AX_WRITE(&ax_local->ax_spi, (temp & ~(SPICR_RCEN | SPICR_QCEN)), P4_SPICR); ax_local->ax_spi.comp = 0; } return 0; } static int ax88796c_reload_eeprom(struct ax88796c_device *ax_local) { int ret; lockdep_assert_held(&ax_local->spi_lock); AX_WRITE(&ax_local->ax_spi, EECR_RELOAD, P3_EECR); ret = read_poll_timeout(AX_READ, ret, (ret & PSR_DEV_READY), 0, jiffies_to_usecs(2 * HZ / 1000), false, &ax_local->ax_spi, P0_PSR); if (ret) { dev_err(&ax_local->spi->dev, "timeout waiting for reload eeprom\n"); return ret; } return 0; } static void ax88796c_set_hw_multicast(struct net_device *ndev) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); int mc_count = netdev_mc_count(ndev); u16 rx_ctl = RXCR_AB; lockdep_assert_held(&ax_local->spi_lock); memset(ax_local->multi_filter, 0, AX_MCAST_FILTER_SIZE); if (ndev->flags & IFF_PROMISC) { rx_ctl |= RXCR_PRO; } else if (ndev->flags & IFF_ALLMULTI || mc_count > AX_MAX_MCAST) { rx_ctl |= RXCR_AMALL; } else if (mc_count == 0) { /* just broadcast and directed */ } else { u32 crc_bits; int i; struct netdev_hw_addr *ha; netdev_for_each_mc_addr(ha, ndev) { crc_bits = ether_crc(ETH_ALEN, ha->addr); ax_local->multi_filter[crc_bits >> 29] |= (1 << ((crc_bits >> 26) & 7)); } for (i = 0; i < 4; i++) { AX_WRITE(&ax_local->ax_spi, ((ax_local->multi_filter[i * 2 + 1] << 8) | ax_local->multi_filter[i * 2]), P3_MFAR(i)); } } AX_WRITE(&ax_local->ax_spi, rx_ctl, P2_RXCR); } static void ax88796c_set_mac_addr(struct net_device *ndev) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); lockdep_assert_held(&ax_local->spi_lock); AX_WRITE(&ax_local->ax_spi, ((u16)(ndev->dev_addr[4] << 8) | (u16)ndev->dev_addr[5]), P3_MACASR0); AX_WRITE(&ax_local->ax_spi, ((u16)(ndev->dev_addr[2] << 8) | (u16)ndev->dev_addr[3]), P3_MACASR1); AX_WRITE(&ax_local->ax_spi, ((u16)(ndev->dev_addr[0] << 8) | (u16)ndev->dev_addr[1]), P3_MACASR2); } static void ax88796c_load_mac_addr(struct net_device *ndev) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); u8 addr[ETH_ALEN]; u16 temp; lockdep_assert_held(&ax_local->spi_lock); /* Try the device tree first */ if (!platform_get_ethdev_address(&ax_local->spi->dev, ndev) && is_valid_ether_addr(ndev->dev_addr)) { if (netif_msg_probe(ax_local)) dev_info(&ax_local->spi->dev, "MAC address read from device tree\n"); return; } /* Read the MAC address from AX88796C */ temp = AX_READ(&ax_local->ax_spi, P3_MACASR0); addr[5] = (u8)temp; addr[4] = (u8)(temp >> 8); temp = AX_READ(&ax_local->ax_spi, P3_MACASR1); addr[3] = (u8)temp; addr[2] = (u8)(temp >> 8); temp = AX_READ(&ax_local->ax_spi, P3_MACASR2); addr[1] = (u8)temp; addr[0] = (u8)(temp >> 8); if (is_valid_ether_addr(addr)) { eth_hw_addr_set(ndev, addr); if (netif_msg_probe(ax_local)) dev_info(&ax_local->spi->dev, "MAC address read from ASIX chip\n"); return; } /* Use random address if none found */ if (netif_msg_probe(ax_local)) dev_info(&ax_local->spi->dev, "Use random MAC address\n"); eth_hw_addr_random(ndev); } static void ax88796c_proc_tx_hdr(struct tx_pkt_info *info, u8 ip_summed) { u16 pkt_len_bar = (~info->pkt_len & TX_HDR_SOP_PKTLENBAR); /* Prepare SOP header */ info->sop.flags_len = info->pkt_len | ((ip_summed == CHECKSUM_NONE) || (ip_summed == CHECKSUM_UNNECESSARY) ? TX_HDR_SOP_DICF : 0); info->sop.seq_lenbar = ((info->seq_num << 11) & TX_HDR_SOP_SEQNUM) | pkt_len_bar; cpu_to_be16s(&info->sop.flags_len); cpu_to_be16s(&info->sop.seq_lenbar); /* Prepare Segment header */ info->seg.flags_seqnum_seglen = TX_HDR_SEG_FS | TX_HDR_SEG_LS | info->pkt_len; info->seg.eo_so_seglenbar = pkt_len_bar; cpu_to_be16s(&info->seg.flags_seqnum_seglen); cpu_to_be16s(&info->seg.eo_so_seglenbar); /* Prepare EOP header */ info->eop.seq_len = ((info->seq_num << 11) & TX_HDR_EOP_SEQNUM) | info->pkt_len; info->eop.seqbar_lenbar = ((~info->seq_num << 11) & TX_HDR_EOP_SEQNUMBAR) | pkt_len_bar; cpu_to_be16s(&info->eop.seq_len); cpu_to_be16s(&info->eop.seqbar_lenbar); } static int ax88796c_check_free_pages(struct ax88796c_device *ax_local, u8 need_pages) { u8 free_pages; u16 tmp; lockdep_assert_held(&ax_local->spi_lock); free_pages = AX_READ(&ax_local->ax_spi, P0_TFBFCR) & TX_FREEBUF_MASK; if (free_pages < need_pages) { /* schedule free page interrupt */ tmp = AX_READ(&ax_local->ax_spi, P0_TFBFCR) & TFBFCR_SCHE_FREE_PAGE; AX_WRITE(&ax_local->ax_spi, tmp | TFBFCR_TX_PAGE_SET | TFBFCR_SET_FREE_PAGE(need_pages), P0_TFBFCR); return -ENOMEM; } return 0; } static struct sk_buff * ax88796c_tx_fixup(struct net_device *ndev, struct sk_buff_head *q) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); u8 spi_len = ax_local->ax_spi.comp ? 1 : 4; struct sk_buff *skb; struct tx_pkt_info info; struct skb_data *entry; u16 pkt_len; u8 padlen, seq_num; u8 need_pages; int headroom; int tailroom; if (skb_queue_empty(q)) return NULL; skb = skb_peek(q); pkt_len = skb->len; need_pages = (pkt_len + TX_OVERHEAD + 127) >> 7; if (ax88796c_check_free_pages(ax_local, need_pages) != 0) return NULL; headroom = skb_headroom(skb); tailroom = skb_tailroom(skb); padlen = round_up(pkt_len, 4) - pkt_len; seq_num = ++ax_local->seq_num & 0x1F; info.pkt_len = pkt_len; if (skb_cloned(skb) || (headroom < (TX_OVERHEAD + spi_len)) || (tailroom < (padlen + TX_EOP_SIZE))) { size_t h = max((TX_OVERHEAD + spi_len) - headroom, 0); size_t t = max((padlen + TX_EOP_SIZE) - tailroom, 0); if (pskb_expand_head(skb, h, t, GFP_KERNEL)) return NULL; } info.seq_num = seq_num; ax88796c_proc_tx_hdr(&info, skb->ip_summed); /* SOP and SEG header */ memcpy(skb_push(skb, TX_OVERHEAD), &info.sop, TX_OVERHEAD); /* Write SPI TXQ header */ memcpy(skb_push(skb, spi_len), ax88796c_tx_cmd_buf, spi_len); /* Make 32-bit alignment */ skb_put(skb, padlen); /* EOP header */ skb_put_data(skb, &info.eop, TX_EOP_SIZE); skb_unlink(skb, q); entry = (struct skb_data *)skb->cb; memset(entry, 0, sizeof(*entry)); entry->len = pkt_len; if (netif_msg_pktdata(ax_local)) { char pfx[IFNAMSIZ + 7]; snprintf(pfx, sizeof(pfx), "%s: ", ndev->name); netdev_info(ndev, "TX packet len %d, total len %d, seq %d\n", pkt_len, skb->len, seq_num); netdev_info(ndev, " SPI Header:\n"); print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1, skb->data, 4, 0); netdev_info(ndev, " TX SOP:\n"); print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1, skb->data + 4, TX_OVERHEAD, 0); netdev_info(ndev, " TX packet:\n"); print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1, skb->data + 4 + TX_OVERHEAD, skb->len - TX_EOP_SIZE - 4 - TX_OVERHEAD, 0); netdev_info(ndev, " TX EOP:\n"); print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1, skb->data + skb->len - 4, 4, 0); } return skb; } static int ax88796c_hard_xmit(struct ax88796c_device *ax_local) { struct ax88796c_pcpu_stats *stats; struct sk_buff *tx_skb; struct skb_data *entry; unsigned long flags; lockdep_assert_held(&ax_local->spi_lock); stats = this_cpu_ptr(ax_local->stats); tx_skb = ax88796c_tx_fixup(ax_local->ndev, &ax_local->tx_wait_q); if (!tx_skb) { this_cpu_inc(ax_local->stats->tx_dropped); return 0; } entry = (struct skb_data *)tx_skb->cb; AX_WRITE(&ax_local->ax_spi, (TSNR_TXB_START | TSNR_PKT_CNT(1)), P0_TSNR); axspi_write_txq(&ax_local->ax_spi, tx_skb->data, tx_skb->len); if (((AX_READ(&ax_local->ax_spi, P0_TSNR) & TXNR_TXB_IDLE) == 0) || ((ISR_TXERR & AX_READ(&ax_local->ax_spi, P0_ISR)) != 0)) { /* Ack tx error int */ AX_WRITE(&ax_local->ax_spi, ISR_TXERR, P0_ISR); this_cpu_inc(ax_local->stats->tx_dropped); if (net_ratelimit()) netif_err(ax_local, tx_err, ax_local->ndev, "TX FIFO error, re-initialize the TX bridge\n"); /* Reinitial tx bridge */ AX_WRITE(&ax_local->ax_spi, TXNR_TXB_REINIT | AX_READ(&ax_local->ax_spi, P0_TSNR), P0_TSNR); ax_local->seq_num = 0; } else { flags = u64_stats_update_begin_irqsave(&stats->syncp); u64_stats_inc(&stats->tx_packets); u64_stats_add(&stats->tx_bytes, entry->len); u64_stats_update_end_irqrestore(&stats->syncp, flags); } entry->state = tx_done; dev_kfree_skb(tx_skb); return 1; } static netdev_tx_t ax88796c_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); skb_queue_tail(&ax_local->tx_wait_q, skb); if (skb_queue_len(&ax_local->tx_wait_q) > TX_QUEUE_HIGH_WATER) netif_stop_queue(ndev); set_bit(EVENT_TX, &ax_local->flags); schedule_work(&ax_local->ax_work); return NETDEV_TX_OK; } static void ax88796c_skb_return(struct ax88796c_device *ax_local, struct sk_buff *skb, struct rx_header *rxhdr) { struct net_device *ndev = ax_local->ndev; struct ax88796c_pcpu_stats *stats; unsigned long flags; int status; stats = this_cpu_ptr(ax_local->stats); do { if (!(ndev->features & NETIF_F_RXCSUM)) break; /* checksum error bit is set */ if ((rxhdr->flags & RX_HDR3_L3_ERR) || (rxhdr->flags & RX_HDR3_L4_ERR)) break; /* Other types may be indicated by more than one bit. */ if ((rxhdr->flags & RX_HDR3_L4_TYPE_TCP) || (rxhdr->flags & RX_HDR3_L4_TYPE_UDP)) skb->ip_summed = CHECKSUM_UNNECESSARY; } while (0); flags = u64_stats_update_begin_irqsave(&stats->syncp); u64_stats_inc(&stats->rx_packets); u64_stats_add(&stats->rx_bytes, skb->len); u64_stats_update_end_irqrestore(&stats->syncp, flags); skb->dev = ndev; skb->protocol = eth_type_trans(skb, ax_local->ndev); netif_info(ax_local, rx_status, ndev, "< rx, len %zu, type 0x%x\n", skb->len + sizeof(struct ethhdr), skb->protocol); status = netif_rx(skb); if (status != NET_RX_SUCCESS && net_ratelimit()) netif_info(ax_local, rx_err, ndev, "netif_rx status %d\n", status); } static void ax88796c_rx_fixup(struct ax88796c_device *ax_local, struct sk_buff *rx_skb) { struct rx_header *rxhdr = (struct rx_header *)rx_skb->data; struct net_device *ndev = ax_local->ndev; u16 len; be16_to_cpus(&rxhdr->flags_len); be16_to_cpus(&rxhdr->seq_lenbar); be16_to_cpus(&rxhdr->flags); if ((rxhdr->flags_len & RX_HDR1_PKT_LEN) != (~rxhdr->seq_lenbar & 0x7FF)) { netif_err(ax_local, rx_err, ndev, "Header error\n"); this_cpu_inc(ax_local->stats->rx_frame_errors); kfree_skb(rx_skb); return; } if ((rxhdr->flags_len & RX_HDR1_MII_ERR) || (rxhdr->flags_len & RX_HDR1_CRC_ERR)) { netif_err(ax_local, rx_err, ndev, "CRC or MII error\n"); this_cpu_inc(ax_local->stats->rx_crc_errors); kfree_skb(rx_skb); return; } len = rxhdr->flags_len & RX_HDR1_PKT_LEN; if (netif_msg_pktdata(ax_local)) { char pfx[IFNAMSIZ + 7]; snprintf(pfx, sizeof(pfx), "%s: ", ndev->name); netdev_info(ndev, "RX data, total len %d, packet len %d\n", rx_skb->len, len); netdev_info(ndev, " Dump RX packet header:"); print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1, rx_skb->data, sizeof(*rxhdr), 0); netdev_info(ndev, " Dump RX packet:"); print_hex_dump(KERN_INFO, pfx, DUMP_PREFIX_OFFSET, 16, 1, rx_skb->data + sizeof(*rxhdr), len, 0); } skb_pull(rx_skb, sizeof(*rxhdr)); pskb_trim(rx_skb, len); ax88796c_skb_return(ax_local, rx_skb, rxhdr); } static int ax88796c_receive(struct net_device *ndev) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); struct skb_data *entry; u16 w_count, pkt_len; struct sk_buff *skb; u8 pkt_cnt; lockdep_assert_held(&ax_local->spi_lock); /* check rx packet and total word count */ AX_WRITE(&ax_local->ax_spi, AX_READ(&ax_local->ax_spi, P0_RTWCR) | RTWCR_RX_LATCH, P0_RTWCR); pkt_cnt = AX_READ(&ax_local->ax_spi, P0_RXBCR2) & RXBCR2_PKT_MASK; if (!pkt_cnt) return 0; pkt_len = AX_READ(&ax_local->ax_spi, P0_RCPHR) & 0x7FF; w_count = round_up(pkt_len + 6, 4) >> 1; skb = netdev_alloc_skb(ndev, w_count * 2); if (!skb) { AX_WRITE(&ax_local->ax_spi, RXBCR1_RXB_DISCARD, P0_RXBCR1); this_cpu_inc(ax_local->stats->rx_dropped); return 0; } entry = (struct skb_data *)skb->cb; AX_WRITE(&ax_local->ax_spi, RXBCR1_RXB_START | w_count, P0_RXBCR1); axspi_read_rxq(&ax_local->ax_spi, skb_put(skb, w_count * 2), skb->len); /* Check if rx bridge is idle */ if ((AX_READ(&ax_local->ax_spi, P0_RXBCR2) & RXBCR2_RXB_IDLE) == 0) { if (net_ratelimit()) netif_err(ax_local, rx_err, ndev, "Rx Bridge is not idle\n"); AX_WRITE(&ax_local->ax_spi, RXBCR2_RXB_REINIT, P0_RXBCR2); entry->state = rx_err; } else { entry->state = rx_done; } AX_WRITE(&ax_local->ax_spi, ISR_RXPKT, P0_ISR); ax88796c_rx_fixup(ax_local, skb); return 1; } static int ax88796c_process_isr(struct ax88796c_device *ax_local) { struct net_device *ndev = ax_local->ndev; int todo = 0; u16 isr; lockdep_assert_held(&ax_local->spi_lock); isr = AX_READ(&ax_local->ax_spi, P0_ISR); AX_WRITE(&ax_local->ax_spi, isr, P0_ISR); netif_dbg(ax_local, intr, ndev, " ISR 0x%04x\n", isr); if (isr & ISR_TXERR) { netif_dbg(ax_local, intr, ndev, " TXERR interrupt\n"); AX_WRITE(&ax_local->ax_spi, TXNR_TXB_REINIT, P0_TSNR); ax_local->seq_num = 0x1f; } if (isr & ISR_TXPAGES) { netif_dbg(ax_local, intr, ndev, " TXPAGES interrupt\n"); set_bit(EVENT_TX, &ax_local->flags); } if (isr & ISR_LINK) { netif_dbg(ax_local, intr, ndev, " Link change interrupt\n"); phy_mac_interrupt(ax_local->ndev->phydev); } if (isr & ISR_RXPKT) { netif_dbg(ax_local, intr, ndev, " RX interrupt\n"); todo = ax88796c_receive(ax_local->ndev); } return todo; } static irqreturn_t ax88796c_interrupt(int irq, void *dev_instance) { struct ax88796c_device *ax_local; struct net_device *ndev; ndev = dev_instance; if (!ndev) { pr_err("irq %d for unknown device.\n", irq); return IRQ_RETVAL(0); } ax_local = to_ax88796c_device(ndev); disable_irq_nosync(irq); netif_dbg(ax_local, intr, ndev, "Interrupt occurred\n"); set_bit(EVENT_INTR, &ax_local->flags); schedule_work(&ax_local->ax_work); return IRQ_HANDLED; } static void ax88796c_work(struct work_struct *work) { struct ax88796c_device *ax_local = container_of(work, struct ax88796c_device, ax_work); mutex_lock(&ax_local->spi_lock); if (test_bit(EVENT_SET_MULTI, &ax_local->flags)) { ax88796c_set_hw_multicast(ax_local->ndev); clear_bit(EVENT_SET_MULTI, &ax_local->flags); } if (test_bit(EVENT_INTR, &ax_local->flags)) { AX_WRITE(&ax_local->ax_spi, IMR_MASKALL, P0_IMR); while (ax88796c_process_isr(ax_local)) /* nothing */; clear_bit(EVENT_INTR, &ax_local->flags); AX_WRITE(&ax_local->ax_spi, IMR_DEFAULT, P0_IMR); enable_irq(ax_local->ndev->irq); } if (test_bit(EVENT_TX, &ax_local->flags)) { while (skb_queue_len(&ax_local->tx_wait_q)) { if (!ax88796c_hard_xmit(ax_local)) break; } clear_bit(EVENT_TX, &ax_local->flags); if (netif_queue_stopped(ax_local->ndev) && (skb_queue_len(&ax_local->tx_wait_q) < TX_QUEUE_LOW_WATER)) netif_wake_queue(ax_local->ndev); } mutex_unlock(&ax_local->spi_lock); } static void ax88796c_get_stats64(struct net_device *ndev, struct rtnl_link_stats64 *stats) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); u32 rx_frame_errors = 0, rx_crc_errors = 0; u32 rx_dropped = 0, tx_dropped = 0; unsigned int start; int cpu; for_each_possible_cpu(cpu) { struct ax88796c_pcpu_stats *s; u64 rx_packets, rx_bytes; u64 tx_packets, tx_bytes; s = per_cpu_ptr(ax_local->stats, cpu); do { start = u64_stats_fetch_begin_irq(&s->syncp); rx_packets = u64_stats_read(&s->rx_packets); rx_bytes = u64_stats_read(&s->rx_bytes); tx_packets = u64_stats_read(&s->tx_packets); tx_bytes = u64_stats_read(&s->tx_bytes); } while (u64_stats_fetch_retry_irq(&s->syncp, start)); stats->rx_packets += rx_packets; stats->rx_bytes += rx_bytes; stats->tx_packets += tx_packets; stats->tx_bytes += tx_bytes; rx_dropped += s->rx_dropped; tx_dropped += s->tx_dropped; rx_frame_errors += s->rx_frame_errors; rx_crc_errors += s->rx_crc_errors; } stats->rx_dropped = rx_dropped; stats->tx_dropped = tx_dropped; stats->rx_frame_errors = rx_frame_errors; stats->rx_crc_errors = rx_crc_errors; } static void ax88796c_set_mac(struct ax88796c_device *ax_local) { u16 maccr; maccr = (ax_local->link) ? MACCR_RXEN : 0; switch (ax_local->speed) { case SPEED_100: maccr |= MACCR_SPEED_100; break; case SPEED_10: case SPEED_UNKNOWN: break; default: return; } switch (ax_local->duplex) { case DUPLEX_FULL: maccr |= MACCR_SPEED_100; break; case DUPLEX_HALF: case DUPLEX_UNKNOWN: break; default: return; } if (ax_local->flowctrl & AX_FC_ANEG && ax_local->phydev->autoneg) { maccr |= ax_local->pause ? MACCR_RXFC_ENABLE : 0; maccr |= !ax_local->pause != !ax_local->asym_pause ? MACCR_TXFC_ENABLE : 0; } else { maccr |= (ax_local->flowctrl & AX_FC_RX) ? MACCR_RXFC_ENABLE : 0; maccr |= (ax_local->flowctrl & AX_FC_TX) ? MACCR_TXFC_ENABLE : 0; } mutex_lock(&ax_local->spi_lock); maccr |= AX_READ(&ax_local->ax_spi, P0_MACCR) & ~(MACCR_DUPLEX_FULL | MACCR_SPEED_100 | MACCR_TXFC_ENABLE | MACCR_RXFC_ENABLE); AX_WRITE(&ax_local->ax_spi, maccr, P0_MACCR); mutex_unlock(&ax_local->spi_lock); } static void ax88796c_handle_link_change(struct net_device *ndev) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); struct phy_device *phydev = ndev->phydev; bool update = false; if (phydev->link && (ax_local->speed != phydev->speed || ax_local->duplex != phydev->duplex || ax_local->pause != phydev->pause || ax_local->asym_pause != phydev->asym_pause)) { ax_local->speed = phydev->speed; ax_local->duplex = phydev->duplex; ax_local->pause = phydev->pause; ax_local->asym_pause = phydev->asym_pause; update = true; } if (phydev->link != ax_local->link) { if (!phydev->link) { ax_local->speed = SPEED_UNKNOWN; ax_local->duplex = DUPLEX_UNKNOWN; } ax_local->link = phydev->link; update = true; } if (update) ax88796c_set_mac(ax_local); if (net_ratelimit()) phy_print_status(ndev->phydev); } static void ax88796c_set_csums(struct ax88796c_device *ax_local) { struct net_device *ndev = ax_local->ndev; lockdep_assert_held(&ax_local->spi_lock); if (ndev->features & NETIF_F_RXCSUM) { AX_WRITE(&ax_local->ax_spi, COERCR0_DEFAULT, P4_COERCR0); AX_WRITE(&ax_local->ax_spi, COERCR1_DEFAULT, P4_COERCR1); } else { AX_WRITE(&ax_local->ax_spi, 0, P4_COERCR0); AX_WRITE(&ax_local->ax_spi, 0, P4_COERCR1); } if (ndev->features & NETIF_F_HW_CSUM) { AX_WRITE(&ax_local->ax_spi, COETCR0_DEFAULT, P4_COETCR0); AX_WRITE(&ax_local->ax_spi, COETCR1_TXPPPE, P4_COETCR1); } else { AX_WRITE(&ax_local->ax_spi, 0, P4_COETCR0); AX_WRITE(&ax_local->ax_spi, 0, P4_COETCR1); } } static int ax88796c_open(struct net_device *ndev) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); unsigned long irq_flag = 0; int fc = AX_FC_NONE; int ret; u16 t; ret = request_irq(ndev->irq, ax88796c_interrupt, irq_flag, ndev->name, ndev); if (ret) { netdev_err(ndev, "unable to get IRQ %d (errno=%d).\n", ndev->irq, ret); return ret; } mutex_lock(&ax_local->spi_lock); ret = ax88796c_soft_reset(ax_local); if (ret < 0) { free_irq(ndev->irq, ndev); mutex_unlock(&ax_local->spi_lock); return ret; } ax_local->seq_num = 0x1f; ax88796c_set_mac_addr(ndev); ax88796c_set_csums(ax_local); /* Disable stuffing packet */ t = AX_READ(&ax_local->ax_spi, P1_RXBSPCR); t &= ~RXBSPCR_STUF_ENABLE; AX_WRITE(&ax_local->ax_spi, t, P1_RXBSPCR); /* Enable RX packet process */ AX_WRITE(&ax_local->ax_spi, RPPER_RXEN, P1_RPPER); t = AX_READ(&ax_local->ax_spi, P0_FER); t |= FER_RXEN | FER_TXEN | FER_BSWAP | FER_IRQ_PULL; AX_WRITE(&ax_local->ax_spi, t, P0_FER); /* Setup LED mode */ AX_WRITE(&ax_local->ax_spi, (LCR_LED0_EN | LCR_LED0_DUPLEX | LCR_LED1_EN | LCR_LED1_100MODE), P2_LCR0); AX_WRITE(&ax_local->ax_spi, (AX_READ(&ax_local->ax_spi, P2_LCR1) & LCR_LED2_MASK) | LCR_LED2_EN | LCR_LED2_LINK, P2_LCR1); /* Disable PHY auto-polling */ AX_WRITE(&ax_local->ax_spi, PCR_PHYID(AX88796C_PHY_ID), P2_PCR); /* Enable MAC interrupts */ AX_WRITE(&ax_local->ax_spi, IMR_DEFAULT, P0_IMR); mutex_unlock(&ax_local->spi_lock); /* Setup flow-control configuration */ phy_support_asym_pause(ax_local->phydev); if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, ax_local->phydev->advertising) || linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, ax_local->phydev->advertising)) fc |= AX_FC_ANEG; fc |= linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, ax_local->phydev->advertising) ? AX_FC_RX : 0; fc |= (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, ax_local->phydev->advertising) != linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, ax_local->phydev->advertising)) ? AX_FC_TX : 0; ax_local->flowctrl = fc; phy_start(ax_local->ndev->phydev); netif_start_queue(ndev); spi_message_init(&ax_local->ax_spi.rx_msg); return 0; } static int ax88796c_close(struct net_device *ndev) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); phy_stop(ndev->phydev); /* We lock the mutex early not only to protect the device * against concurrent access, but also avoid waking up the * queue in ax88796c_work(). phy_stop() needs to be called * before because it locks the mutex to access SPI. */ mutex_lock(&ax_local->spi_lock); netif_stop_queue(ndev); /* No more work can be scheduled now. Make any pending work, * including one already waiting for the mutex to be unlocked, * NOP. */ netif_dbg(ax_local, ifdown, ndev, "clearing bits\n"); clear_bit(EVENT_SET_MULTI, &ax_local->flags); clear_bit(EVENT_INTR, &ax_local->flags); clear_bit(EVENT_TX, &ax_local->flags); /* Disable MAC interrupts */ AX_WRITE(&ax_local->ax_spi, IMR_MASKALL, P0_IMR); __skb_queue_purge(&ax_local->tx_wait_q); ax88796c_soft_reset(ax_local); mutex_unlock(&ax_local->spi_lock); cancel_work_sync(&ax_local->ax_work); free_irq(ndev->irq, ndev); return 0; } static int ax88796c_set_features(struct net_device *ndev, netdev_features_t features) { struct ax88796c_device *ax_local = to_ax88796c_device(ndev); netdev_features_t changed = features ^ ndev->features; if (!(changed & (NETIF_F_RXCSUM | NETIF_F_HW_CSUM))) return 0; ndev->features = features; if (changed & (NETIF_F_RXCSUM | NETIF_F_HW_CSUM)) ax88796c_set_csums(ax_local); return 0; } static const struct net_device_ops ax88796c_netdev_ops = { .ndo_open = ax88796c_open, .ndo_stop = ax88796c_close, .ndo_start_xmit = ax88796c_start_xmit, .ndo_get_stats64 = ax88796c_get_stats64, .ndo_eth_ioctl = ax88796c_ioctl, .ndo_set_mac_address = eth_mac_addr, .ndo_set_features = ax88796c_set_features, }; static int ax88796c_hard_reset(struct ax88796c_device *ax_local) { struct device *dev = (struct device *)&ax_local->spi->dev; struct gpio_desc *reset_gpio; /* reset info */ reset_gpio = gpiod_get(dev, "reset", 0); if (IS_ERR(reset_gpio)) { dev_err(dev, "Could not get 'reset' GPIO: %ld", PTR_ERR(reset_gpio)); return PTR_ERR(reset_gpio); } /* set reset */ gpiod_direction_output(reset_gpio, 1); msleep(100); gpiod_direction_output(reset_gpio, 0); gpiod_put(reset_gpio); msleep(20); return 0; } static int ax88796c_probe(struct spi_device *spi) { char phy_id[MII_BUS_ID_SIZE + 3]; struct ax88796c_device *ax_local; struct net_device *ndev; u16 temp; int ret; ndev = devm_alloc_etherdev(&spi->dev, sizeof(*ax_local)); if (!ndev) return -ENOMEM; SET_NETDEV_DEV(ndev, &spi->dev); ax_local = to_ax88796c_device(ndev); dev_set_drvdata(&spi->dev, ax_local); ax_local->spi = spi; ax_local->ax_spi.spi = spi; ax_local->stats = devm_netdev_alloc_pcpu_stats(&spi->dev, struct ax88796c_pcpu_stats); if (!ax_local->stats) return -ENOMEM; ax_local->ndev = ndev; ax_local->priv_flags |= comp ? AX_CAP_COMP : 0; ax_local->msg_enable = msg_enable; mutex_init(&ax_local->spi_lock); ax_local->mdiobus = devm_mdiobus_alloc(&spi->dev); if (!ax_local->mdiobus) return -ENOMEM; ax_local->mdiobus->priv = ax_local; ax_local->mdiobus->read = ax88796c_mdio_read; ax_local->mdiobus->write = ax88796c_mdio_write; ax_local->mdiobus->name = "ax88976c-mdiobus"; ax_local->mdiobus->phy_mask = (u32)~BIT(AX88796C_PHY_ID); ax_local->mdiobus->parent = &spi->dev; snprintf(ax_local->mdiobus->id, MII_BUS_ID_SIZE, "ax88796c-%s.%u", dev_name(&spi->dev), spi->chip_select); ret = devm_mdiobus_register(&spi->dev, ax_local->mdiobus); if (ret < 0) { dev_err(&spi->dev, "Could not register MDIO bus\n"); return ret; } if (netif_msg_probe(ax_local)) { dev_info(&spi->dev, "AX88796C-SPI Configuration:\n"); dev_info(&spi->dev, " Compression : %s\n", ax_local->priv_flags & AX_CAP_COMP ? "ON" : "OFF"); } ndev->irq = spi->irq; ndev->netdev_ops = &ax88796c_netdev_ops; ndev->ethtool_ops = &ax88796c_ethtool_ops; ndev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM; ndev->features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM; ndev->needed_headroom = TX_OVERHEAD; ndev->needed_tailroom = TX_EOP_SIZE; mutex_lock(&ax_local->spi_lock); /* ax88796c gpio reset */ ax88796c_hard_reset(ax_local); /* Reset AX88796C */ ret = ax88796c_soft_reset(ax_local); if (ret < 0) { ret = -ENODEV; mutex_unlock(&ax_local->spi_lock); goto err; } /* Check board revision */ temp = AX_READ(&ax_local->ax_spi, P2_CRIR); if ((temp & 0xF) != 0x0) { dev_err(&spi->dev, "spi read failed: %d\n", temp); ret = -ENODEV; mutex_unlock(&ax_local->spi_lock); goto err; } /*Reload EEPROM*/ ax88796c_reload_eeprom(ax_local); ax88796c_load_mac_addr(ndev); if (netif_msg_probe(ax_local)) dev_info(&spi->dev, "irq %d, MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n", ndev->irq, ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]); /* Disable power saving */ AX_WRITE(&ax_local->ax_spi, (AX_READ(&ax_local->ax_spi, P0_PSCR) & PSCR_PS_MASK) | PSCR_PS_D0, P0_PSCR); mutex_unlock(&ax_local->spi_lock); INIT_WORK(&ax_local->ax_work, ax88796c_work); skb_queue_head_init(&ax_local->tx_wait_q); snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, ax_local->mdiobus->id, AX88796C_PHY_ID); ax_local->phydev = phy_connect(ax_local->ndev, phy_id, ax88796c_handle_link_change, PHY_INTERFACE_MODE_MII); if (IS_ERR(ax_local->phydev)) { ret = PTR_ERR(ax_local->phydev); goto err; } ax_local->phydev->irq = PHY_POLL; ret = devm_register_netdev(&spi->dev, ndev); if (ret) { dev_err(&spi->dev, "failed to register a network device\n"); goto err_phy_dis; } netif_info(ax_local, probe, ndev, "%s %s registered\n", dev_driver_string(&spi->dev), dev_name(&spi->dev)); phy_attached_info(ax_local->phydev); return 0; err_phy_dis: phy_disconnect(ax_local->phydev); err: return ret; } static void ax88796c_remove(struct spi_device *spi) { struct ax88796c_device *ax_local = dev_get_drvdata(&spi->dev); struct net_device *ndev = ax_local->ndev; phy_disconnect(ndev->phydev); netif_info(ax_local, probe, ndev, "removing network device %s %s\n", dev_driver_string(&spi->dev), dev_name(&spi->dev)); } #ifdef CONFIG_OF static const struct of_device_id ax88796c_dt_ids[] = { { .compatible = "asix,ax88796c" }, {}, }; MODULE_DEVICE_TABLE(of, ax88796c_dt_ids); #endif static const struct spi_device_id asix_id[] = { { "ax88796c", 0 }, { } }; MODULE_DEVICE_TABLE(spi, asix_id); static struct spi_driver ax88796c_spi_driver = { .driver = { .name = DRV_NAME, .of_match_table = of_match_ptr(ax88796c_dt_ids), }, .probe = ax88796c_probe, .remove = ax88796c_remove, .id_table = asix_id, }; static __init int ax88796c_spi_init(void) { int ret; bitmap_zero(ax88796c_no_regs_mask, AX88796C_REGDUMP_LEN); ret = bitmap_parse(no_regs_list, 35, ax88796c_no_regs_mask, AX88796C_REGDUMP_LEN); if (ret) { bitmap_fill(ax88796c_no_regs_mask, AX88796C_REGDUMP_LEN); pr_err("Invalid bitmap description, masking all registers\n"); } return spi_register_driver(&ax88796c_spi_driver); } static __exit void ax88796c_spi_exit(void) { spi_unregister_driver(&ax88796c_spi_driver); } module_init(ax88796c_spi_init); module_exit(ax88796c_spi_exit); MODULE_AUTHOR("Łukasz Stelmach <l.stelmach@samsung.com>"); MODULE_DESCRIPTION("ASIX AX88796C SPI Ethernet driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1