Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeff Garzik | 6313 | 49.81% | 13 | 8.02% |
Michael Buesch | 1176 | 9.28% | 8 | 4.94% |
Hauke Mehrtens | 1082 | 8.54% | 16 | 9.88% |
Gary Zambrano | 1028 | 8.11% | 8 | 4.94% |
John W. Linville | 445 | 3.51% | 3 | 1.85% |
Pekka Pietikäinen | 440 | 3.47% | 5 | 3.09% |
Stephen Hemminger | 387 | 3.05% | 12 | 7.41% |
François Romieu | 321 | 2.53% | 9 | 5.56% |
David S. Miller | 180 | 1.42% | 1 | 0.62% |
Joe Perches | 133 | 1.05% | 5 | 3.09% |
FUJITA Tomonori | 114 | 0.90% | 1 | 0.62% |
Kevin Groeneveld | 113 | 0.89% | 1 | 0.62% |
Philippe Reynes | 112 | 0.88% | 2 | 1.23% |
Andrew Morton | 70 | 0.55% | 3 | 1.85% |
Mark Lord | 62 | 0.49% | 2 | 1.23% |
Miguel Botón | 61 | 0.48% | 1 | 0.62% |
Andrew Lunn | 58 | 0.46% | 5 | 3.09% |
Andi Kleen | 52 | 0.41% | 1 | 0.62% |
Michael Chan | 46 | 0.36% | 1 | 0.62% |
James Hogan | 40 | 0.32% | 1 | 0.62% |
Con Kolivas | 40 | 0.32% | 1 | 0.62% |
Pavel Machek | 38 | 0.30% | 4 | 2.47% |
Fenghua Yu | 28 | 0.22% | 1 | 0.62% |
Yang Hongyang | 28 | 0.22% | 1 | 0.62% |
Eric Dumazet | 27 | 0.21% | 5 | 3.09% |
Dmitriy Monakhov | 26 | 0.21% | 1 | 0.62% |
Jiri Pirko | 25 | 0.20% | 4 | 2.47% |
Andrey Skvortsov | 24 | 0.19% | 1 | 0.62% |
Dongdong Deng | 20 | 0.16% | 2 | 1.23% |
Hao Chen | 20 | 0.16% | 1 | 0.62% |
Jarod Wilson | 14 | 0.11% | 1 | 0.62% |
Kees Cook | 14 | 0.11% | 1 | 0.62% |
Florian Fainelli | 10 | 0.08% | 1 | 0.62% |
Arnaldo Carvalho de Melo | 9 | 0.07% | 1 | 0.62% |
Allen Pais | 8 | 0.06% | 1 | 0.62% |
Florian Schirmer | 7 | 0.06% | 1 | 0.62% |
Matthew Wilcox | 6 | 0.05% | 1 | 0.62% |
Benoit Taine | 6 | 0.05% | 1 | 0.62% |
Zhang Changzhong | 6 | 0.05% | 1 | 0.62% |
Alan Cox | 5 | 0.04% | 1 | 0.62% |
David Decotigny | 5 | 0.04% | 1 | 0.62% |
Paul Fertser | 5 | 0.04% | 1 | 0.62% |
Jochen Friedrich | 5 | 0.04% | 1 | 0.62% |
Jakub Kiciński | 4 | 0.03% | 3 | 1.85% |
Julia Lawall | 4 | 0.03% | 1 | 0.62% |
Jason Yan | 4 | 0.03% | 1 | 0.62% |
Eric W. Biedermann | 4 | 0.03% | 1 | 0.62% |
Michael S. Tsirkin | 4 | 0.03% | 1 | 0.62% |
Alexey Dobriyan | 3 | 0.02% | 1 | 0.62% |
Al Viro | 3 | 0.02% | 1 | 0.62% |
Shaohua Li | 3 | 0.02% | 1 | 0.62% |
Tejun Heo | 3 | 0.02% | 1 | 0.62% |
Alexander Duyck | 3 | 0.02% | 1 | 0.62% |
Wilfried Klaebe | 3 | 0.02% | 1 | 0.62% |
Yuval Shaia | 3 | 0.02% | 1 | 0.62% |
Wolfram Sang | 3 | 0.02% | 1 | 0.62% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.62% |
Wei Yang | 2 | 0.02% | 1 | 0.62% |
Felix Fietkau | 2 | 0.02% | 1 | 0.62% |
Ben Hutchings | 2 | 0.02% | 1 | 0.62% |
Randy Dunlap | 2 | 0.02% | 1 | 0.62% |
Mark Einon | 1 | 0.01% | 1 | 0.62% |
Bill Helfinstine | 1 | 0.01% | 1 | 0.62% |
Eric Sesterhenn / Snakebyte | 1 | 0.01% | 1 | 0.62% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.62% |
Linus Torvalds | 1 | 0.01% | 1 | 0.62% |
Yoann Padioleau | 1 | 0.01% | 1 | 0.62% |
Rafał Miłecki | 1 | 0.01% | 1 | 0.62% |
caihuoqing | 1 | 0.01% | 1 | 0.62% |
Russell King | 1 | 0.01% | 1 | 0.62% |
Johannes Berg | 1 | 0.01% | 1 | 0.62% |
Total | 12673 | 162 |
/* b44.c: Broadcom 44xx/47xx Fast Ethernet device driver. * * Copyright (C) 2002 David S. Miller (davem@redhat.com) * Copyright (C) 2004 Pekka Pietikainen (pp@ee.oulu.fi) * Copyright (C) 2004 Florian Schirmer (jolt@tuxbox.org) * Copyright (C) 2006 Felix Fietkau (nbd@openwrt.org) * Copyright (C) 2006 Broadcom Corporation. * Copyright (C) 2007 Michael Buesch <m@bues.ch> * Copyright (C) 2013 Hauke Mehrtens <hauke@hauke-m.de> * * Distribute under GPL. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/types.h> #include <linux/netdevice.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/etherdevice.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/ssb/ssb.h> #include <linux/slab.h> #include <linux/phy.h> #include <linux/uaccess.h> #include <asm/io.h> #include <asm/irq.h> #include "b44.h" #define DRV_MODULE_NAME "b44" #define DRV_DESCRIPTION "Broadcom 44xx/47xx 10/100 PCI ethernet driver" #define B44_DEF_MSG_ENABLE \ (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK | \ NETIF_MSG_TIMER | \ NETIF_MSG_IFDOWN | \ NETIF_MSG_IFUP | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR) /* length of time before we decide the hardware is borked, * and dev->tx_timeout() should be called to fix the problem */ #define B44_TX_TIMEOUT (5 * HZ) /* hardware minimum and maximum for a single frame's data payload */ #define B44_MIN_MTU ETH_ZLEN #define B44_MAX_MTU ETH_DATA_LEN #define B44_RX_RING_SIZE 512 #define B44_DEF_RX_RING_PENDING 200 #define B44_RX_RING_BYTES (sizeof(struct dma_desc) * \ B44_RX_RING_SIZE) #define B44_TX_RING_SIZE 512 #define B44_DEF_TX_RING_PENDING (B44_TX_RING_SIZE - 1) #define B44_TX_RING_BYTES (sizeof(struct dma_desc) * \ B44_TX_RING_SIZE) #define TX_RING_GAP(BP) \ (B44_TX_RING_SIZE - (BP)->tx_pending) #define TX_BUFFS_AVAIL(BP) \ (((BP)->tx_cons <= (BP)->tx_prod) ? \ (BP)->tx_cons + (BP)->tx_pending - (BP)->tx_prod : \ (BP)->tx_cons - (BP)->tx_prod - TX_RING_GAP(BP)) #define NEXT_TX(N) (((N) + 1) & (B44_TX_RING_SIZE - 1)) #define RX_PKT_OFFSET (RX_HEADER_LEN + 2) #define RX_PKT_BUF_SZ (1536 + RX_PKT_OFFSET) /* minimum number of free TX descriptors required to wake up TX process */ #define B44_TX_WAKEUP_THRESH (B44_TX_RING_SIZE / 4) /* b44 internal pattern match filter info */ #define B44_PATTERN_BASE 0x400 #define B44_PATTERN_SIZE 0x80 #define B44_PMASK_BASE 0x600 #define B44_PMASK_SIZE 0x10 #define B44_MAX_PATTERNS 16 #define B44_ETHIPV6UDP_HLEN 62 #define B44_ETHIPV4UDP_HLEN 42 MODULE_AUTHOR("Felix Fietkau, Florian Schirmer, Pekka Pietikainen, David S. Miller"); MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_LICENSE("GPL"); static int b44_debug = -1; /* -1 == use B44_DEF_MSG_ENABLE as value */ module_param(b44_debug, int, 0); MODULE_PARM_DESC(b44_debug, "B44 bitmapped debugging message enable value"); #ifdef CONFIG_B44_PCI static const struct pci_device_id b44_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_BCM4401) }, { PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_BCM4401B0) }, { PCI_DEVICE(PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_BCM4401B1) }, { 0 } /* terminate list with empty entry */ }; MODULE_DEVICE_TABLE(pci, b44_pci_tbl); static struct pci_driver b44_pci_driver = { .name = DRV_MODULE_NAME, .id_table = b44_pci_tbl, }; #endif /* CONFIG_B44_PCI */ static const struct ssb_device_id b44_ssb_tbl[] = { SSB_DEVICE(SSB_VENDOR_BROADCOM, SSB_DEV_ETHERNET, SSB_ANY_REV), {}, }; MODULE_DEVICE_TABLE(ssb, b44_ssb_tbl); static void b44_halt(struct b44 *); static void b44_init_rings(struct b44 *); #define B44_FULL_RESET 1 #define B44_FULL_RESET_SKIP_PHY 2 #define B44_PARTIAL_RESET 3 #define B44_CHIP_RESET_FULL 4 #define B44_CHIP_RESET_PARTIAL 5 static void b44_init_hw(struct b44 *, int); static int dma_desc_sync_size; static int instance; static const char b44_gstrings[][ETH_GSTRING_LEN] = { #define _B44(x...) # x, B44_STAT_REG_DECLARE #undef _B44 }; static inline void b44_sync_dma_desc_for_device(struct ssb_device *sdev, dma_addr_t dma_base, unsigned long offset, enum dma_data_direction dir) { dma_sync_single_for_device(sdev->dma_dev, dma_base + offset, dma_desc_sync_size, dir); } static inline void b44_sync_dma_desc_for_cpu(struct ssb_device *sdev, dma_addr_t dma_base, unsigned long offset, enum dma_data_direction dir) { dma_sync_single_for_cpu(sdev->dma_dev, dma_base + offset, dma_desc_sync_size, dir); } static inline unsigned long br32(const struct b44 *bp, unsigned long reg) { return ssb_read32(bp->sdev, reg); } static inline void bw32(const struct b44 *bp, unsigned long reg, unsigned long val) { ssb_write32(bp->sdev, reg, val); } static int b44_wait_bit(struct b44 *bp, unsigned long reg, u32 bit, unsigned long timeout, const int clear) { unsigned long i; for (i = 0; i < timeout; i++) { u32 val = br32(bp, reg); if (clear && !(val & bit)) break; if (!clear && (val & bit)) break; udelay(10); } if (i == timeout) { if (net_ratelimit()) netdev_err(bp->dev, "BUG! Timeout waiting for bit %08x of register %lx to %s\n", bit, reg, clear ? "clear" : "set"); return -ENODEV; } return 0; } static inline void __b44_cam_read(struct b44 *bp, unsigned char *data, int index) { u32 val; bw32(bp, B44_CAM_CTRL, (CAM_CTRL_READ | (index << CAM_CTRL_INDEX_SHIFT))); b44_wait_bit(bp, B44_CAM_CTRL, CAM_CTRL_BUSY, 100, 1); val = br32(bp, B44_CAM_DATA_LO); data[2] = (val >> 24) & 0xFF; data[3] = (val >> 16) & 0xFF; data[4] = (val >> 8) & 0xFF; data[5] = (val >> 0) & 0xFF; val = br32(bp, B44_CAM_DATA_HI); data[0] = (val >> 8) & 0xFF; data[1] = (val >> 0) & 0xFF; } static inline void __b44_cam_write(struct b44 *bp, const unsigned char *data, int index) { u32 val; val = ((u32) data[2]) << 24; val |= ((u32) data[3]) << 16; val |= ((u32) data[4]) << 8; val |= ((u32) data[5]) << 0; bw32(bp, B44_CAM_DATA_LO, val); val = (CAM_DATA_HI_VALID | (((u32) data[0]) << 8) | (((u32) data[1]) << 0)); bw32(bp, B44_CAM_DATA_HI, val); bw32(bp, B44_CAM_CTRL, (CAM_CTRL_WRITE | (index << CAM_CTRL_INDEX_SHIFT))); b44_wait_bit(bp, B44_CAM_CTRL, CAM_CTRL_BUSY, 100, 1); } static inline void __b44_disable_ints(struct b44 *bp) { bw32(bp, B44_IMASK, 0); } static void b44_disable_ints(struct b44 *bp) { __b44_disable_ints(bp); /* Flush posted writes. */ br32(bp, B44_IMASK); } static void b44_enable_ints(struct b44 *bp) { bw32(bp, B44_IMASK, bp->imask); } static int __b44_readphy(struct b44 *bp, int phy_addr, int reg, u32 *val) { int err; bw32(bp, B44_EMAC_ISTAT, EMAC_INT_MII); bw32(bp, B44_MDIO_DATA, (MDIO_DATA_SB_START | (MDIO_OP_READ << MDIO_DATA_OP_SHIFT) | (phy_addr << MDIO_DATA_PMD_SHIFT) | (reg << MDIO_DATA_RA_SHIFT) | (MDIO_TA_VALID << MDIO_DATA_TA_SHIFT))); err = b44_wait_bit(bp, B44_EMAC_ISTAT, EMAC_INT_MII, 100, 0); *val = br32(bp, B44_MDIO_DATA) & MDIO_DATA_DATA; return err; } static int __b44_writephy(struct b44 *bp, int phy_addr, int reg, u32 val) { bw32(bp, B44_EMAC_ISTAT, EMAC_INT_MII); bw32(bp, B44_MDIO_DATA, (MDIO_DATA_SB_START | (MDIO_OP_WRITE << MDIO_DATA_OP_SHIFT) | (phy_addr << MDIO_DATA_PMD_SHIFT) | (reg << MDIO_DATA_RA_SHIFT) | (MDIO_TA_VALID << MDIO_DATA_TA_SHIFT) | (val & MDIO_DATA_DATA))); return b44_wait_bit(bp, B44_EMAC_ISTAT, EMAC_INT_MII, 100, 0); } static inline int b44_readphy(struct b44 *bp, int reg, u32 *val) { if (bp->flags & B44_FLAG_EXTERNAL_PHY) return 0; return __b44_readphy(bp, bp->phy_addr, reg, val); } static inline int b44_writephy(struct b44 *bp, int reg, u32 val) { if (bp->flags & B44_FLAG_EXTERNAL_PHY) return 0; return __b44_writephy(bp, bp->phy_addr, reg, val); } /* miilib interface */ static int b44_mdio_read_mii(struct net_device *dev, int phy_id, int location) { u32 val; struct b44 *bp = netdev_priv(dev); int rc = __b44_readphy(bp, phy_id, location, &val); if (rc) return 0xffffffff; return val; } static void b44_mdio_write_mii(struct net_device *dev, int phy_id, int location, int val) { struct b44 *bp = netdev_priv(dev); __b44_writephy(bp, phy_id, location, val); } static int b44_mdio_read_phylib(struct mii_bus *bus, int phy_id, int location) { u32 val; struct b44 *bp = bus->priv; int rc = __b44_readphy(bp, phy_id, location, &val); if (rc) return 0xffffffff; return val; } static int b44_mdio_write_phylib(struct mii_bus *bus, int phy_id, int location, u16 val) { struct b44 *bp = bus->priv; return __b44_writephy(bp, phy_id, location, val); } static int b44_phy_reset(struct b44 *bp) { u32 val; int err; if (bp->flags & B44_FLAG_EXTERNAL_PHY) return 0; err = b44_writephy(bp, MII_BMCR, BMCR_RESET); if (err) return err; udelay(100); err = b44_readphy(bp, MII_BMCR, &val); if (!err) { if (val & BMCR_RESET) { netdev_err(bp->dev, "PHY Reset would not complete\n"); err = -ENODEV; } } return err; } static void __b44_set_flow_ctrl(struct b44 *bp, u32 pause_flags) { u32 val; bp->flags &= ~(B44_FLAG_TX_PAUSE | B44_FLAG_RX_PAUSE); bp->flags |= pause_flags; val = br32(bp, B44_RXCONFIG); if (pause_flags & B44_FLAG_RX_PAUSE) val |= RXCONFIG_FLOW; else val &= ~RXCONFIG_FLOW; bw32(bp, B44_RXCONFIG, val); val = br32(bp, B44_MAC_FLOW); if (pause_flags & B44_FLAG_TX_PAUSE) val |= (MAC_FLOW_PAUSE_ENAB | (0xc0 & MAC_FLOW_RX_HI_WATER)); else val &= ~MAC_FLOW_PAUSE_ENAB; bw32(bp, B44_MAC_FLOW, val); } static void b44_set_flow_ctrl(struct b44 *bp, u32 local, u32 remote) { u32 pause_enab = 0; /* The driver supports only rx pause by default because the b44 mac tx pause mechanism generates excessive pause frames. Use ethtool to turn on b44 tx pause if necessary. */ if ((local & ADVERTISE_PAUSE_CAP) && (local & ADVERTISE_PAUSE_ASYM)){ if ((remote & LPA_PAUSE_ASYM) && !(remote & LPA_PAUSE_CAP)) pause_enab |= B44_FLAG_RX_PAUSE; } __b44_set_flow_ctrl(bp, pause_enab); } #ifdef CONFIG_BCM47XX #include <linux/bcm47xx_nvram.h> static void b44_wap54g10_workaround(struct b44 *bp) { char buf[20]; u32 val; int err; /* * workaround for bad hardware design in Linksys WAP54G v1.0 * see https://dev.openwrt.org/ticket/146 * check and reset bit "isolate" */ if (bcm47xx_nvram_getenv("boardnum", buf, sizeof(buf)) < 0) return; if (simple_strtoul(buf, NULL, 0) == 2) { err = __b44_readphy(bp, 0, MII_BMCR, &val); if (err) goto error; if (!(val & BMCR_ISOLATE)) return; val &= ~BMCR_ISOLATE; err = __b44_writephy(bp, 0, MII_BMCR, val); if (err) goto error; } return; error: pr_warn("PHY: cannot reset MII transceiver isolate bit\n"); } #else static inline void b44_wap54g10_workaround(struct b44 *bp) { } #endif static int b44_setup_phy(struct b44 *bp) { u32 val; int err; b44_wap54g10_workaround(bp); if (bp->flags & B44_FLAG_EXTERNAL_PHY) return 0; if ((err = b44_readphy(bp, B44_MII_ALEDCTRL, &val)) != 0) goto out; if ((err = b44_writephy(bp, B44_MII_ALEDCTRL, val & MII_ALEDCTRL_ALLMSK)) != 0) goto out; if ((err = b44_readphy(bp, B44_MII_TLEDCTRL, &val)) != 0) goto out; if ((err = b44_writephy(bp, B44_MII_TLEDCTRL, val | MII_TLEDCTRL_ENABLE)) != 0) goto out; if (!(bp->flags & B44_FLAG_FORCE_LINK)) { u32 adv = ADVERTISE_CSMA; if (bp->flags & B44_FLAG_ADV_10HALF) adv |= ADVERTISE_10HALF; if (bp->flags & B44_FLAG_ADV_10FULL) adv |= ADVERTISE_10FULL; if (bp->flags & B44_FLAG_ADV_100HALF) adv |= ADVERTISE_100HALF; if (bp->flags & B44_FLAG_ADV_100FULL) adv |= ADVERTISE_100FULL; if (bp->flags & B44_FLAG_PAUSE_AUTO) adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; if ((err = b44_writephy(bp, MII_ADVERTISE, adv)) != 0) goto out; if ((err = b44_writephy(bp, MII_BMCR, (BMCR_ANENABLE | BMCR_ANRESTART))) != 0) goto out; } else { u32 bmcr; if ((err = b44_readphy(bp, MII_BMCR, &bmcr)) != 0) goto out; bmcr &= ~(BMCR_FULLDPLX | BMCR_ANENABLE | BMCR_SPEED100); if (bp->flags & B44_FLAG_100_BASE_T) bmcr |= BMCR_SPEED100; if (bp->flags & B44_FLAG_FULL_DUPLEX) bmcr |= BMCR_FULLDPLX; if ((err = b44_writephy(bp, MII_BMCR, bmcr)) != 0) goto out; /* Since we will not be negotiating there is no safe way * to determine if the link partner supports flow control * or not. So just disable it completely in this case. */ b44_set_flow_ctrl(bp, 0, 0); } out: return err; } static void b44_stats_update(struct b44 *bp) { unsigned long reg; u64 *val; val = &bp->hw_stats.tx_good_octets; u64_stats_update_begin(&bp->hw_stats.syncp); for (reg = B44_TX_GOOD_O; reg <= B44_TX_PAUSE; reg += 4UL) { *val++ += br32(bp, reg); } for (reg = B44_RX_GOOD_O; reg <= B44_RX_NPAUSE; reg += 4UL) { *val++ += br32(bp, reg); } u64_stats_update_end(&bp->hw_stats.syncp); } static void b44_link_report(struct b44 *bp) { if (!netif_carrier_ok(bp->dev)) { netdev_info(bp->dev, "Link is down\n"); } else { netdev_info(bp->dev, "Link is up at %d Mbps, %s duplex\n", (bp->flags & B44_FLAG_100_BASE_T) ? 100 : 10, (bp->flags & B44_FLAG_FULL_DUPLEX) ? "full" : "half"); netdev_info(bp->dev, "Flow control is %s for TX and %s for RX\n", (bp->flags & B44_FLAG_TX_PAUSE) ? "on" : "off", (bp->flags & B44_FLAG_RX_PAUSE) ? "on" : "off"); } } static void b44_check_phy(struct b44 *bp) { u32 bmsr, aux; if (bp->flags & B44_FLAG_EXTERNAL_PHY) { bp->flags |= B44_FLAG_100_BASE_T; if (!netif_carrier_ok(bp->dev)) { u32 val = br32(bp, B44_TX_CTRL); if (bp->flags & B44_FLAG_FULL_DUPLEX) val |= TX_CTRL_DUPLEX; else val &= ~TX_CTRL_DUPLEX; bw32(bp, B44_TX_CTRL, val); netif_carrier_on(bp->dev); b44_link_report(bp); } return; } if (!b44_readphy(bp, MII_BMSR, &bmsr) && !b44_readphy(bp, B44_MII_AUXCTRL, &aux) && (bmsr != 0xffff)) { if (aux & MII_AUXCTRL_SPEED) bp->flags |= B44_FLAG_100_BASE_T; else bp->flags &= ~B44_FLAG_100_BASE_T; if (aux & MII_AUXCTRL_DUPLEX) bp->flags |= B44_FLAG_FULL_DUPLEX; else bp->flags &= ~B44_FLAG_FULL_DUPLEX; if (!netif_carrier_ok(bp->dev) && (bmsr & BMSR_LSTATUS)) { u32 val = br32(bp, B44_TX_CTRL); u32 local_adv, remote_adv; if (bp->flags & B44_FLAG_FULL_DUPLEX) val |= TX_CTRL_DUPLEX; else val &= ~TX_CTRL_DUPLEX; bw32(bp, B44_TX_CTRL, val); if (!(bp->flags & B44_FLAG_FORCE_LINK) && !b44_readphy(bp, MII_ADVERTISE, &local_adv) && !b44_readphy(bp, MII_LPA, &remote_adv)) b44_set_flow_ctrl(bp, local_adv, remote_adv); /* Link now up */ netif_carrier_on(bp->dev); b44_link_report(bp); } else if (netif_carrier_ok(bp->dev) && !(bmsr & BMSR_LSTATUS)) { /* Link now down */ netif_carrier_off(bp->dev); b44_link_report(bp); } if (bmsr & BMSR_RFAULT) netdev_warn(bp->dev, "Remote fault detected in PHY\n"); if (bmsr & BMSR_JCD) netdev_warn(bp->dev, "Jabber detected in PHY\n"); } } static void b44_timer(struct timer_list *t) { struct b44 *bp = from_timer(bp, t, timer); spin_lock_irq(&bp->lock); b44_check_phy(bp); b44_stats_update(bp); spin_unlock_irq(&bp->lock); mod_timer(&bp->timer, round_jiffies(jiffies + HZ)); } static void b44_tx(struct b44 *bp) { u32 cur, cons; unsigned bytes_compl = 0, pkts_compl = 0; cur = br32(bp, B44_DMATX_STAT) & DMATX_STAT_CDMASK; cur /= sizeof(struct dma_desc); /* XXX needs updating when NETIF_F_SG is supported */ for (cons = bp->tx_cons; cons != cur; cons = NEXT_TX(cons)) { struct ring_info *rp = &bp->tx_buffers[cons]; struct sk_buff *skb = rp->skb; BUG_ON(skb == NULL); dma_unmap_single(bp->sdev->dma_dev, rp->mapping, skb->len, DMA_TO_DEVICE); rp->skb = NULL; bytes_compl += skb->len; pkts_compl++; dev_consume_skb_irq(skb); } netdev_completed_queue(bp->dev, pkts_compl, bytes_compl); bp->tx_cons = cons; if (netif_queue_stopped(bp->dev) && TX_BUFFS_AVAIL(bp) > B44_TX_WAKEUP_THRESH) netif_wake_queue(bp->dev); bw32(bp, B44_GPTIMER, 0); } /* Works like this. This chip writes a 'struct rx_header" 30 bytes * before the DMA address you give it. So we allocate 30 more bytes * for the RX buffer, DMA map all of it, skb_reserve the 30 bytes, then * point the chip at 30 bytes past where the rx_header will go. */ static int b44_alloc_rx_skb(struct b44 *bp, int src_idx, u32 dest_idx_unmasked) { struct dma_desc *dp; struct ring_info *src_map, *map; struct rx_header *rh; struct sk_buff *skb; dma_addr_t mapping; int dest_idx; u32 ctrl; src_map = NULL; if (src_idx >= 0) src_map = &bp->rx_buffers[src_idx]; dest_idx = dest_idx_unmasked & (B44_RX_RING_SIZE - 1); map = &bp->rx_buffers[dest_idx]; skb = netdev_alloc_skb(bp->dev, RX_PKT_BUF_SZ); if (skb == NULL) return -ENOMEM; mapping = dma_map_single(bp->sdev->dma_dev, skb->data, RX_PKT_BUF_SZ, DMA_FROM_DEVICE); /* Hardware bug work-around, the chip is unable to do PCI DMA to/from anything above 1GB :-( */ if (dma_mapping_error(bp->sdev->dma_dev, mapping) || mapping + RX_PKT_BUF_SZ > DMA_BIT_MASK(30)) { /* Sigh... */ if (!dma_mapping_error(bp->sdev->dma_dev, mapping)) dma_unmap_single(bp->sdev->dma_dev, mapping, RX_PKT_BUF_SZ, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); skb = alloc_skb(RX_PKT_BUF_SZ, GFP_ATOMIC | GFP_DMA); if (skb == NULL) return -ENOMEM; mapping = dma_map_single(bp->sdev->dma_dev, skb->data, RX_PKT_BUF_SZ, DMA_FROM_DEVICE); if (dma_mapping_error(bp->sdev->dma_dev, mapping) || mapping + RX_PKT_BUF_SZ > DMA_BIT_MASK(30)) { if (!dma_mapping_error(bp->sdev->dma_dev, mapping)) dma_unmap_single(bp->sdev->dma_dev, mapping, RX_PKT_BUF_SZ,DMA_FROM_DEVICE); dev_kfree_skb_any(skb); return -ENOMEM; } bp->force_copybreak = 1; } rh = (struct rx_header *) skb->data; rh->len = 0; rh->flags = 0; map->skb = skb; map->mapping = mapping; if (src_map != NULL) src_map->skb = NULL; ctrl = (DESC_CTRL_LEN & RX_PKT_BUF_SZ); if (dest_idx == (B44_RX_RING_SIZE - 1)) ctrl |= DESC_CTRL_EOT; dp = &bp->rx_ring[dest_idx]; dp->ctrl = cpu_to_le32(ctrl); dp->addr = cpu_to_le32((u32) mapping + bp->dma_offset); if (bp->flags & B44_FLAG_RX_RING_HACK) b44_sync_dma_desc_for_device(bp->sdev, bp->rx_ring_dma, dest_idx * sizeof(*dp), DMA_BIDIRECTIONAL); return RX_PKT_BUF_SZ; } static void b44_recycle_rx(struct b44 *bp, int src_idx, u32 dest_idx_unmasked) { struct dma_desc *src_desc, *dest_desc; struct ring_info *src_map, *dest_map; struct rx_header *rh; int dest_idx; __le32 ctrl; dest_idx = dest_idx_unmasked & (B44_RX_RING_SIZE - 1); dest_desc = &bp->rx_ring[dest_idx]; dest_map = &bp->rx_buffers[dest_idx]; src_desc = &bp->rx_ring[src_idx]; src_map = &bp->rx_buffers[src_idx]; dest_map->skb = src_map->skb; rh = (struct rx_header *) src_map->skb->data; rh->len = 0; rh->flags = 0; dest_map->mapping = src_map->mapping; if (bp->flags & B44_FLAG_RX_RING_HACK) b44_sync_dma_desc_for_cpu(bp->sdev, bp->rx_ring_dma, src_idx * sizeof(*src_desc), DMA_BIDIRECTIONAL); ctrl = src_desc->ctrl; if (dest_idx == (B44_RX_RING_SIZE - 1)) ctrl |= cpu_to_le32(DESC_CTRL_EOT); else ctrl &= cpu_to_le32(~DESC_CTRL_EOT); dest_desc->ctrl = ctrl; dest_desc->addr = src_desc->addr; src_map->skb = NULL; if (bp->flags & B44_FLAG_RX_RING_HACK) b44_sync_dma_desc_for_device(bp->sdev, bp->rx_ring_dma, dest_idx * sizeof(*dest_desc), DMA_BIDIRECTIONAL); dma_sync_single_for_device(bp->sdev->dma_dev, dest_map->mapping, RX_PKT_BUF_SZ, DMA_FROM_DEVICE); } static int b44_rx(struct b44 *bp, int budget) { int received; u32 cons, prod; received = 0; prod = br32(bp, B44_DMARX_STAT) & DMARX_STAT_CDMASK; prod /= sizeof(struct dma_desc); cons = bp->rx_cons; while (cons != prod && budget > 0) { struct ring_info *rp = &bp->rx_buffers[cons]; struct sk_buff *skb = rp->skb; dma_addr_t map = rp->mapping; struct rx_header *rh; u16 len; dma_sync_single_for_cpu(bp->sdev->dma_dev, map, RX_PKT_BUF_SZ, DMA_FROM_DEVICE); rh = (struct rx_header *) skb->data; len = le16_to_cpu(rh->len); if ((len > (RX_PKT_BUF_SZ - RX_PKT_OFFSET)) || (rh->flags & cpu_to_le16(RX_FLAG_ERRORS))) { drop_it: b44_recycle_rx(bp, cons, bp->rx_prod); drop_it_no_recycle: bp->dev->stats.rx_dropped++; goto next_pkt; } if (len == 0) { int i = 0; do { udelay(2); barrier(); len = le16_to_cpu(rh->len); } while (len == 0 && i++ < 5); if (len == 0) goto drop_it; } /* Omit CRC. */ len -= 4; if (!bp->force_copybreak && len > RX_COPY_THRESHOLD) { int skb_size; skb_size = b44_alloc_rx_skb(bp, cons, bp->rx_prod); if (skb_size < 0) goto drop_it; dma_unmap_single(bp->sdev->dma_dev, map, skb_size, DMA_FROM_DEVICE); /* Leave out rx_header */ skb_put(skb, len + RX_PKT_OFFSET); skb_pull(skb, RX_PKT_OFFSET); } else { struct sk_buff *copy_skb; b44_recycle_rx(bp, cons, bp->rx_prod); copy_skb = napi_alloc_skb(&bp->napi, len); if (copy_skb == NULL) goto drop_it_no_recycle; skb_put(copy_skb, len); /* DMA sync done above, copy just the actual packet */ skb_copy_from_linear_data_offset(skb, RX_PKT_OFFSET, copy_skb->data, len); skb = copy_skb; } skb_checksum_none_assert(skb); skb->protocol = eth_type_trans(skb, bp->dev); netif_receive_skb(skb); received++; budget--; next_pkt: bp->rx_prod = (bp->rx_prod + 1) & (B44_RX_RING_SIZE - 1); cons = (cons + 1) & (B44_RX_RING_SIZE - 1); } bp->rx_cons = cons; bw32(bp, B44_DMARX_PTR, cons * sizeof(struct dma_desc)); return received; } static int b44_poll(struct napi_struct *napi, int budget) { struct b44 *bp = container_of(napi, struct b44, napi); int work_done; unsigned long flags; spin_lock_irqsave(&bp->lock, flags); if (bp->istat & (ISTAT_TX | ISTAT_TO)) { /* spin_lock(&bp->tx_lock); */ b44_tx(bp); /* spin_unlock(&bp->tx_lock); */ } if (bp->istat & ISTAT_RFO) { /* fast recovery, in ~20msec */ bp->istat &= ~ISTAT_RFO; b44_disable_ints(bp); ssb_device_enable(bp->sdev, 0); /* resets ISTAT_RFO */ b44_init_rings(bp); b44_init_hw(bp, B44_FULL_RESET_SKIP_PHY); netif_wake_queue(bp->dev); } spin_unlock_irqrestore(&bp->lock, flags); work_done = 0; if (bp->istat & ISTAT_RX) work_done += b44_rx(bp, budget); if (bp->istat & ISTAT_ERRORS) { spin_lock_irqsave(&bp->lock, flags); b44_halt(bp); b44_init_rings(bp); b44_init_hw(bp, B44_FULL_RESET_SKIP_PHY); netif_wake_queue(bp->dev); spin_unlock_irqrestore(&bp->lock, flags); work_done = 0; } if (work_done < budget) { napi_complete_done(napi, work_done); b44_enable_ints(bp); } return work_done; } static irqreturn_t b44_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct b44 *bp = netdev_priv(dev); u32 istat, imask; int handled = 0; spin_lock(&bp->lock); istat = br32(bp, B44_ISTAT); imask = br32(bp, B44_IMASK); /* The interrupt mask register controls which interrupt bits * will actually raise an interrupt to the CPU when set by hw/firmware, * but doesn't mask off the bits. */ istat &= imask; if (istat) { handled = 1; if (unlikely(!netif_running(dev))) { netdev_info(dev, "late interrupt\n"); goto irq_ack; } if (napi_schedule_prep(&bp->napi)) { /* NOTE: These writes are posted by the readback of * the ISTAT register below. */ bp->istat = istat; __b44_disable_ints(bp); __napi_schedule(&bp->napi); } irq_ack: bw32(bp, B44_ISTAT, istat); br32(bp, B44_ISTAT); } spin_unlock(&bp->lock); return IRQ_RETVAL(handled); } static void b44_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct b44 *bp = netdev_priv(dev); netdev_err(dev, "transmit timed out, resetting\n"); spin_lock_irq(&bp->lock); b44_halt(bp); b44_init_rings(bp); b44_init_hw(bp, B44_FULL_RESET); spin_unlock_irq(&bp->lock); b44_enable_ints(bp); netif_wake_queue(dev); } static netdev_tx_t b44_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct b44 *bp = netdev_priv(dev); int rc = NETDEV_TX_OK; dma_addr_t mapping; u32 len, entry, ctrl; unsigned long flags; len = skb->len; spin_lock_irqsave(&bp->lock, flags); /* This is a hard error, log it. */ if (unlikely(TX_BUFFS_AVAIL(bp) < 1)) { netif_stop_queue(dev); netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); goto err_out; } mapping = dma_map_single(bp->sdev->dma_dev, skb->data, len, DMA_TO_DEVICE); if (dma_mapping_error(bp->sdev->dma_dev, mapping) || mapping + len > DMA_BIT_MASK(30)) { struct sk_buff *bounce_skb; /* Chip can't handle DMA to/from >1GB, use bounce buffer */ if (!dma_mapping_error(bp->sdev->dma_dev, mapping)) dma_unmap_single(bp->sdev->dma_dev, mapping, len, DMA_TO_DEVICE); bounce_skb = alloc_skb(len, GFP_ATOMIC | GFP_DMA); if (!bounce_skb) goto err_out; mapping = dma_map_single(bp->sdev->dma_dev, bounce_skb->data, len, DMA_TO_DEVICE); if (dma_mapping_error(bp->sdev->dma_dev, mapping) || mapping + len > DMA_BIT_MASK(30)) { if (!dma_mapping_error(bp->sdev->dma_dev, mapping)) dma_unmap_single(bp->sdev->dma_dev, mapping, len, DMA_TO_DEVICE); dev_kfree_skb_any(bounce_skb); goto err_out; } skb_copy_from_linear_data(skb, skb_put(bounce_skb, len), len); dev_consume_skb_any(skb); skb = bounce_skb; } entry = bp->tx_prod; bp->tx_buffers[entry].skb = skb; bp->tx_buffers[entry].mapping = mapping; ctrl = (len & DESC_CTRL_LEN); ctrl |= DESC_CTRL_IOC | DESC_CTRL_SOF | DESC_CTRL_EOF; if (entry == (B44_TX_RING_SIZE - 1)) ctrl |= DESC_CTRL_EOT; bp->tx_ring[entry].ctrl = cpu_to_le32(ctrl); bp->tx_ring[entry].addr = cpu_to_le32((u32) mapping+bp->dma_offset); if (bp->flags & B44_FLAG_TX_RING_HACK) b44_sync_dma_desc_for_device(bp->sdev, bp->tx_ring_dma, entry * sizeof(bp->tx_ring[0]), DMA_TO_DEVICE); entry = NEXT_TX(entry); bp->tx_prod = entry; wmb(); bw32(bp, B44_DMATX_PTR, entry * sizeof(struct dma_desc)); if (bp->flags & B44_FLAG_BUGGY_TXPTR) bw32(bp, B44_DMATX_PTR, entry * sizeof(struct dma_desc)); if (bp->flags & B44_FLAG_REORDER_BUG) br32(bp, B44_DMATX_PTR); netdev_sent_queue(dev, skb->len); if (TX_BUFFS_AVAIL(bp) < 1) netif_stop_queue(dev); out_unlock: spin_unlock_irqrestore(&bp->lock, flags); return rc; err_out: rc = NETDEV_TX_BUSY; goto out_unlock; } static int b44_change_mtu(struct net_device *dev, int new_mtu) { struct b44 *bp = netdev_priv(dev); if (!netif_running(dev)) { /* We'll just catch it later when the * device is up'd. */ dev->mtu = new_mtu; return 0; } spin_lock_irq(&bp->lock); b44_halt(bp); dev->mtu = new_mtu; b44_init_rings(bp); b44_init_hw(bp, B44_FULL_RESET); spin_unlock_irq(&bp->lock); b44_enable_ints(bp); return 0; } /* Free up pending packets in all rx/tx rings. * * The chip has been shut down and the driver detached from * the networking, so no interrupts or new tx packets will * end up in the driver. bp->lock is not held and we are not * in an interrupt context and thus may sleep. */ static void b44_free_rings(struct b44 *bp) { struct ring_info *rp; int i; for (i = 0; i < B44_RX_RING_SIZE; i++) { rp = &bp->rx_buffers[i]; if (rp->skb == NULL) continue; dma_unmap_single(bp->sdev->dma_dev, rp->mapping, RX_PKT_BUF_SZ, DMA_FROM_DEVICE); dev_kfree_skb_any(rp->skb); rp->skb = NULL; } /* XXX needs changes once NETIF_F_SG is set... */ for (i = 0; i < B44_TX_RING_SIZE; i++) { rp = &bp->tx_buffers[i]; if (rp->skb == NULL) continue; dma_unmap_single(bp->sdev->dma_dev, rp->mapping, rp->skb->len, DMA_TO_DEVICE); dev_kfree_skb_any(rp->skb); rp->skb = NULL; } } /* Initialize tx/rx rings for packet processing. * * The chip has been shut down and the driver detached from * the networking, so no interrupts or new tx packets will * end up in the driver. */ static void b44_init_rings(struct b44 *bp) { int i; b44_free_rings(bp); memset(bp->rx_ring, 0, B44_RX_RING_BYTES); memset(bp->tx_ring, 0, B44_TX_RING_BYTES); if (bp->flags & B44_FLAG_RX_RING_HACK) dma_sync_single_for_device(bp->sdev->dma_dev, bp->rx_ring_dma, DMA_TABLE_BYTES, DMA_BIDIRECTIONAL); if (bp->flags & B44_FLAG_TX_RING_HACK) dma_sync_single_for_device(bp->sdev->dma_dev, bp->tx_ring_dma, DMA_TABLE_BYTES, DMA_TO_DEVICE); for (i = 0; i < bp->rx_pending; i++) { if (b44_alloc_rx_skb(bp, -1, i) < 0) break; } } /* * Must not be invoked with interrupt sources disabled and * the hardware shutdown down. */ static void b44_free_consistent(struct b44 *bp) { kfree(bp->rx_buffers); bp->rx_buffers = NULL; kfree(bp->tx_buffers); bp->tx_buffers = NULL; if (bp->rx_ring) { if (bp->flags & B44_FLAG_RX_RING_HACK) { dma_unmap_single(bp->sdev->dma_dev, bp->rx_ring_dma, DMA_TABLE_BYTES, DMA_BIDIRECTIONAL); kfree(bp->rx_ring); } else dma_free_coherent(bp->sdev->dma_dev, DMA_TABLE_BYTES, bp->rx_ring, bp->rx_ring_dma); bp->rx_ring = NULL; bp->flags &= ~B44_FLAG_RX_RING_HACK; } if (bp->tx_ring) { if (bp->flags & B44_FLAG_TX_RING_HACK) { dma_unmap_single(bp->sdev->dma_dev, bp->tx_ring_dma, DMA_TABLE_BYTES, DMA_TO_DEVICE); kfree(bp->tx_ring); } else dma_free_coherent(bp->sdev->dma_dev, DMA_TABLE_BYTES, bp->tx_ring, bp->tx_ring_dma); bp->tx_ring = NULL; bp->flags &= ~B44_FLAG_TX_RING_HACK; } } /* * Must not be invoked with interrupt sources disabled and * the hardware shutdown down. Can sleep. */ static int b44_alloc_consistent(struct b44 *bp, gfp_t gfp) { int size; size = B44_RX_RING_SIZE * sizeof(struct ring_info); bp->rx_buffers = kzalloc(size, gfp); if (!bp->rx_buffers) goto out_err; size = B44_TX_RING_SIZE * sizeof(struct ring_info); bp->tx_buffers = kzalloc(size, gfp); if (!bp->tx_buffers) goto out_err; size = DMA_TABLE_BYTES; bp->rx_ring = dma_alloc_coherent(bp->sdev->dma_dev, size, &bp->rx_ring_dma, gfp); if (!bp->rx_ring) { /* Allocation may have failed due to dma_alloc_coherent insisting on use of GFP_DMA, which is more restrictive than necessary... */ struct dma_desc *rx_ring; dma_addr_t rx_ring_dma; rx_ring = kzalloc(size, gfp); if (!rx_ring) goto out_err; rx_ring_dma = dma_map_single(bp->sdev->dma_dev, rx_ring, DMA_TABLE_BYTES, DMA_BIDIRECTIONAL); if (dma_mapping_error(bp->sdev->dma_dev, rx_ring_dma) || rx_ring_dma + size > DMA_BIT_MASK(30)) { kfree(rx_ring); goto out_err; } bp->rx_ring = rx_ring; bp->rx_ring_dma = rx_ring_dma; bp->flags |= B44_FLAG_RX_RING_HACK; } bp->tx_ring = dma_alloc_coherent(bp->sdev->dma_dev, size, &bp->tx_ring_dma, gfp); if (!bp->tx_ring) { /* Allocation may have failed due to ssb_dma_alloc_consistent insisting on use of GFP_DMA, which is more restrictive than necessary... */ struct dma_desc *tx_ring; dma_addr_t tx_ring_dma; tx_ring = kzalloc(size, gfp); if (!tx_ring) goto out_err; tx_ring_dma = dma_map_single(bp->sdev->dma_dev, tx_ring, DMA_TABLE_BYTES, DMA_TO_DEVICE); if (dma_mapping_error(bp->sdev->dma_dev, tx_ring_dma) || tx_ring_dma + size > DMA_BIT_MASK(30)) { kfree(tx_ring); goto out_err; } bp->tx_ring = tx_ring; bp->tx_ring_dma = tx_ring_dma; bp->flags |= B44_FLAG_TX_RING_HACK; } return 0; out_err: b44_free_consistent(bp); return -ENOMEM; } /* bp->lock is held. */ static void b44_clear_stats(struct b44 *bp) { unsigned long reg; bw32(bp, B44_MIB_CTRL, MIB_CTRL_CLR_ON_READ); for (reg = B44_TX_GOOD_O; reg <= B44_TX_PAUSE; reg += 4UL) br32(bp, reg); for (reg = B44_RX_GOOD_O; reg <= B44_RX_NPAUSE; reg += 4UL) br32(bp, reg); } /* bp->lock is held. */ static void b44_chip_reset(struct b44 *bp, int reset_kind) { struct ssb_device *sdev = bp->sdev; bool was_enabled; was_enabled = ssb_device_is_enabled(bp->sdev); ssb_device_enable(bp->sdev, 0); ssb_pcicore_dev_irqvecs_enable(&sdev->bus->pcicore, sdev); if (was_enabled) { bw32(bp, B44_RCV_LAZY, 0); bw32(bp, B44_ENET_CTRL, ENET_CTRL_DISABLE); b44_wait_bit(bp, B44_ENET_CTRL, ENET_CTRL_DISABLE, 200, 1); bw32(bp, B44_DMATX_CTRL, 0); bp->tx_prod = bp->tx_cons = 0; if (br32(bp, B44_DMARX_STAT) & DMARX_STAT_EMASK) { b44_wait_bit(bp, B44_DMARX_STAT, DMARX_STAT_SIDLE, 100, 0); } bw32(bp, B44_DMARX_CTRL, 0); bp->rx_prod = bp->rx_cons = 0; } b44_clear_stats(bp); /* * Don't enable PHY if we are doing a partial reset * we are probably going to power down */ if (reset_kind == B44_CHIP_RESET_PARTIAL) return; switch (sdev->bus->bustype) { case SSB_BUSTYPE_SSB: bw32(bp, B44_MDIO_CTRL, (MDIO_CTRL_PREAMBLE | (DIV_ROUND_CLOSEST(ssb_clockspeed(sdev->bus), B44_MDC_RATIO) & MDIO_CTRL_MAXF_MASK))); break; case SSB_BUSTYPE_PCI: bw32(bp, B44_MDIO_CTRL, (MDIO_CTRL_PREAMBLE | (0x0d & MDIO_CTRL_MAXF_MASK))); break; case SSB_BUSTYPE_PCMCIA: case SSB_BUSTYPE_SDIO: WARN_ON(1); /* A device with this bus does not exist. */ break; } br32(bp, B44_MDIO_CTRL); if (!(br32(bp, B44_DEVCTRL) & DEVCTRL_IPP)) { bw32(bp, B44_ENET_CTRL, ENET_CTRL_EPSEL); br32(bp, B44_ENET_CTRL); bp->flags |= B44_FLAG_EXTERNAL_PHY; } else { u32 val = br32(bp, B44_DEVCTRL); if (val & DEVCTRL_EPR) { bw32(bp, B44_DEVCTRL, (val & ~DEVCTRL_EPR)); br32(bp, B44_DEVCTRL); udelay(100); } bp->flags &= ~B44_FLAG_EXTERNAL_PHY; } } /* bp->lock is held. */ static void b44_halt(struct b44 *bp) { b44_disable_ints(bp); /* reset PHY */ b44_phy_reset(bp); /* power down PHY */ netdev_info(bp->dev, "powering down PHY\n"); bw32(bp, B44_MAC_CTRL, MAC_CTRL_PHY_PDOWN); /* now reset the chip, but without enabling the MAC&PHY * part of it. This has to be done _after_ we shut down the PHY */ if (bp->flags & B44_FLAG_EXTERNAL_PHY) b44_chip_reset(bp, B44_CHIP_RESET_FULL); else b44_chip_reset(bp, B44_CHIP_RESET_PARTIAL); } /* bp->lock is held. */ static void __b44_set_mac_addr(struct b44 *bp) { bw32(bp, B44_CAM_CTRL, 0); if (!(bp->dev->flags & IFF_PROMISC)) { u32 val; __b44_cam_write(bp, bp->dev->dev_addr, 0); val = br32(bp, B44_CAM_CTRL); bw32(bp, B44_CAM_CTRL, val | CAM_CTRL_ENABLE); } } static int b44_set_mac_addr(struct net_device *dev, void *p) { struct b44 *bp = netdev_priv(dev); struct sockaddr *addr = p; u32 val; if (netif_running(dev)) return -EBUSY; if (!is_valid_ether_addr(addr->sa_data)) return -EINVAL; eth_hw_addr_set(dev, addr->sa_data); spin_lock_irq(&bp->lock); val = br32(bp, B44_RXCONFIG); if (!(val & RXCONFIG_CAM_ABSENT)) __b44_set_mac_addr(bp); spin_unlock_irq(&bp->lock); return 0; } /* Called at device open time to get the chip ready for * packet processing. Invoked with bp->lock held. */ static void __b44_set_rx_mode(struct net_device *); static void b44_init_hw(struct b44 *bp, int reset_kind) { u32 val; b44_chip_reset(bp, B44_CHIP_RESET_FULL); if (reset_kind == B44_FULL_RESET) { b44_phy_reset(bp); b44_setup_phy(bp); } /* Enable CRC32, set proper LED modes and power on PHY */ bw32(bp, B44_MAC_CTRL, MAC_CTRL_CRC32_ENAB | MAC_CTRL_PHY_LEDCTRL); bw32(bp, B44_RCV_LAZY, (1 << RCV_LAZY_FC_SHIFT)); /* This sets the MAC address too. */ __b44_set_rx_mode(bp->dev); /* MTU + eth header + possible VLAN tag + struct rx_header */ bw32(bp, B44_RXMAXLEN, bp->dev->mtu + ETH_HLEN + 8 + RX_HEADER_LEN); bw32(bp, B44_TXMAXLEN, bp->dev->mtu + ETH_HLEN + 8 + RX_HEADER_LEN); bw32(bp, B44_TX_WMARK, 56); /* XXX magic */ if (reset_kind == B44_PARTIAL_RESET) { bw32(bp, B44_DMARX_CTRL, (DMARX_CTRL_ENABLE | (RX_PKT_OFFSET << DMARX_CTRL_ROSHIFT))); } else { bw32(bp, B44_DMATX_CTRL, DMATX_CTRL_ENABLE); bw32(bp, B44_DMATX_ADDR, bp->tx_ring_dma + bp->dma_offset); bw32(bp, B44_DMARX_CTRL, (DMARX_CTRL_ENABLE | (RX_PKT_OFFSET << DMARX_CTRL_ROSHIFT))); bw32(bp, B44_DMARX_ADDR, bp->rx_ring_dma + bp->dma_offset); bw32(bp, B44_DMARX_PTR, bp->rx_pending); bp->rx_prod = bp->rx_pending; bw32(bp, B44_MIB_CTRL, MIB_CTRL_CLR_ON_READ); } val = br32(bp, B44_ENET_CTRL); bw32(bp, B44_ENET_CTRL, (val | ENET_CTRL_ENABLE)); netdev_reset_queue(bp->dev); } static int b44_open(struct net_device *dev) { struct b44 *bp = netdev_priv(dev); int err; err = b44_alloc_consistent(bp, GFP_KERNEL); if (err) goto out; napi_enable(&bp->napi); b44_init_rings(bp); b44_init_hw(bp, B44_FULL_RESET); b44_check_phy(bp); err = request_irq(dev->irq, b44_interrupt, IRQF_SHARED, dev->name, dev); if (unlikely(err < 0)) { napi_disable(&bp->napi); b44_chip_reset(bp, B44_CHIP_RESET_PARTIAL); b44_free_rings(bp); b44_free_consistent(bp); goto out; } timer_setup(&bp->timer, b44_timer, 0); bp->timer.expires = jiffies + HZ; add_timer(&bp->timer); b44_enable_ints(bp); if (bp->flags & B44_FLAG_EXTERNAL_PHY) phy_start(dev->phydev); netif_start_queue(dev); out: return err; } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling receive - used by netconsole and other diagnostic tools * to allow network i/o with interrupts disabled. */ static void b44_poll_controller(struct net_device *dev) { disable_irq(dev->irq); b44_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif static void bwfilter_table(struct b44 *bp, u8 *pp, u32 bytes, u32 table_offset) { u32 i; u32 *pattern = (u32 *) pp; for (i = 0; i < bytes; i += sizeof(u32)) { bw32(bp, B44_FILT_ADDR, table_offset + i); bw32(bp, B44_FILT_DATA, pattern[i / sizeof(u32)]); } } static int b44_magic_pattern(const u8 *macaddr, u8 *ppattern, u8 *pmask, int offset) { int magicsync = 6; int k, j, len = offset; int ethaddr_bytes = ETH_ALEN; memset(ppattern + offset, 0xff, magicsync); for (j = 0; j < magicsync; j++) { pmask[len >> 3] |= BIT(len & 7); len++; } for (j = 0; j < B44_MAX_PATTERNS; j++) { if ((B44_PATTERN_SIZE - len) >= ETH_ALEN) ethaddr_bytes = ETH_ALEN; else ethaddr_bytes = B44_PATTERN_SIZE - len; if (ethaddr_bytes <=0) break; for (k = 0; k< ethaddr_bytes; k++) { ppattern[offset + magicsync + (j * ETH_ALEN) + k] = macaddr[k]; pmask[len >> 3] |= BIT(len & 7); len++; } } return len - 1; } /* Setup magic packet patterns in the b44 WOL * pattern matching filter. */ static void b44_setup_pseudo_magicp(struct b44 *bp) { u32 val; int plen0, plen1, plen2; u8 *pwol_pattern; u8 pwol_mask[B44_PMASK_SIZE]; pwol_pattern = kzalloc(B44_PATTERN_SIZE, GFP_KERNEL); if (!pwol_pattern) return; /* Ipv4 magic packet pattern - pattern 0.*/ memset(pwol_mask, 0, B44_PMASK_SIZE); plen0 = b44_magic_pattern(bp->dev->dev_addr, pwol_pattern, pwol_mask, B44_ETHIPV4UDP_HLEN); bwfilter_table(bp, pwol_pattern, B44_PATTERN_SIZE, B44_PATTERN_BASE); bwfilter_table(bp, pwol_mask, B44_PMASK_SIZE, B44_PMASK_BASE); /* Raw ethernet II magic packet pattern - pattern 1 */ memset(pwol_pattern, 0, B44_PATTERN_SIZE); memset(pwol_mask, 0, B44_PMASK_SIZE); plen1 = b44_magic_pattern(bp->dev->dev_addr, pwol_pattern, pwol_mask, ETH_HLEN); bwfilter_table(bp, pwol_pattern, B44_PATTERN_SIZE, B44_PATTERN_BASE + B44_PATTERN_SIZE); bwfilter_table(bp, pwol_mask, B44_PMASK_SIZE, B44_PMASK_BASE + B44_PMASK_SIZE); /* Ipv6 magic packet pattern - pattern 2 */ memset(pwol_pattern, 0, B44_PATTERN_SIZE); memset(pwol_mask, 0, B44_PMASK_SIZE); plen2 = b44_magic_pattern(bp->dev->dev_addr, pwol_pattern, pwol_mask, B44_ETHIPV6UDP_HLEN); bwfilter_table(bp, pwol_pattern, B44_PATTERN_SIZE, B44_PATTERN_BASE + B44_PATTERN_SIZE + B44_PATTERN_SIZE); bwfilter_table(bp, pwol_mask, B44_PMASK_SIZE, B44_PMASK_BASE + B44_PMASK_SIZE + B44_PMASK_SIZE); kfree(pwol_pattern); /* set these pattern's lengths: one less than each real length */ val = plen0 | (plen1 << 8) | (plen2 << 16) | WKUP_LEN_ENABLE_THREE; bw32(bp, B44_WKUP_LEN, val); /* enable wakeup pattern matching */ val = br32(bp, B44_DEVCTRL); bw32(bp, B44_DEVCTRL, val | DEVCTRL_PFE); } #ifdef CONFIG_B44_PCI static void b44_setup_wol_pci(struct b44 *bp) { u16 val; if (bp->sdev->bus->bustype != SSB_BUSTYPE_SSB) { bw32(bp, SSB_TMSLOW, br32(bp, SSB_TMSLOW) | SSB_TMSLOW_PE); pci_read_config_word(bp->sdev->bus->host_pci, SSB_PMCSR, &val); pci_write_config_word(bp->sdev->bus->host_pci, SSB_PMCSR, val | SSB_PE); } } #else static inline void b44_setup_wol_pci(struct b44 *bp) { } #endif /* CONFIG_B44_PCI */ static void b44_setup_wol(struct b44 *bp) { u32 val; bw32(bp, B44_RXCONFIG, RXCONFIG_ALLMULTI); if (bp->flags & B44_FLAG_B0_ANDLATER) { bw32(bp, B44_WKUP_LEN, WKUP_LEN_DISABLE); val = bp->dev->dev_addr[2] << 24 | bp->dev->dev_addr[3] << 16 | bp->dev->dev_addr[4] << 8 | bp->dev->dev_addr[5]; bw32(bp, B44_ADDR_LO, val); val = bp->dev->dev_addr[0] << 8 | bp->dev->dev_addr[1]; bw32(bp, B44_ADDR_HI, val); val = br32(bp, B44_DEVCTRL); bw32(bp, B44_DEVCTRL, val | DEVCTRL_MPM | DEVCTRL_PFE); } else { b44_setup_pseudo_magicp(bp); } b44_setup_wol_pci(bp); } static int b44_close(struct net_device *dev) { struct b44 *bp = netdev_priv(dev); netif_stop_queue(dev); if (bp->flags & B44_FLAG_EXTERNAL_PHY) phy_stop(dev->phydev); napi_disable(&bp->napi); del_timer_sync(&bp->timer); spin_lock_irq(&bp->lock); b44_halt(bp); b44_free_rings(bp); netif_carrier_off(dev); spin_unlock_irq(&bp->lock); free_irq(dev->irq, dev); if (bp->flags & B44_FLAG_WOL_ENABLE) { b44_init_hw(bp, B44_PARTIAL_RESET); b44_setup_wol(bp); } b44_free_consistent(bp); return 0; } static void b44_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *nstat) { struct b44 *bp = netdev_priv(dev); struct b44_hw_stats *hwstat = &bp->hw_stats; unsigned int start; do { start = u64_stats_fetch_begin_irq(&hwstat->syncp); /* Convert HW stats into rtnl_link_stats64 stats. */ nstat->rx_packets = hwstat->rx_pkts; nstat->tx_packets = hwstat->tx_pkts; nstat->rx_bytes = hwstat->rx_octets; nstat->tx_bytes = hwstat->tx_octets; nstat->tx_errors = (hwstat->tx_jabber_pkts + hwstat->tx_oversize_pkts + hwstat->tx_underruns + hwstat->tx_excessive_cols + hwstat->tx_late_cols); nstat->multicast = hwstat->rx_multicast_pkts; nstat->collisions = hwstat->tx_total_cols; nstat->rx_length_errors = (hwstat->rx_oversize_pkts + hwstat->rx_undersize); nstat->rx_over_errors = hwstat->rx_missed_pkts; nstat->rx_frame_errors = hwstat->rx_align_errs; nstat->rx_crc_errors = hwstat->rx_crc_errs; nstat->rx_errors = (hwstat->rx_jabber_pkts + hwstat->rx_oversize_pkts + hwstat->rx_missed_pkts + hwstat->rx_crc_align_errs + hwstat->rx_undersize + hwstat->rx_crc_errs + hwstat->rx_align_errs + hwstat->rx_symbol_errs); nstat->tx_aborted_errors = hwstat->tx_underruns; #if 0 /* Carrier lost counter seems to be broken for some devices */ nstat->tx_carrier_errors = hwstat->tx_carrier_lost; #endif } while (u64_stats_fetch_retry_irq(&hwstat->syncp, start)); } static int __b44_load_mcast(struct b44 *bp, struct net_device *dev) { struct netdev_hw_addr *ha; int i, num_ents; num_ents = min_t(int, netdev_mc_count(dev), B44_MCAST_TABLE_SIZE); i = 0; netdev_for_each_mc_addr(ha, dev) { if (i == num_ents) break; __b44_cam_write(bp, ha->addr, i++ + 1); } return i+1; } static void __b44_set_rx_mode(struct net_device *dev) { struct b44 *bp = netdev_priv(dev); u32 val; val = br32(bp, B44_RXCONFIG); val &= ~(RXCONFIG_PROMISC | RXCONFIG_ALLMULTI); if ((dev->flags & IFF_PROMISC) || (val & RXCONFIG_CAM_ABSENT)) { val |= RXCONFIG_PROMISC; bw32(bp, B44_RXCONFIG, val); } else { unsigned char zero[6] = {0, 0, 0, 0, 0, 0}; int i = 1; __b44_set_mac_addr(bp); if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > B44_MCAST_TABLE_SIZE)) val |= RXCONFIG_ALLMULTI; else i = __b44_load_mcast(bp, dev); for (; i < 64; i++) __b44_cam_write(bp, zero, i); bw32(bp, B44_RXCONFIG, val); val = br32(bp, B44_CAM_CTRL); bw32(bp, B44_CAM_CTRL, val | CAM_CTRL_ENABLE); } } static void b44_set_rx_mode(struct net_device *dev) { struct b44 *bp = netdev_priv(dev); spin_lock_irq(&bp->lock); __b44_set_rx_mode(dev); spin_unlock_irq(&bp->lock); } static u32 b44_get_msglevel(struct net_device *dev) { struct b44 *bp = netdev_priv(dev); return bp->msg_enable; } static void b44_set_msglevel(struct net_device *dev, u32 value) { struct b44 *bp = netdev_priv(dev); bp->msg_enable = value; } static void b44_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) { struct b44 *bp = netdev_priv(dev); struct ssb_bus *bus = bp->sdev->bus; strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); switch (bus->bustype) { case SSB_BUSTYPE_PCI: strscpy(info->bus_info, pci_name(bus->host_pci), sizeof(info->bus_info)); break; case SSB_BUSTYPE_SSB: strscpy(info->bus_info, "SSB", sizeof(info->bus_info)); break; case SSB_BUSTYPE_PCMCIA: case SSB_BUSTYPE_SDIO: WARN_ON(1); /* A device with this bus does not exist. */ break; } } static int b44_nway_reset(struct net_device *dev) { struct b44 *bp = netdev_priv(dev); u32 bmcr; int r; spin_lock_irq(&bp->lock); b44_readphy(bp, MII_BMCR, &bmcr); b44_readphy(bp, MII_BMCR, &bmcr); r = -EINVAL; if (bmcr & BMCR_ANENABLE) { b44_writephy(bp, MII_BMCR, bmcr | BMCR_ANRESTART); r = 0; } spin_unlock_irq(&bp->lock); return r; } static int b44_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct b44 *bp = netdev_priv(dev); u32 supported, advertising; if (bp->flags & B44_FLAG_EXTERNAL_PHY) { BUG_ON(!dev->phydev); phy_ethtool_ksettings_get(dev->phydev, cmd); return 0; } supported = (SUPPORTED_Autoneg); supported |= (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_MII); advertising = 0; if (bp->flags & B44_FLAG_ADV_10HALF) advertising |= ADVERTISED_10baseT_Half; if (bp->flags & B44_FLAG_ADV_10FULL) advertising |= ADVERTISED_10baseT_Full; if (bp->flags & B44_FLAG_ADV_100HALF) advertising |= ADVERTISED_100baseT_Half; if (bp->flags & B44_FLAG_ADV_100FULL) advertising |= ADVERTISED_100baseT_Full; advertising |= ADVERTISED_Pause | ADVERTISED_Asym_Pause; cmd->base.speed = (bp->flags & B44_FLAG_100_BASE_T) ? SPEED_100 : SPEED_10; cmd->base.duplex = (bp->flags & B44_FLAG_FULL_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF; cmd->base.port = 0; cmd->base.phy_address = bp->phy_addr; cmd->base.autoneg = (bp->flags & B44_FLAG_FORCE_LINK) ? AUTONEG_DISABLE : AUTONEG_ENABLE; if (cmd->base.autoneg == AUTONEG_ENABLE) advertising |= ADVERTISED_Autoneg; ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, advertising); if (!netif_running(dev)){ cmd->base.speed = 0; cmd->base.duplex = 0xff; } return 0; } static int b44_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct b44 *bp = netdev_priv(dev); u32 speed; int ret; u32 advertising; if (bp->flags & B44_FLAG_EXTERNAL_PHY) { BUG_ON(!dev->phydev); spin_lock_irq(&bp->lock); if (netif_running(dev)) b44_setup_phy(bp); ret = phy_ethtool_ksettings_set(dev->phydev, cmd); spin_unlock_irq(&bp->lock); return ret; } speed = cmd->base.speed; ethtool_convert_link_mode_to_legacy_u32(&advertising, cmd->link_modes.advertising); /* We do not support gigabit. */ if (cmd->base.autoneg == AUTONEG_ENABLE) { if (advertising & (ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full)) return -EINVAL; } else if ((speed != SPEED_100 && speed != SPEED_10) || (cmd->base.duplex != DUPLEX_HALF && cmd->base.duplex != DUPLEX_FULL)) { return -EINVAL; } spin_lock_irq(&bp->lock); if (cmd->base.autoneg == AUTONEG_ENABLE) { bp->flags &= ~(B44_FLAG_FORCE_LINK | B44_FLAG_100_BASE_T | B44_FLAG_FULL_DUPLEX | B44_FLAG_ADV_10HALF | B44_FLAG_ADV_10FULL | B44_FLAG_ADV_100HALF | B44_FLAG_ADV_100FULL); if (advertising == 0) { bp->flags |= (B44_FLAG_ADV_10HALF | B44_FLAG_ADV_10FULL | B44_FLAG_ADV_100HALF | B44_FLAG_ADV_100FULL); } else { if (advertising & ADVERTISED_10baseT_Half) bp->flags |= B44_FLAG_ADV_10HALF; if (advertising & ADVERTISED_10baseT_Full) bp->flags |= B44_FLAG_ADV_10FULL; if (advertising & ADVERTISED_100baseT_Half) bp->flags |= B44_FLAG_ADV_100HALF; if (advertising & ADVERTISED_100baseT_Full) bp->flags |= B44_FLAG_ADV_100FULL; } } else { bp->flags |= B44_FLAG_FORCE_LINK; bp->flags &= ~(B44_FLAG_100_BASE_T | B44_FLAG_FULL_DUPLEX); if (speed == SPEED_100) bp->flags |= B44_FLAG_100_BASE_T; if (cmd->base.duplex == DUPLEX_FULL) bp->flags |= B44_FLAG_FULL_DUPLEX; } if (netif_running(dev)) b44_setup_phy(bp); spin_unlock_irq(&bp->lock); return 0; } static void b44_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering, struct kernel_ethtool_ringparam *kernel_ering, struct netlink_ext_ack *extack) { struct b44 *bp = netdev_priv(dev); ering->rx_max_pending = B44_RX_RING_SIZE - 1; ering->rx_pending = bp->rx_pending; /* XXX ethtool lacks a tx_max_pending, oops... */ } static int b44_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering, struct kernel_ethtool_ringparam *kernel_ering, struct netlink_ext_ack *extack) { struct b44 *bp = netdev_priv(dev); if ((ering->rx_pending > B44_RX_RING_SIZE - 1) || (ering->rx_mini_pending != 0) || (ering->rx_jumbo_pending != 0) || (ering->tx_pending > B44_TX_RING_SIZE - 1)) return -EINVAL; spin_lock_irq(&bp->lock); bp->rx_pending = ering->rx_pending; bp->tx_pending = ering->tx_pending; b44_halt(bp); b44_init_rings(bp); b44_init_hw(bp, B44_FULL_RESET); netif_wake_queue(bp->dev); spin_unlock_irq(&bp->lock); b44_enable_ints(bp); return 0; } static void b44_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct b44 *bp = netdev_priv(dev); epause->autoneg = (bp->flags & B44_FLAG_PAUSE_AUTO) != 0; epause->rx_pause = (bp->flags & B44_FLAG_RX_PAUSE) != 0; epause->tx_pause = (bp->flags & B44_FLAG_TX_PAUSE) != 0; } static int b44_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause) { struct b44 *bp = netdev_priv(dev); spin_lock_irq(&bp->lock); if (epause->autoneg) bp->flags |= B44_FLAG_PAUSE_AUTO; else bp->flags &= ~B44_FLAG_PAUSE_AUTO; if (epause->rx_pause) bp->flags |= B44_FLAG_RX_PAUSE; else bp->flags &= ~B44_FLAG_RX_PAUSE; if (epause->tx_pause) bp->flags |= B44_FLAG_TX_PAUSE; else bp->flags &= ~B44_FLAG_TX_PAUSE; if (bp->flags & B44_FLAG_PAUSE_AUTO) { b44_halt(bp); b44_init_rings(bp); b44_init_hw(bp, B44_FULL_RESET); } else { __b44_set_flow_ctrl(bp, bp->flags); } spin_unlock_irq(&bp->lock); b44_enable_ints(bp); return 0; } static void b44_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch(stringset) { case ETH_SS_STATS: memcpy(data, *b44_gstrings, sizeof(b44_gstrings)); break; } } static int b44_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(b44_gstrings); default: return -EOPNOTSUPP; } } static void b44_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct b44 *bp = netdev_priv(dev); struct b44_hw_stats *hwstat = &bp->hw_stats; u64 *data_src, *data_dst; unsigned int start; u32 i; spin_lock_irq(&bp->lock); b44_stats_update(bp); spin_unlock_irq(&bp->lock); do { data_src = &hwstat->tx_good_octets; data_dst = data; start = u64_stats_fetch_begin_irq(&hwstat->syncp); for (i = 0; i < ARRAY_SIZE(b44_gstrings); i++) *data_dst++ = *data_src++; } while (u64_stats_fetch_retry_irq(&hwstat->syncp, start)); } static void b44_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct b44 *bp = netdev_priv(dev); wol->supported = WAKE_MAGIC; if (bp->flags & B44_FLAG_WOL_ENABLE) wol->wolopts = WAKE_MAGIC; else wol->wolopts = 0; memset(&wol->sopass, 0, sizeof(wol->sopass)); } static int b44_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct b44 *bp = netdev_priv(dev); spin_lock_irq(&bp->lock); if (wol->wolopts & WAKE_MAGIC) bp->flags |= B44_FLAG_WOL_ENABLE; else bp->flags &= ~B44_FLAG_WOL_ENABLE; spin_unlock_irq(&bp->lock); device_set_wakeup_enable(bp->sdev->dev, wol->wolopts & WAKE_MAGIC); return 0; } static const struct ethtool_ops b44_ethtool_ops = { .get_drvinfo = b44_get_drvinfo, .nway_reset = b44_nway_reset, .get_link = ethtool_op_get_link, .get_wol = b44_get_wol, .set_wol = b44_set_wol, .get_ringparam = b44_get_ringparam, .set_ringparam = b44_set_ringparam, .get_pauseparam = b44_get_pauseparam, .set_pauseparam = b44_set_pauseparam, .get_msglevel = b44_get_msglevel, .set_msglevel = b44_set_msglevel, .get_strings = b44_get_strings, .get_sset_count = b44_get_sset_count, .get_ethtool_stats = b44_get_ethtool_stats, .get_link_ksettings = b44_get_link_ksettings, .set_link_ksettings = b44_set_link_ksettings, }; static int b44_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct b44 *bp = netdev_priv(dev); int err = -EINVAL; if (!netif_running(dev)) goto out; spin_lock_irq(&bp->lock); if (bp->flags & B44_FLAG_EXTERNAL_PHY) { BUG_ON(!dev->phydev); err = phy_mii_ioctl(dev->phydev, ifr, cmd); } else { err = generic_mii_ioctl(&bp->mii_if, if_mii(ifr), cmd, NULL); } spin_unlock_irq(&bp->lock); out: return err; } static int b44_get_invariants(struct b44 *bp) { struct ssb_device *sdev = bp->sdev; int err = 0; u8 *addr; bp->dma_offset = ssb_dma_translation(sdev); if (sdev->bus->bustype == SSB_BUSTYPE_SSB && instance > 1) { addr = sdev->bus->sprom.et1mac; bp->phy_addr = sdev->bus->sprom.et1phyaddr; } else { addr = sdev->bus->sprom.et0mac; bp->phy_addr = sdev->bus->sprom.et0phyaddr; } /* Some ROMs have buggy PHY addresses with the high * bits set (sign extension?). Truncate them to a * valid PHY address. */ bp->phy_addr &= 0x1F; eth_hw_addr_set(bp->dev, addr); if (!is_valid_ether_addr(&bp->dev->dev_addr[0])){ pr_err("Invalid MAC address found in EEPROM\n"); return -EINVAL; } bp->imask = IMASK_DEF; /* XXX - really required? bp->flags |= B44_FLAG_BUGGY_TXPTR; */ if (bp->sdev->id.revision >= 7) bp->flags |= B44_FLAG_B0_ANDLATER; return err; } static const struct net_device_ops b44_netdev_ops = { .ndo_open = b44_open, .ndo_stop = b44_close, .ndo_start_xmit = b44_start_xmit, .ndo_get_stats64 = b44_get_stats64, .ndo_set_rx_mode = b44_set_rx_mode, .ndo_set_mac_address = b44_set_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_eth_ioctl = b44_ioctl, .ndo_tx_timeout = b44_tx_timeout, .ndo_change_mtu = b44_change_mtu, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = b44_poll_controller, #endif }; static void b44_adjust_link(struct net_device *dev) { struct b44 *bp = netdev_priv(dev); struct phy_device *phydev = dev->phydev; bool status_changed = false; BUG_ON(!phydev); if (bp->old_link != phydev->link) { status_changed = true; bp->old_link = phydev->link; } /* reflect duplex change */ if (phydev->link) { if ((phydev->duplex == DUPLEX_HALF) && (bp->flags & B44_FLAG_FULL_DUPLEX)) { status_changed = true; bp->flags &= ~B44_FLAG_FULL_DUPLEX; } else if ((phydev->duplex == DUPLEX_FULL) && !(bp->flags & B44_FLAG_FULL_DUPLEX)) { status_changed = true; bp->flags |= B44_FLAG_FULL_DUPLEX; } } if (status_changed) { u32 val = br32(bp, B44_TX_CTRL); if (bp->flags & B44_FLAG_FULL_DUPLEX) val |= TX_CTRL_DUPLEX; else val &= ~TX_CTRL_DUPLEX; bw32(bp, B44_TX_CTRL, val); phy_print_status(phydev); } } static int b44_register_phy_one(struct b44 *bp) { __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; struct mii_bus *mii_bus; struct ssb_device *sdev = bp->sdev; struct phy_device *phydev; char bus_id[MII_BUS_ID_SIZE + 3]; struct ssb_sprom *sprom = &sdev->bus->sprom; int err; mii_bus = mdiobus_alloc(); if (!mii_bus) { dev_err(sdev->dev, "mdiobus_alloc() failed\n"); err = -ENOMEM; goto err_out; } mii_bus->priv = bp; mii_bus->read = b44_mdio_read_phylib; mii_bus->write = b44_mdio_write_phylib; mii_bus->name = "b44_eth_mii"; mii_bus->parent = sdev->dev; mii_bus->phy_mask = ~(1 << bp->phy_addr); snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%x", instance); bp->mii_bus = mii_bus; err = mdiobus_register(mii_bus); if (err) { dev_err(sdev->dev, "failed to register MII bus\n"); goto err_out_mdiobus; } if (!mdiobus_is_registered_device(bp->mii_bus, bp->phy_addr) && (sprom->boardflags_lo & (B44_BOARDFLAG_ROBO | B44_BOARDFLAG_ADM))) { dev_info(sdev->dev, "could not find PHY at %i, use fixed one\n", bp->phy_addr); bp->phy_addr = 0; snprintf(bus_id, sizeof(bus_id), PHY_ID_FMT, "fixed-0", bp->phy_addr); } else { snprintf(bus_id, sizeof(bus_id), PHY_ID_FMT, mii_bus->id, bp->phy_addr); } phydev = phy_connect(bp->dev, bus_id, &b44_adjust_link, PHY_INTERFACE_MODE_MII); if (IS_ERR(phydev)) { dev_err(sdev->dev, "could not attach PHY at %i\n", bp->phy_addr); err = PTR_ERR(phydev); goto err_out_mdiobus_unregister; } /* mask with MAC supported features */ linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask); linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask); linkmode_and(phydev->supported, phydev->supported, mask); linkmode_copy(phydev->advertising, phydev->supported); bp->old_link = 0; bp->phy_addr = phydev->mdio.addr; phy_attached_info(phydev); return 0; err_out_mdiobus_unregister: mdiobus_unregister(mii_bus); err_out_mdiobus: mdiobus_free(mii_bus); err_out: return err; } static void b44_unregister_phy_one(struct b44 *bp) { struct net_device *dev = bp->dev; struct mii_bus *mii_bus = bp->mii_bus; phy_disconnect(dev->phydev); mdiobus_unregister(mii_bus); mdiobus_free(mii_bus); } static int b44_init_one(struct ssb_device *sdev, const struct ssb_device_id *ent) { struct net_device *dev; struct b44 *bp; int err; instance++; dev = alloc_etherdev(sizeof(*bp)); if (!dev) { err = -ENOMEM; goto out; } SET_NETDEV_DEV(dev, sdev->dev); /* No interesting netdevice features in this card... */ dev->features |= 0; bp = netdev_priv(dev); bp->sdev = sdev; bp->dev = dev; bp->force_copybreak = 0; bp->msg_enable = netif_msg_init(b44_debug, B44_DEF_MSG_ENABLE); spin_lock_init(&bp->lock); u64_stats_init(&bp->hw_stats.syncp); bp->rx_pending = B44_DEF_RX_RING_PENDING; bp->tx_pending = B44_DEF_TX_RING_PENDING; dev->netdev_ops = &b44_netdev_ops; netif_napi_add(dev, &bp->napi, b44_poll); dev->watchdog_timeo = B44_TX_TIMEOUT; dev->min_mtu = B44_MIN_MTU; dev->max_mtu = B44_MAX_MTU; dev->irq = sdev->irq; dev->ethtool_ops = &b44_ethtool_ops; err = ssb_bus_powerup(sdev->bus, 0); if (err) { dev_err(sdev->dev, "Failed to powerup the bus\n"); goto err_out_free_dev; } err = dma_set_mask_and_coherent(sdev->dma_dev, DMA_BIT_MASK(30)); if (err) { dev_err(sdev->dev, "Required 30BIT DMA mask unsupported by the system\n"); goto err_out_powerdown; } err = b44_get_invariants(bp); if (err) { dev_err(sdev->dev, "Problem fetching invariants of chip, aborting\n"); goto err_out_powerdown; } if (bp->phy_addr == B44_PHY_ADDR_NO_PHY) { dev_err(sdev->dev, "No PHY present on this MAC, aborting\n"); err = -ENODEV; goto err_out_powerdown; } bp->mii_if.dev = dev; bp->mii_if.mdio_read = b44_mdio_read_mii; bp->mii_if.mdio_write = b44_mdio_write_mii; bp->mii_if.phy_id = bp->phy_addr; bp->mii_if.phy_id_mask = 0x1f; bp->mii_if.reg_num_mask = 0x1f; /* By default, advertise all speed/duplex settings. */ bp->flags |= (B44_FLAG_ADV_10HALF | B44_FLAG_ADV_10FULL | B44_FLAG_ADV_100HALF | B44_FLAG_ADV_100FULL); /* By default, auto-negotiate PAUSE. */ bp->flags |= B44_FLAG_PAUSE_AUTO; err = register_netdev(dev); if (err) { dev_err(sdev->dev, "Cannot register net device, aborting\n"); goto err_out_powerdown; } netif_carrier_off(dev); ssb_set_drvdata(sdev, dev); /* Chip reset provides power to the b44 MAC & PCI cores, which * is necessary for MAC register access. */ b44_chip_reset(bp, B44_CHIP_RESET_FULL); /* do a phy reset to test if there is an active phy */ err = b44_phy_reset(bp); if (err < 0) { dev_err(sdev->dev, "phy reset failed\n"); goto err_out_unregister_netdev; } if (bp->flags & B44_FLAG_EXTERNAL_PHY) { err = b44_register_phy_one(bp); if (err) { dev_err(sdev->dev, "Cannot register PHY, aborting\n"); goto err_out_unregister_netdev; } } device_set_wakeup_capable(sdev->dev, true); netdev_info(dev, "%s %pM\n", DRV_DESCRIPTION, dev->dev_addr); return 0; err_out_unregister_netdev: unregister_netdev(dev); err_out_powerdown: ssb_bus_may_powerdown(sdev->bus); err_out_free_dev: netif_napi_del(&bp->napi); free_netdev(dev); out: return err; } static void b44_remove_one(struct ssb_device *sdev) { struct net_device *dev = ssb_get_drvdata(sdev); struct b44 *bp = netdev_priv(dev); unregister_netdev(dev); if (bp->flags & B44_FLAG_EXTERNAL_PHY) b44_unregister_phy_one(bp); ssb_device_disable(sdev, 0); ssb_bus_may_powerdown(sdev->bus); netif_napi_del(&bp->napi); free_netdev(dev); ssb_pcihost_set_power_state(sdev, PCI_D3hot); ssb_set_drvdata(sdev, NULL); } static int b44_suspend(struct ssb_device *sdev, pm_message_t state) { struct net_device *dev = ssb_get_drvdata(sdev); struct b44 *bp = netdev_priv(dev); if (!netif_running(dev)) return 0; del_timer_sync(&bp->timer); spin_lock_irq(&bp->lock); b44_halt(bp); netif_carrier_off(bp->dev); netif_device_detach(bp->dev); b44_free_rings(bp); spin_unlock_irq(&bp->lock); free_irq(dev->irq, dev); if (bp->flags & B44_FLAG_WOL_ENABLE) { b44_init_hw(bp, B44_PARTIAL_RESET); b44_setup_wol(bp); } ssb_pcihost_set_power_state(sdev, PCI_D3hot); return 0; } static int b44_resume(struct ssb_device *sdev) { struct net_device *dev = ssb_get_drvdata(sdev); struct b44 *bp = netdev_priv(dev); int rc = 0; rc = ssb_bus_powerup(sdev->bus, 0); if (rc) { dev_err(sdev->dev, "Failed to powerup the bus\n"); return rc; } if (!netif_running(dev)) return 0; spin_lock_irq(&bp->lock); b44_init_rings(bp); b44_init_hw(bp, B44_FULL_RESET); spin_unlock_irq(&bp->lock); /* * As a shared interrupt, the handler can be called immediately. To be * able to check the interrupt status the hardware must already be * powered back on (b44_init_hw). */ rc = request_irq(dev->irq, b44_interrupt, IRQF_SHARED, dev->name, dev); if (rc) { netdev_err(dev, "request_irq failed\n"); spin_lock_irq(&bp->lock); b44_halt(bp); b44_free_rings(bp); spin_unlock_irq(&bp->lock); return rc; } netif_device_attach(bp->dev); b44_enable_ints(bp); netif_wake_queue(dev); mod_timer(&bp->timer, jiffies + 1); return 0; } static struct ssb_driver b44_ssb_driver = { .name = DRV_MODULE_NAME, .id_table = b44_ssb_tbl, .probe = b44_init_one, .remove = b44_remove_one, .suspend = b44_suspend, .resume = b44_resume, }; static inline int __init b44_pci_init(void) { int err = 0; #ifdef CONFIG_B44_PCI err = ssb_pcihost_register(&b44_pci_driver); #endif return err; } static inline void b44_pci_exit(void) { #ifdef CONFIG_B44_PCI ssb_pcihost_unregister(&b44_pci_driver); #endif } static int __init b44_init(void) { unsigned int dma_desc_align_size = dma_get_cache_alignment(); int err; /* Setup paramaters for syncing RX/TX DMA descriptors */ dma_desc_sync_size = max_t(unsigned int, dma_desc_align_size, sizeof(struct dma_desc)); err = b44_pci_init(); if (err) return err; err = ssb_driver_register(&b44_ssb_driver); if (err) b44_pci_exit(); return err; } static void __exit b44_cleanup(void) { ssb_driver_unregister(&b44_ssb_driver); b44_pci_exit(); } module_init(b44_init); module_exit(b44_cleanup);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1