Contributors: 58
Author Tokens Token Proportion Commits Commit Proportion
Joseph CHANG 2965 38.08% 1 0.93%
Ben Dooks 2112 27.13% 30 28.04%
Sascha Hauer 1219 15.66% 1 0.93%
Tomasz Figa 188 2.41% 1 0.93%
Zubair Lutfullah Kakakhel 148 1.90% 1 0.93%
Andrew Ruder 120 1.54% 5 4.67%
Michael Abbott 95 1.22% 1 0.93%
Himangi Saraogi 91 1.17% 1 0.93%
Paul Cercueil 79 1.01% 4 3.74%
Yeasah Pell 76 0.98% 1 0.93%
David S. Miller 67 0.86% 1 0.93%
Alexander Beregalov 59 0.76% 1 0.93%
Nikita Kiryanov 57 0.73% 3 2.80%
Robert Jarzmik 49 0.63% 1 0.93%
Dmitry Torokhov 39 0.50% 1 0.93%
Wang Chen 37 0.48% 1 0.93%
Baruch Siach 32 0.41% 1 0.93%
Laurent Pinchart 28 0.36% 1 0.93%
Harvey Hunt 27 0.35% 1 0.93%
Jakub Kiciński 25 0.32% 2 1.87%
Mike Rapoport 24 0.31% 2 1.87%
Vladimir Zapolskiy 21 0.27% 1 0.93%
Peter Korsgaard 19 0.24% 1 0.93%
Kevin Hao 18 0.23% 1 0.93%
Michał Mirosław 17 0.22% 1 0.93%
Sylwester Nawrocki 17 0.22% 1 0.93%
Philippe Reynes 17 0.22% 1 0.93%
Dan Carpenter 12 0.15% 1 0.93%
Emilio López 11 0.14% 1 0.93%
Henry Nestler 10 0.13% 2 1.87%
Russell King 9 0.12% 2 1.87%
Christophe Jaillet 8 0.10% 1 0.93%
Florian Westphal 8 0.10% 2 1.87%
Michael Walle 8 0.10% 1 0.93%
Tobias Klauser 7 0.09% 2 1.87%
Mark Brown 7 0.09% 1 0.93%
Jiri Pirko 7 0.09% 3 2.80%
Matthew Leach 6 0.08% 1 0.93%
Wolfram Sang 6 0.08% 2 1.87%
Alexey Dobriyan 4 0.05% 2 1.87%
Thomas Gleixner 4 0.05% 2 1.87%
Enrico Scholz 4 0.05% 1 0.93%
Jingoo Han 4 0.05% 1 0.93%
Michael S. Tsirkin 4 0.05% 1 0.93%
Daniel Mack 3 0.04% 1 0.93%
Tejun Heo 3 0.04% 1 0.93%
Gustavo A. R. Silva 2 0.03% 1 0.93%
Pradeep A. Dalvi 2 0.03% 1 0.93%
Sachin Kamat 2 0.03% 1 0.93%
Nathan Huckleberry 1 0.01% 1 0.93%
Mathieu Malaterre 1 0.01% 1 0.93%
Arnd Bergmann 1 0.01% 1 0.93%
Danny Kukawka 1 0.01% 1 0.93%
Johannes Berg 1 0.01% 1 0.93%
Eric W. Biedermann 1 0.01% 1 0.93%
Jeff Garzik 1 0.01% 1 0.93%
Kay Sievers 1 0.01% 1 0.93%
Barry Song 1 0.01% 1 0.93%
Total 7786 107


// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *      Davicom DM9000 Fast Ethernet driver for Linux.
 * 	Copyright (C) 1997  Sten Wang
 *
 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
 *
 * Additional updates, Copyright:
 *	Ben Dooks <ben@simtec.co.uk>
 *	Sascha Hauer <s.hauer@pengutronix.de>
 */

#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/ethtool.h>
#include <linux/dm9000.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/regulator/consumer.h>
#include <linux/gpio/consumer.h>

#include <asm/delay.h>
#include <asm/irq.h>
#include <asm/io.h>

#include "dm9000.h"

/* Board/System/Debug information/definition ---------------- */

#define DM9000_PHY		0x40	/* PHY address 0x01 */

#define CARDNAME	"dm9000"

/*
 * Transmit timeout, default 5 seconds.
 */
static int watchdog = 5000;
module_param(watchdog, int, 0400);
MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");

/*
 * Debug messages level
 */
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");

/* DM9000 register address locking.
 *
 * The DM9000 uses an address register to control where data written
 * to the data register goes. This means that the address register
 * must be preserved over interrupts or similar calls.
 *
 * During interrupt and other critical calls, a spinlock is used to
 * protect the system, but the calls themselves save the address
 * in the address register in case they are interrupting another
 * access to the device.
 *
 * For general accesses a lock is provided so that calls which are
 * allowed to sleep are serialised so that the address register does
 * not need to be saved. This lock also serves to serialise access
 * to the EEPROM and PHY access registers which are shared between
 * these two devices.
 */

/* The driver supports the original DM9000E, and now the two newer
 * devices, DM9000A and DM9000B.
 */

enum dm9000_type {
	TYPE_DM9000E,	/* original DM9000 */
	TYPE_DM9000A,
	TYPE_DM9000B
};

/* Structure/enum declaration ------------------------------- */
struct board_info {

	void __iomem	*io_addr;	/* Register I/O base address */
	void __iomem	*io_data;	/* Data I/O address */
	u16		 irq;		/* IRQ */

	u16		tx_pkt_cnt;
	u16		queue_pkt_len;
	u16		queue_start_addr;
	u16		queue_ip_summed;
	u16		dbug_cnt;
	u8		io_mode;		/* 0:word, 2:byte */
	u8		phy_addr;
	u8		imr_all;

	unsigned int	flags;
	unsigned int	in_timeout:1;
	unsigned int	in_suspend:1;
	unsigned int	wake_supported:1;

	enum dm9000_type type;

	void (*inblk)(void __iomem *port, void *data, int length);
	void (*outblk)(void __iomem *port, void *data, int length);
	void (*dumpblk)(void __iomem *port, int length);

	struct device	*dev;	     /* parent device */

	struct resource	*addr_res;   /* resources found */
	struct resource *data_res;
	struct resource	*addr_req;   /* resources requested */
	struct resource *data_req;

	int		 irq_wake;

	struct mutex	 addr_lock;	/* phy and eeprom access lock */

	struct delayed_work phy_poll;
	struct net_device  *ndev;

	spinlock_t	lock;

	struct mii_if_info mii;
	u32		msg_enable;
	u32		wake_state;

	int		ip_summed;

	struct regulator *power_supply;
};

/* debug code */

#define dm9000_dbg(db, lev, msg...) do {		\
	if ((lev) < debug) {				\
		dev_dbg(db->dev, msg);			\
	}						\
} while (0)

static inline struct board_info *to_dm9000_board(struct net_device *dev)
{
	return netdev_priv(dev);
}

/* DM9000 network board routine ---------------------------- */

/*
 *   Read a byte from I/O port
 */
static u8
ior(struct board_info *db, int reg)
{
	writeb(reg, db->io_addr);
	return readb(db->io_data);
}

/*
 *   Write a byte to I/O port
 */

static void
iow(struct board_info *db, int reg, int value)
{
	writeb(reg, db->io_addr);
	writeb(value, db->io_data);
}

static void
dm9000_reset(struct board_info *db)
{
	dev_dbg(db->dev, "resetting device\n");

	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
	 * The essential point is that we have to do a double reset, and the
	 * instruction is to set LBK into MAC internal loopback mode.
	 */
	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
	udelay(100); /* Application note says at least 20 us */
	if (ior(db, DM9000_NCR) & 1)
		dev_err(db->dev, "dm9000 did not respond to first reset\n");

	iow(db, DM9000_NCR, 0);
	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
	udelay(100);
	if (ior(db, DM9000_NCR) & 1)
		dev_err(db->dev, "dm9000 did not respond to second reset\n");
}

/* routines for sending block to chip */

static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
{
	iowrite8_rep(reg, data, count);
}

static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
{
	iowrite16_rep(reg, data, (count+1) >> 1);
}

static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
{
	iowrite32_rep(reg, data, (count+3) >> 2);
}

/* input block from chip to memory */

static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
{
	ioread8_rep(reg, data, count);
}


static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
{
	ioread16_rep(reg, data, (count+1) >> 1);
}

static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
{
	ioread32_rep(reg, data, (count+3) >> 2);
}

/* dump block from chip to null */

static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
{
	int i;

	for (i = 0; i < count; i++)
		readb(reg);
}

static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
{
	int i;

	count = (count + 1) >> 1;

	for (i = 0; i < count; i++)
		readw(reg);
}

static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
{
	int i;

	count = (count + 3) >> 2;

	for (i = 0; i < count; i++)
		readl(reg);
}

/*
 * Sleep, either by using msleep() or if we are suspending, then
 * use mdelay() to sleep.
 */
static void dm9000_msleep(struct board_info *db, unsigned int ms)
{
	if (db->in_suspend || db->in_timeout)
		mdelay(ms);
	else
		msleep(ms);
}

/* Read a word from phyxcer */
static int
dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
{
	struct board_info *db = netdev_priv(dev);
	unsigned long flags;
	unsigned int reg_save;
	int ret;

	mutex_lock(&db->addr_lock);

	spin_lock_irqsave(&db->lock, flags);

	/* Save previous register address */
	reg_save = readb(db->io_addr);

	/* Fill the phyxcer register into REG_0C */
	iow(db, DM9000_EPAR, DM9000_PHY | reg);

	/* Issue phyxcer read command */
	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);

	writeb(reg_save, db->io_addr);
	spin_unlock_irqrestore(&db->lock, flags);

	dm9000_msleep(db, 1);		/* Wait read complete */

	spin_lock_irqsave(&db->lock, flags);
	reg_save = readb(db->io_addr);

	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */

	/* The read data keeps on REG_0D & REG_0E */
	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);

	/* restore the previous address */
	writeb(reg_save, db->io_addr);
	spin_unlock_irqrestore(&db->lock, flags);

	mutex_unlock(&db->addr_lock);

	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
	return ret;
}

/* Write a word to phyxcer */
static void
dm9000_phy_write(struct net_device *dev,
		 int phyaddr_unused, int reg, int value)
{
	struct board_info *db = netdev_priv(dev);
	unsigned long flags;
	unsigned long reg_save;

	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
	if (!db->in_timeout)
		mutex_lock(&db->addr_lock);

	spin_lock_irqsave(&db->lock, flags);

	/* Save previous register address */
	reg_save = readb(db->io_addr);

	/* Fill the phyxcer register into REG_0C */
	iow(db, DM9000_EPAR, DM9000_PHY | reg);

	/* Fill the written data into REG_0D & REG_0E */
	iow(db, DM9000_EPDRL, value);
	iow(db, DM9000_EPDRH, value >> 8);

	/* Issue phyxcer write command */
	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);

	writeb(reg_save, db->io_addr);
	spin_unlock_irqrestore(&db->lock, flags);

	dm9000_msleep(db, 1);		/* Wait write complete */

	spin_lock_irqsave(&db->lock, flags);
	reg_save = readb(db->io_addr);

	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */

	/* restore the previous address */
	writeb(reg_save, db->io_addr);

	spin_unlock_irqrestore(&db->lock, flags);
	if (!db->in_timeout)
		mutex_unlock(&db->addr_lock);
}

/* dm9000_set_io
 *
 * select the specified set of io routines to use with the
 * device
 */

static void dm9000_set_io(struct board_info *db, int byte_width)
{
	/* use the size of the data resource to work out what IO
	 * routines we want to use
	 */

	switch (byte_width) {
	case 1:
		db->dumpblk = dm9000_dumpblk_8bit;
		db->outblk  = dm9000_outblk_8bit;
		db->inblk   = dm9000_inblk_8bit;
		break;


	case 3:
		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
		fallthrough;
	case 2:
		db->dumpblk = dm9000_dumpblk_16bit;
		db->outblk  = dm9000_outblk_16bit;
		db->inblk   = dm9000_inblk_16bit;
		break;

	case 4:
	default:
		db->dumpblk = dm9000_dumpblk_32bit;
		db->outblk  = dm9000_outblk_32bit;
		db->inblk   = dm9000_inblk_32bit;
		break;
	}
}

static void dm9000_schedule_poll(struct board_info *db)
{
	if (db->type == TYPE_DM9000E)
		schedule_delayed_work(&db->phy_poll, HZ * 2);
}

static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
	struct board_info *dm = to_dm9000_board(dev);

	if (!netif_running(dev))
		return -EINVAL;

	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
}

static unsigned int
dm9000_read_locked(struct board_info *db, int reg)
{
	unsigned long flags;
	unsigned int ret;

	spin_lock_irqsave(&db->lock, flags);
	ret = ior(db, reg);
	spin_unlock_irqrestore(&db->lock, flags);

	return ret;
}

static int dm9000_wait_eeprom(struct board_info *db)
{
	unsigned int status;
	int timeout = 8;	/* wait max 8msec */

	/* The DM9000 data sheets say we should be able to
	 * poll the ERRE bit in EPCR to wait for the EEPROM
	 * operation. From testing several chips, this bit
	 * does not seem to work.
	 *
	 * We attempt to use the bit, but fall back to the
	 * timeout (which is why we do not return an error
	 * on expiry) to say that the EEPROM operation has
	 * completed.
	 */

	while (1) {
		status = dm9000_read_locked(db, DM9000_EPCR);

		if ((status & EPCR_ERRE) == 0)
			break;

		msleep(1);

		if (timeout-- < 0) {
			dev_dbg(db->dev, "timeout waiting EEPROM\n");
			break;
		}
	}

	return 0;
}

/*
 *  Read a word data from EEPROM
 */
static void
dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
{
	unsigned long flags;

	if (db->flags & DM9000_PLATF_NO_EEPROM) {
		to[0] = 0xff;
		to[1] = 0xff;
		return;
	}

	mutex_lock(&db->addr_lock);

	spin_lock_irqsave(&db->lock, flags);

	iow(db, DM9000_EPAR, offset);
	iow(db, DM9000_EPCR, EPCR_ERPRR);

	spin_unlock_irqrestore(&db->lock, flags);

	dm9000_wait_eeprom(db);

	/* delay for at-least 150uS */
	msleep(1);

	spin_lock_irqsave(&db->lock, flags);

	iow(db, DM9000_EPCR, 0x0);

	to[0] = ior(db, DM9000_EPDRL);
	to[1] = ior(db, DM9000_EPDRH);

	spin_unlock_irqrestore(&db->lock, flags);

	mutex_unlock(&db->addr_lock);
}

/*
 * Write a word data to SROM
 */
static void
dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
{
	unsigned long flags;

	if (db->flags & DM9000_PLATF_NO_EEPROM)
		return;

	mutex_lock(&db->addr_lock);

	spin_lock_irqsave(&db->lock, flags);
	iow(db, DM9000_EPAR, offset);
	iow(db, DM9000_EPDRH, data[1]);
	iow(db, DM9000_EPDRL, data[0]);
	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
	spin_unlock_irqrestore(&db->lock, flags);

	dm9000_wait_eeprom(db);

	mdelay(1);	/* wait at least 150uS to clear */

	spin_lock_irqsave(&db->lock, flags);
	iow(db, DM9000_EPCR, 0);
	spin_unlock_irqrestore(&db->lock, flags);

	mutex_unlock(&db->addr_lock);
}

/* ethtool ops */

static void dm9000_get_drvinfo(struct net_device *dev,
			       struct ethtool_drvinfo *info)
{
	struct board_info *dm = to_dm9000_board(dev);

	strscpy(info->driver, CARDNAME, sizeof(info->driver));
	strscpy(info->bus_info, to_platform_device(dm->dev)->name,
		sizeof(info->bus_info));
}

static u32 dm9000_get_msglevel(struct net_device *dev)
{
	struct board_info *dm = to_dm9000_board(dev);

	return dm->msg_enable;
}

static void dm9000_set_msglevel(struct net_device *dev, u32 value)
{
	struct board_info *dm = to_dm9000_board(dev);

	dm->msg_enable = value;
}

static int dm9000_get_link_ksettings(struct net_device *dev,
				     struct ethtool_link_ksettings *cmd)
{
	struct board_info *dm = to_dm9000_board(dev);

	mii_ethtool_get_link_ksettings(&dm->mii, cmd);
	return 0;
}

static int dm9000_set_link_ksettings(struct net_device *dev,
				     const struct ethtool_link_ksettings *cmd)
{
	struct board_info *dm = to_dm9000_board(dev);

	return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
}

static int dm9000_nway_reset(struct net_device *dev)
{
	struct board_info *dm = to_dm9000_board(dev);
	return mii_nway_restart(&dm->mii);
}

static int dm9000_set_features(struct net_device *dev,
	netdev_features_t features)
{
	struct board_info *dm = to_dm9000_board(dev);
	netdev_features_t changed = dev->features ^ features;
	unsigned long flags;

	if (!(changed & NETIF_F_RXCSUM))
		return 0;

	spin_lock_irqsave(&dm->lock, flags);
	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
	spin_unlock_irqrestore(&dm->lock, flags);

	return 0;
}

static u32 dm9000_get_link(struct net_device *dev)
{
	struct board_info *dm = to_dm9000_board(dev);
	u32 ret;

	if (dm->flags & DM9000_PLATF_EXT_PHY)
		ret = mii_link_ok(&dm->mii);
	else
		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;

	return ret;
}

#define DM_EEPROM_MAGIC		(0x444D394B)

static int dm9000_get_eeprom_len(struct net_device *dev)
{
	return 128;
}

static int dm9000_get_eeprom(struct net_device *dev,
			     struct ethtool_eeprom *ee, u8 *data)
{
	struct board_info *dm = to_dm9000_board(dev);
	int offset = ee->offset;
	int len = ee->len;
	int i;

	/* EEPROM access is aligned to two bytes */

	if ((len & 1) != 0 || (offset & 1) != 0)
		return -EINVAL;

	if (dm->flags & DM9000_PLATF_NO_EEPROM)
		return -ENOENT;

	ee->magic = DM_EEPROM_MAGIC;

	for (i = 0; i < len; i += 2)
		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);

	return 0;
}

static int dm9000_set_eeprom(struct net_device *dev,
			     struct ethtool_eeprom *ee, u8 *data)
{
	struct board_info *dm = to_dm9000_board(dev);
	int offset = ee->offset;
	int len = ee->len;
	int done;

	/* EEPROM access is aligned to two bytes */

	if (dm->flags & DM9000_PLATF_NO_EEPROM)
		return -ENOENT;

	if (ee->magic != DM_EEPROM_MAGIC)
		return -EINVAL;

	while (len > 0) {
		if (len & 1 || offset & 1) {
			int which = offset & 1;
			u8 tmp[2];

			dm9000_read_eeprom(dm, offset / 2, tmp);
			tmp[which] = *data;
			dm9000_write_eeprom(dm, offset / 2, tmp);

			done = 1;
		} else {
			dm9000_write_eeprom(dm, offset / 2, data);
			done = 2;
		}

		data += done;
		offset += done;
		len -= done;
	}

	return 0;
}

static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
{
	struct board_info *dm = to_dm9000_board(dev);

	memset(w, 0, sizeof(struct ethtool_wolinfo));

	/* note, we could probably support wake-phy too */
	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
	w->wolopts = dm->wake_state;
}

static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
{
	struct board_info *dm = to_dm9000_board(dev);
	unsigned long flags;
	u32 opts = w->wolopts;
	u32 wcr = 0;

	if (!dm->wake_supported)
		return -EOPNOTSUPP;

	if (opts & ~WAKE_MAGIC)
		return -EINVAL;

	if (opts & WAKE_MAGIC)
		wcr |= WCR_MAGICEN;

	mutex_lock(&dm->addr_lock);

	spin_lock_irqsave(&dm->lock, flags);
	iow(dm, DM9000_WCR, wcr);
	spin_unlock_irqrestore(&dm->lock, flags);

	mutex_unlock(&dm->addr_lock);

	if (dm->wake_state != opts) {
		/* change in wol state, update IRQ state */

		if (!dm->wake_state)
			irq_set_irq_wake(dm->irq_wake, 1);
		else if (dm->wake_state && !opts)
			irq_set_irq_wake(dm->irq_wake, 0);
	}

	dm->wake_state = opts;
	return 0;
}

static const struct ethtool_ops dm9000_ethtool_ops = {
	.get_drvinfo		= dm9000_get_drvinfo,
	.get_msglevel		= dm9000_get_msglevel,
	.set_msglevel		= dm9000_set_msglevel,
	.nway_reset		= dm9000_nway_reset,
	.get_link		= dm9000_get_link,
	.get_wol		= dm9000_get_wol,
	.set_wol		= dm9000_set_wol,
	.get_eeprom_len		= dm9000_get_eeprom_len,
	.get_eeprom		= dm9000_get_eeprom,
	.set_eeprom		= dm9000_set_eeprom,
	.get_link_ksettings	= dm9000_get_link_ksettings,
	.set_link_ksettings	= dm9000_set_link_ksettings,
};

static void dm9000_show_carrier(struct board_info *db,
				unsigned carrier, unsigned nsr)
{
	int lpa;
	struct net_device *ndev = db->ndev;
	struct mii_if_info *mii = &db->mii;
	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);

	if (carrier) {
		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
		dev_info(db->dev,
			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
			 (ncr & NCR_FDX) ? "full" : "half", lpa);
	} else {
		dev_info(db->dev, "%s: link down\n", ndev->name);
	}
}

static void
dm9000_poll_work(struct work_struct *w)
{
	struct delayed_work *dw = to_delayed_work(w);
	struct board_info *db = container_of(dw, struct board_info, phy_poll);
	struct net_device *ndev = db->ndev;

	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
		unsigned new_carrier;

		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;

		if (old_carrier != new_carrier) {
			if (netif_msg_link(db))
				dm9000_show_carrier(db, new_carrier, nsr);

			if (!new_carrier)
				netif_carrier_off(ndev);
			else
				netif_carrier_on(ndev);
		}
	} else
		mii_check_media(&db->mii, netif_msg_link(db), 0);

	if (netif_running(ndev))
		dm9000_schedule_poll(db);
}

/* dm9000_release_board
 *
 * release a board, and any mapped resources
 */

static void
dm9000_release_board(struct platform_device *pdev, struct board_info *db)
{
	/* unmap our resources */

	iounmap(db->io_addr);
	iounmap(db->io_data);

	/* release the resources */

	if (db->data_req)
		release_resource(db->data_req);
	kfree(db->data_req);

	if (db->addr_req)
		release_resource(db->addr_req);
	kfree(db->addr_req);
}

static unsigned char dm9000_type_to_char(enum dm9000_type type)
{
	switch (type) {
	case TYPE_DM9000E: return 'e';
	case TYPE_DM9000A: return 'a';
	case TYPE_DM9000B: return 'b';
	}

	return '?';
}

/*
 *  Set DM9000 multicast address
 */
static void
dm9000_hash_table_unlocked(struct net_device *dev)
{
	struct board_info *db = netdev_priv(dev);
	struct netdev_hw_addr *ha;
	int i, oft;
	u32 hash_val;
	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;

	dm9000_dbg(db, 1, "entering %s\n", __func__);

	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
		iow(db, oft, dev->dev_addr[i]);

	if (dev->flags & IFF_PROMISC)
		rcr |= RCR_PRMSC;

	if (dev->flags & IFF_ALLMULTI)
		rcr |= RCR_ALL;

	/* the multicast address in Hash Table : 64 bits */
	netdev_for_each_mc_addr(ha, dev) {
		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
	}

	/* Write the hash table to MAC MD table */
	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
		iow(db, oft++, hash_table[i]);
		iow(db, oft++, hash_table[i] >> 8);
	}

	iow(db, DM9000_RCR, rcr);
}

static void
dm9000_hash_table(struct net_device *dev)
{
	struct board_info *db = netdev_priv(dev);
	unsigned long flags;

	spin_lock_irqsave(&db->lock, flags);
	dm9000_hash_table_unlocked(dev);
	spin_unlock_irqrestore(&db->lock, flags);
}

static void
dm9000_mask_interrupts(struct board_info *db)
{
	iow(db, DM9000_IMR, IMR_PAR);
}

static void
dm9000_unmask_interrupts(struct board_info *db)
{
	iow(db, DM9000_IMR, db->imr_all);
}

/*
 * Initialize dm9000 board
 */
static void
dm9000_init_dm9000(struct net_device *dev)
{
	struct board_info *db = netdev_priv(dev);
	unsigned int imr;
	unsigned int ncr;

	dm9000_dbg(db, 1, "entering %s\n", __func__);

	dm9000_reset(db);
	dm9000_mask_interrupts(db);

	/* I/O mode */
	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */

	/* Checksum mode */
	if (dev->hw_features & NETIF_F_RXCSUM)
		iow(db, DM9000_RCSR,
			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);

	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
	iow(db, DM9000_GPR, 0);

	/* If we are dealing with DM9000B, some extra steps are required: a
	 * manual phy reset, and setting init params.
	 */
	if (db->type == TYPE_DM9000B) {
		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
	}

	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;

	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
	 * up dumping the wake events if we disable this. There is already
	 * a wake-mask in DM9000_WCR */
	if (db->wake_supported)
		ncr |= NCR_WAKEEN;

	iow(db, DM9000_NCR, ncr);

	/* Program operating register */
	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
	iow(db, DM9000_SMCR, 0);        /* Special Mode */
	/* clear TX status */
	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */

	/* Set address filter table */
	dm9000_hash_table_unlocked(dev);

	imr = IMR_PAR | IMR_PTM | IMR_PRM;
	if (db->type != TYPE_DM9000E)
		imr |= IMR_LNKCHNG;

	db->imr_all = imr;

	/* Init Driver variable */
	db->tx_pkt_cnt = 0;
	db->queue_pkt_len = 0;
	netif_trans_update(dev);
}

/* Our watchdog timed out. Called by the networking layer */
static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
{
	struct board_info *db = netdev_priv(dev);
	u8 reg_save;
	unsigned long flags;

	/* Save previous register address */
	spin_lock_irqsave(&db->lock, flags);
	db->in_timeout = 1;
	reg_save = readb(db->io_addr);

	netif_stop_queue(dev);
	dm9000_init_dm9000(dev);
	dm9000_unmask_interrupts(db);
	/* We can accept TX packets again */
	netif_trans_update(dev); /* prevent tx timeout */
	netif_wake_queue(dev);

	/* Restore previous register address */
	writeb(reg_save, db->io_addr);
	db->in_timeout = 0;
	spin_unlock_irqrestore(&db->lock, flags);
}

static void dm9000_send_packet(struct net_device *dev,
			       int ip_summed,
			       u16 pkt_len)
{
	struct board_info *dm = to_dm9000_board(dev);

	/* The DM9000 is not smart enough to leave fragmented packets alone. */
	if (dm->ip_summed != ip_summed) {
		if (ip_summed == CHECKSUM_NONE)
			iow(dm, DM9000_TCCR, 0);
		else
			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
		dm->ip_summed = ip_summed;
	}

	/* Set TX length to DM9000 */
	iow(dm, DM9000_TXPLL, pkt_len);
	iow(dm, DM9000_TXPLH, pkt_len >> 8);

	/* Issue TX polling command */
	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
}

/*
 *  Hardware start transmission.
 *  Send a packet to media from the upper layer.
 */
static netdev_tx_t
dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
	unsigned long flags;
	struct board_info *db = netdev_priv(dev);

	dm9000_dbg(db, 3, "%s:\n", __func__);

	if (db->tx_pkt_cnt > 1)
		return NETDEV_TX_BUSY;

	spin_lock_irqsave(&db->lock, flags);

	/* Move data to DM9000 TX RAM */
	writeb(DM9000_MWCMD, db->io_addr);

	(db->outblk)(db->io_data, skb->data, skb->len);
	dev->stats.tx_bytes += skb->len;

	db->tx_pkt_cnt++;
	/* TX control: First packet immediately send, second packet queue */
	if (db->tx_pkt_cnt == 1) {
		dm9000_send_packet(dev, skb->ip_summed, skb->len);
	} else {
		/* Second packet */
		db->queue_pkt_len = skb->len;
		db->queue_ip_summed = skb->ip_summed;
		netif_stop_queue(dev);
	}

	spin_unlock_irqrestore(&db->lock, flags);

	/* free this SKB */
	dev_consume_skb_any(skb);

	return NETDEV_TX_OK;
}

/*
 * DM9000 interrupt handler
 * receive the packet to upper layer, free the transmitted packet
 */

static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
{
	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */

	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
		/* One packet sent complete */
		db->tx_pkt_cnt--;
		dev->stats.tx_packets++;

		if (netif_msg_tx_done(db))
			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);

		/* Queue packet check & send */
		if (db->tx_pkt_cnt > 0)
			dm9000_send_packet(dev, db->queue_ip_summed,
					   db->queue_pkt_len);
		netif_wake_queue(dev);
	}
}

struct dm9000_rxhdr {
	u8	RxPktReady;
	u8	RxStatus;
	__le16	RxLen;
} __packed;

/*
 *  Received a packet and pass to upper layer
 */
static void
dm9000_rx(struct net_device *dev)
{
	struct board_info *db = netdev_priv(dev);
	struct dm9000_rxhdr rxhdr;
	struct sk_buff *skb;
	u8 rxbyte, *rdptr;
	bool GoodPacket;
	int RxLen;

	/* Check packet ready or not */
	do {
		ior(db, DM9000_MRCMDX);	/* Dummy read */

		/* Get most updated data */
		rxbyte = readb(db->io_data);

		/* Status check: this byte must be 0 or 1 */
		if (rxbyte & DM9000_PKT_ERR) {
			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
			return;
		}

		if (!(rxbyte & DM9000_PKT_RDY))
			return;

		/* A packet ready now  & Get status/length */
		GoodPacket = true;
		writeb(DM9000_MRCMD, db->io_addr);

		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));

		RxLen = le16_to_cpu(rxhdr.RxLen);

		if (netif_msg_rx_status(db))
			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
				rxhdr.RxStatus, RxLen);

		/* Packet Status check */
		if (RxLen < 0x40) {
			GoodPacket = false;
			if (netif_msg_rx_err(db))
				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
		}

		if (RxLen > DM9000_PKT_MAX) {
			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
		}

		/* rxhdr.RxStatus is identical to RSR register. */
		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
				      RSR_PLE | RSR_RWTO |
				      RSR_LCS | RSR_RF)) {
			GoodPacket = false;
			if (rxhdr.RxStatus & RSR_FOE) {
				if (netif_msg_rx_err(db))
					dev_dbg(db->dev, "fifo error\n");
				dev->stats.rx_fifo_errors++;
			}
			if (rxhdr.RxStatus & RSR_CE) {
				if (netif_msg_rx_err(db))
					dev_dbg(db->dev, "crc error\n");
				dev->stats.rx_crc_errors++;
			}
			if (rxhdr.RxStatus & RSR_RF) {
				if (netif_msg_rx_err(db))
					dev_dbg(db->dev, "length error\n");
				dev->stats.rx_length_errors++;
			}
		}

		/* Move data from DM9000 */
		if (GoodPacket &&
		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
			skb_reserve(skb, 2);
			rdptr = skb_put(skb, RxLen - 4);

			/* Read received packet from RX SRAM */

			(db->inblk)(db->io_data, rdptr, RxLen);
			dev->stats.rx_bytes += RxLen;

			/* Pass to upper layer */
			skb->protocol = eth_type_trans(skb, dev);
			if (dev->features & NETIF_F_RXCSUM) {
				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
					skb->ip_summed = CHECKSUM_UNNECESSARY;
				else
					skb_checksum_none_assert(skb);
			}
			netif_rx(skb);
			dev->stats.rx_packets++;

		} else {
			/* need to dump the packet's data */

			(db->dumpblk)(db->io_data, RxLen);
		}
	} while (rxbyte & DM9000_PKT_RDY);
}

static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct board_info *db = netdev_priv(dev);
	int int_status;
	unsigned long flags;
	u8 reg_save;

	dm9000_dbg(db, 3, "entering %s\n", __func__);

	/* A real interrupt coming */

	/* holders of db->lock must always block IRQs */
	spin_lock_irqsave(&db->lock, flags);

	/* Save previous register address */
	reg_save = readb(db->io_addr);

	dm9000_mask_interrupts(db);
	/* Got DM9000 interrupt status */
	int_status = ior(db, DM9000_ISR);	/* Got ISR */
	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */

	if (netif_msg_intr(db))
		dev_dbg(db->dev, "interrupt status %02x\n", int_status);

	/* Received the coming packet */
	if (int_status & ISR_PRS)
		dm9000_rx(dev);

	/* Transmit Interrupt check */
	if (int_status & ISR_PTS)
		dm9000_tx_done(dev, db);

	if (db->type != TYPE_DM9000E) {
		if (int_status & ISR_LNKCHNG) {
			/* fire a link-change request */
			schedule_delayed_work(&db->phy_poll, 1);
		}
	}

	dm9000_unmask_interrupts(db);
	/* Restore previous register address */
	writeb(reg_save, db->io_addr);

	spin_unlock_irqrestore(&db->lock, flags);

	return IRQ_HANDLED;
}

static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
{
	struct net_device *dev = dev_id;
	struct board_info *db = netdev_priv(dev);
	unsigned long flags;
	unsigned nsr, wcr;

	spin_lock_irqsave(&db->lock, flags);

	nsr = ior(db, DM9000_NSR);
	wcr = ior(db, DM9000_WCR);

	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);

	if (nsr & NSR_WAKEST) {
		/* clear, so we can avoid */
		iow(db, DM9000_NSR, NSR_WAKEST);

		if (wcr & WCR_LINKST)
			dev_info(db->dev, "wake by link status change\n");
		if (wcr & WCR_SAMPLEST)
			dev_info(db->dev, "wake by sample packet\n");
		if (wcr & WCR_MAGICST)
			dev_info(db->dev, "wake by magic packet\n");
		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
			dev_err(db->dev, "wake signalled with no reason? "
				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
	}

	spin_unlock_irqrestore(&db->lock, flags);

	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
}

#ifdef CONFIG_NET_POLL_CONTROLLER
/*
 *Used by netconsole
 */
static void dm9000_poll_controller(struct net_device *dev)
{
	disable_irq(dev->irq);
	dm9000_interrupt(dev->irq, dev);
	enable_irq(dev->irq);
}
#endif

/*
 *  Open the interface.
 *  The interface is opened whenever "ifconfig" actives it.
 */
static int
dm9000_open(struct net_device *dev)
{
	struct board_info *db = netdev_priv(dev);
	unsigned int irq_flags = irq_get_trigger_type(dev->irq);

	if (netif_msg_ifup(db))
		dev_dbg(db->dev, "enabling %s\n", dev->name);

	/* If there is no IRQ type specified, tell the user that this is a
	 * problem
	 */
	if (irq_flags == IRQF_TRIGGER_NONE)
		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");

	irq_flags |= IRQF_SHARED;

	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
	mdelay(1); /* delay needs by DM9000B */

	/* Initialize DM9000 board */
	dm9000_init_dm9000(dev);

	if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
		return -EAGAIN;
	/* Now that we have an interrupt handler hooked up we can unmask
	 * our interrupts
	 */
	dm9000_unmask_interrupts(db);

	/* Init driver variable */
	db->dbug_cnt = 0;

	mii_check_media(&db->mii, netif_msg_link(db), 1);
	netif_start_queue(dev);

	/* Poll initial link status */
	schedule_delayed_work(&db->phy_poll, 1);

	return 0;
}

static void
dm9000_shutdown(struct net_device *dev)
{
	struct board_info *db = netdev_priv(dev);

	/* RESET device */
	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
	dm9000_mask_interrupts(db);
	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
}

/*
 * Stop the interface.
 * The interface is stopped when it is brought.
 */
static int
dm9000_stop(struct net_device *ndev)
{
	struct board_info *db = netdev_priv(ndev);

	if (netif_msg_ifdown(db))
		dev_dbg(db->dev, "shutting down %s\n", ndev->name);

	cancel_delayed_work_sync(&db->phy_poll);

	netif_stop_queue(ndev);
	netif_carrier_off(ndev);

	/* free interrupt */
	free_irq(ndev->irq, ndev);

	dm9000_shutdown(ndev);

	return 0;
}

static const struct net_device_ops dm9000_netdev_ops = {
	.ndo_open		= dm9000_open,
	.ndo_stop		= dm9000_stop,
	.ndo_start_xmit		= dm9000_start_xmit,
	.ndo_tx_timeout		= dm9000_timeout,
	.ndo_set_rx_mode	= dm9000_hash_table,
	.ndo_eth_ioctl		= dm9000_ioctl,
	.ndo_set_features	= dm9000_set_features,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_mac_address	= eth_mac_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= dm9000_poll_controller,
#endif
};

static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
{
	struct dm9000_plat_data *pdata;
	struct device_node *np = dev->of_node;
	int ret;

	if (!IS_ENABLED(CONFIG_OF) || !np)
		return ERR_PTR(-ENXIO);

	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
	if (!pdata)
		return ERR_PTR(-ENOMEM);

	if (of_find_property(np, "davicom,ext-phy", NULL))
		pdata->flags |= DM9000_PLATF_EXT_PHY;
	if (of_find_property(np, "davicom,no-eeprom", NULL))
		pdata->flags |= DM9000_PLATF_NO_EEPROM;

	ret = of_get_mac_address(np, pdata->dev_addr);
	if (ret == -EPROBE_DEFER)
		return ERR_PTR(ret);

	return pdata;
}

/*
 * Search DM9000 board, allocate space and register it
 */
static int
dm9000_probe(struct platform_device *pdev)
{
	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
	struct board_info *db;	/* Point a board information structure */
	struct net_device *ndev;
	struct device *dev = &pdev->dev;
	const unsigned char *mac_src;
	int ret = 0;
	int iosize;
	int i;
	u32 id_val;
	struct gpio_desc *reset_gpio;
	struct regulator *power;
	bool inv_mac_addr = false;
	u8 addr[ETH_ALEN];

	power = devm_regulator_get(dev, "vcc");
	if (IS_ERR(power)) {
		if (PTR_ERR(power) == -EPROBE_DEFER)
			return -EPROBE_DEFER;
		dev_dbg(dev, "no regulator provided\n");
	} else {
		ret = regulator_enable(power);
		if (ret != 0) {
			dev_err(dev,
				"Failed to enable power regulator: %d\n", ret);
			return ret;
		}
		dev_dbg(dev, "regulator enabled\n");
	}

	reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
	ret = PTR_ERR_OR_ZERO(reset_gpio);
	if (ret) {
		dev_err(dev, "failed to request reset gpio: %d\n", ret);
		goto out_regulator_disable;
	}

	if (reset_gpio) {
		ret = gpiod_set_consumer_name(reset_gpio, "dm9000_reset");
		if (ret) {
			dev_err(dev, "failed to set reset gpio name: %d\n",
				ret);
			goto out_regulator_disable;
		}

		/* According to manual PWRST# Low Period Min 1ms */
		msleep(2);
		gpiod_set_value_cansleep(reset_gpio, 0);
		/* Needs 3ms to read eeprom when PWRST is deasserted */
		msleep(4);
	}

	if (!pdata) {
		pdata = dm9000_parse_dt(&pdev->dev);
		if (IS_ERR(pdata)) {
			ret = PTR_ERR(pdata);
			goto out_regulator_disable;
		}
	}

	/* Init network device */
	ndev = alloc_etherdev(sizeof(struct board_info));
	if (!ndev) {
		ret = -ENOMEM;
		goto out_regulator_disable;
	}

	SET_NETDEV_DEV(ndev, &pdev->dev);

	dev_dbg(&pdev->dev, "dm9000_probe()\n");

	/* setup board info structure */
	db = netdev_priv(ndev);

	db->dev = &pdev->dev;
	db->ndev = ndev;
	if (!IS_ERR(power))
		db->power_supply = power;

	spin_lock_init(&db->lock);
	mutex_init(&db->addr_lock);

	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);

	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);

	if (!db->addr_res || !db->data_res) {
		dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
			db->addr_res, db->data_res);
		ret = -ENOENT;
		goto out;
	}

	ndev->irq = platform_get_irq(pdev, 0);
	if (ndev->irq < 0) {
		ret = ndev->irq;
		goto out;
	}

	db->irq_wake = platform_get_irq_optional(pdev, 1);
	if (db->irq_wake >= 0) {
		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);

		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
				  IRQF_SHARED, dev_name(db->dev), ndev);
		if (ret) {
			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
		} else {

			/* test to see if irq is really wakeup capable */
			ret = irq_set_irq_wake(db->irq_wake, 1);
			if (ret) {
				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
					db->irq_wake, ret);
			} else {
				irq_set_irq_wake(db->irq_wake, 0);
				db->wake_supported = 1;
			}
		}
	}

	iosize = resource_size(db->addr_res);
	db->addr_req = request_mem_region(db->addr_res->start, iosize,
					  pdev->name);

	if (db->addr_req == NULL) {
		dev_err(db->dev, "cannot claim address reg area\n");
		ret = -EIO;
		goto out;
	}

	db->io_addr = ioremap(db->addr_res->start, iosize);

	if (db->io_addr == NULL) {
		dev_err(db->dev, "failed to ioremap address reg\n");
		ret = -EINVAL;
		goto out;
	}

	iosize = resource_size(db->data_res);
	db->data_req = request_mem_region(db->data_res->start, iosize,
					  pdev->name);

	if (db->data_req == NULL) {
		dev_err(db->dev, "cannot claim data reg area\n");
		ret = -EIO;
		goto out;
	}

	db->io_data = ioremap(db->data_res->start, iosize);

	if (db->io_data == NULL) {
		dev_err(db->dev, "failed to ioremap data reg\n");
		ret = -EINVAL;
		goto out;
	}

	/* fill in parameters for net-dev structure */
	ndev->base_addr = (unsigned long)db->io_addr;

	/* ensure at least we have a default set of IO routines */
	dm9000_set_io(db, iosize);

	/* check to see if anything is being over-ridden */
	if (pdata != NULL) {
		/* check to see if the driver wants to over-ride the
		 * default IO width */

		if (pdata->flags & DM9000_PLATF_8BITONLY)
			dm9000_set_io(db, 1);

		if (pdata->flags & DM9000_PLATF_16BITONLY)
			dm9000_set_io(db, 2);

		if (pdata->flags & DM9000_PLATF_32BITONLY)
			dm9000_set_io(db, 4);

		/* check to see if there are any IO routine
		 * over-rides */

		if (pdata->inblk != NULL)
			db->inblk = pdata->inblk;

		if (pdata->outblk != NULL)
			db->outblk = pdata->outblk;

		if (pdata->dumpblk != NULL)
			db->dumpblk = pdata->dumpblk;

		db->flags = pdata->flags;
	}

#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
	db->flags |= DM9000_PLATF_SIMPLE_PHY;
#endif

	dm9000_reset(db);

	/* try multiple times, DM9000 sometimes gets the read wrong */
	for (i = 0; i < 8; i++) {
		id_val  = ior(db, DM9000_VIDL);
		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
		id_val |= (u32)ior(db, DM9000_PIDH) << 24;

		if (id_val == DM9000_ID)
			break;
		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
	}

	if (id_val != DM9000_ID) {
		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
		ret = -ENODEV;
		goto out;
	}

	/* Identify what type of DM9000 we are working on */

	id_val = ior(db, DM9000_CHIPR);
	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);

	switch (id_val) {
	case CHIPR_DM9000A:
		db->type = TYPE_DM9000A;
		break;
	case CHIPR_DM9000B:
		db->type = TYPE_DM9000B;
		break;
	default:
		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
		db->type = TYPE_DM9000E;
	}

	/* dm9000a/b are capable of hardware checksum offload */
	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
		ndev->features |= ndev->hw_features;
	}

	/* from this point we assume that we have found a DM9000 */

	ndev->netdev_ops	= &dm9000_netdev_ops;
	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
	ndev->ethtool_ops	= &dm9000_ethtool_ops;

	db->msg_enable       = NETIF_MSG_LINK;
	db->mii.phy_id_mask  = 0x1f;
	db->mii.reg_num_mask = 0x1f;
	db->mii.force_media  = 0;
	db->mii.full_duplex  = 0;
	db->mii.dev	     = ndev;
	db->mii.mdio_read    = dm9000_phy_read;
	db->mii.mdio_write   = dm9000_phy_write;

	mac_src = "eeprom";

	/* try reading the node address from the attached EEPROM */
	for (i = 0; i < 6; i += 2)
		dm9000_read_eeprom(db, i / 2, addr + i);
	eth_hw_addr_set(ndev, addr);

	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
		mac_src = "platform data";
		eth_hw_addr_set(ndev, pdata->dev_addr);
	}

	if (!is_valid_ether_addr(ndev->dev_addr)) {
		/* try reading from mac */

		mac_src = "chip";
		for (i = 0; i < 6; i++)
			addr[i] = ior(db, i + DM9000_PAR);
		eth_hw_addr_set(ndev, pdata->dev_addr);
	}

	if (!is_valid_ether_addr(ndev->dev_addr)) {
		inv_mac_addr = true;
		eth_hw_addr_random(ndev);
		mac_src = "random";
	}


	platform_set_drvdata(pdev, ndev);
	ret = register_netdev(ndev);

	if (ret == 0) {
		if (inv_mac_addr)
			dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
				 ndev->name);
		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
		       ndev->name, dm9000_type_to_char(db->type),
		       db->io_addr, db->io_data, ndev->irq,
		       ndev->dev_addr, mac_src);
	}
	return 0;

out:
	dev_err(db->dev, "not found (%d).\n", ret);

	dm9000_release_board(pdev, db);
	free_netdev(ndev);

out_regulator_disable:
	if (!IS_ERR(power))
		regulator_disable(power);

	return ret;
}

static int
dm9000_drv_suspend(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);
	struct board_info *db;

	if (ndev) {
		db = netdev_priv(ndev);
		db->in_suspend = 1;

		if (!netif_running(ndev))
			return 0;

		netif_device_detach(ndev);

		/* only shutdown if not using WoL */
		if (!db->wake_state)
			dm9000_shutdown(ndev);
	}
	return 0;
}

static int
dm9000_drv_resume(struct device *dev)
{
	struct net_device *ndev = dev_get_drvdata(dev);
	struct board_info *db = netdev_priv(ndev);

	if (ndev) {
		if (netif_running(ndev)) {
			/* reset if we were not in wake mode to ensure if
			 * the device was powered off it is in a known state */
			if (!db->wake_state) {
				dm9000_init_dm9000(ndev);
				dm9000_unmask_interrupts(db);
			}

			netif_device_attach(ndev);
		}

		db->in_suspend = 0;
	}
	return 0;
}

static const struct dev_pm_ops dm9000_drv_pm_ops = {
	.suspend	= dm9000_drv_suspend,
	.resume		= dm9000_drv_resume,
};

static int
dm9000_drv_remove(struct platform_device *pdev)
{
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct board_info *dm = to_dm9000_board(ndev);

	unregister_netdev(ndev);
	dm9000_release_board(pdev, dm);
	free_netdev(ndev);		/* free device structure */
	if (dm->power_supply)
		regulator_disable(dm->power_supply);

	dev_dbg(&pdev->dev, "released and freed device\n");
	return 0;
}

#ifdef CONFIG_OF
static const struct of_device_id dm9000_of_matches[] = {
	{ .compatible = "davicom,dm9000", },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, dm9000_of_matches);
#endif

static struct platform_driver dm9000_driver = {
	.driver	= {
		.name    = "dm9000",
		.pm	 = &dm9000_drv_pm_ops,
		.of_match_table = of_match_ptr(dm9000_of_matches),
	},
	.probe   = dm9000_probe,
	.remove  = dm9000_drv_remove,
};

module_platform_driver(dm9000_driver);

MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
MODULE_DESCRIPTION("Davicom DM9000 network driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:dm9000");