Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Shannon Nelson | 4045 | 67.14% | 19 | 41.30% |
Jesse Brandeburg | 869 | 14.42% | 5 | 10.87% |
Sylwia Wnuczko | 313 | 5.20% | 2 | 4.35% |
Paweł Jabłoński | 296 | 4.91% | 1 | 2.17% |
Kamil Krawczyk | 191 | 3.17% | 1 | 2.17% |
Anjali Singhai Jain | 94 | 1.56% | 2 | 4.35% |
Maciej Sosin | 58 | 0.96% | 1 | 2.17% |
Paul M Stillwell Jr | 57 | 0.95% | 1 | 2.17% |
Jacob E Keller | 28 | 0.46% | 3 | 6.52% |
Sudheer Mogilappagari | 24 | 0.40% | 2 | 4.35% |
Maciej Paczkowski | 18 | 0.30% | 1 | 2.17% |
Aaron Salter | 13 | 0.22% | 1 | 2.17% |
Tom Rix | 7 | 0.12% | 1 | 2.17% |
Stefano Brivio | 7 | 0.12% | 2 | 4.35% |
Jingjing Wu | 2 | 0.03% | 1 | 2.17% |
Jeff Kirsher | 2 | 0.03% | 2 | 4.35% |
Wei Yongjun | 1 | 0.02% | 1 | 2.17% |
Total | 6025 | 46 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2013 - 2018 Intel Corporation. */ #include "i40e_prototype.h" /** * i40e_init_nvm - Initialize NVM function pointers * @hw: pointer to the HW structure * * Setup the function pointers and the NVM info structure. Should be called * once per NVM initialization, e.g. inside the i40e_init_shared_code(). * Please notice that the NVM term is used here (& in all methods covered * in this file) as an equivalent of the FLASH part mapped into the SR. * We are accessing FLASH always thru the Shadow RAM. **/ i40e_status i40e_init_nvm(struct i40e_hw *hw) { struct i40e_nvm_info *nvm = &hw->nvm; i40e_status ret_code = 0; u32 fla, gens; u8 sr_size; /* The SR size is stored regardless of the nvm programming mode * as the blank mode may be used in the factory line. */ gens = rd32(hw, I40E_GLNVM_GENS); sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >> I40E_GLNVM_GENS_SR_SIZE_SHIFT); /* Switching to words (sr_size contains power of 2KB) */ nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB; /* Check if we are in the normal or blank NVM programming mode */ fla = rd32(hw, I40E_GLNVM_FLA); if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */ /* Max NVM timeout */ nvm->timeout = I40E_MAX_NVM_TIMEOUT; nvm->blank_nvm_mode = false; } else { /* Blank programming mode */ nvm->blank_nvm_mode = true; ret_code = I40E_ERR_NVM_BLANK_MODE; i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n"); } return ret_code; } /** * i40e_acquire_nvm - Generic request for acquiring the NVM ownership * @hw: pointer to the HW structure * @access: NVM access type (read or write) * * This function will request NVM ownership for reading * via the proper Admin Command. **/ i40e_status i40e_acquire_nvm(struct i40e_hw *hw, enum i40e_aq_resource_access_type access) { i40e_status ret_code = 0; u64 gtime, timeout; u64 time_left = 0; if (hw->nvm.blank_nvm_mode) goto i40e_i40e_acquire_nvm_exit; ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access, 0, &time_left, NULL); /* Reading the Global Device Timer */ gtime = rd32(hw, I40E_GLVFGEN_TIMER); /* Store the timeout */ hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime; if (ret_code) i40e_debug(hw, I40E_DEBUG_NVM, "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n", access, time_left, ret_code, hw->aq.asq_last_status); if (ret_code && time_left) { /* Poll until the current NVM owner timeouts */ timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime; while ((gtime < timeout) && time_left) { usleep_range(10000, 20000); gtime = rd32(hw, I40E_GLVFGEN_TIMER); ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access, 0, &time_left, NULL); if (!ret_code) { hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime; break; } } if (ret_code) { hw->nvm.hw_semaphore_timeout = 0; i40e_debug(hw, I40E_DEBUG_NVM, "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n", time_left, ret_code, hw->aq.asq_last_status); } } i40e_i40e_acquire_nvm_exit: return ret_code; } /** * i40e_release_nvm - Generic request for releasing the NVM ownership * @hw: pointer to the HW structure * * This function will release NVM resource via the proper Admin Command. **/ void i40e_release_nvm(struct i40e_hw *hw) { i40e_status ret_code = I40E_SUCCESS; u32 total_delay = 0; if (hw->nvm.blank_nvm_mode) return; ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL); /* there are some rare cases when trying to release the resource * results in an admin Q timeout, so handle them correctly */ while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) && (total_delay < hw->aq.asq_cmd_timeout)) { usleep_range(1000, 2000); ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL); total_delay++; } } /** * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit * @hw: pointer to the HW structure * * Polls the SRCTL Shadow RAM register done bit. **/ static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw) { i40e_status ret_code = I40E_ERR_TIMEOUT; u32 srctl, wait_cnt; /* Poll the I40E_GLNVM_SRCTL until the done bit is set */ for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) { srctl = rd32(hw, I40E_GLNVM_SRCTL); if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) { ret_code = 0; break; } udelay(5); } if (ret_code == I40E_ERR_TIMEOUT) i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set"); return ret_code; } /** * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @data: word read from the Shadow RAM * * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register. **/ static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset, u16 *data) { i40e_status ret_code = I40E_ERR_TIMEOUT; u32 sr_reg; if (offset >= hw->nvm.sr_size) { i40e_debug(hw, I40E_DEBUG_NVM, "NVM read error: offset %d beyond Shadow RAM limit %d\n", offset, hw->nvm.sr_size); ret_code = I40E_ERR_PARAM; goto read_nvm_exit; } /* Poll the done bit first */ ret_code = i40e_poll_sr_srctl_done_bit(hw); if (!ret_code) { /* Write the address and start reading */ sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) | BIT(I40E_GLNVM_SRCTL_START_SHIFT); wr32(hw, I40E_GLNVM_SRCTL, sr_reg); /* Poll I40E_GLNVM_SRCTL until the done bit is set */ ret_code = i40e_poll_sr_srctl_done_bit(hw); if (!ret_code) { sr_reg = rd32(hw, I40E_GLNVM_SRDATA); *data = (u16)((sr_reg & I40E_GLNVM_SRDATA_RDDATA_MASK) >> I40E_GLNVM_SRDATA_RDDATA_SHIFT); } } if (ret_code) i40e_debug(hw, I40E_DEBUG_NVM, "NVM read error: Couldn't access Shadow RAM address: 0x%x\n", offset); read_nvm_exit: return ret_code; } /** * i40e_read_nvm_aq - Read Shadow RAM. * @hw: pointer to the HW structure. * @module_pointer: module pointer location in words from the NVM beginning * @offset: offset in words from module start * @words: number of words to write * @data: buffer with words to write to the Shadow RAM * @last_command: tells the AdminQ that this is the last command * * Writes a 16 bit words buffer to the Shadow RAM using the admin command. **/ static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer, u32 offset, u16 words, void *data, bool last_command) { i40e_status ret_code = I40E_ERR_NVM; struct i40e_asq_cmd_details cmd_details; memset(&cmd_details, 0, sizeof(cmd_details)); cmd_details.wb_desc = &hw->nvm_wb_desc; /* Here we are checking the SR limit only for the flat memory model. * We cannot do it for the module-based model, as we did not acquire * the NVM resource yet (we cannot get the module pointer value). * Firmware will check the module-based model. */ if ((offset + words) > hw->nvm.sr_size) i40e_debug(hw, I40E_DEBUG_NVM, "NVM write error: offset %d beyond Shadow RAM limit %d\n", (offset + words), hw->nvm.sr_size); else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) /* We can write only up to 4KB (one sector), in one AQ write */ i40e_debug(hw, I40E_DEBUG_NVM, "NVM write fail error: tried to write %d words, limit is %d.\n", words, I40E_SR_SECTOR_SIZE_IN_WORDS); else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) /* A single write cannot spread over two sectors */ i40e_debug(hw, I40E_DEBUG_NVM, "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", offset, words); else ret_code = i40e_aq_read_nvm(hw, module_pointer, 2 * offset, /*bytes*/ 2 * words, /*bytes*/ data, last_command, &cmd_details); return ret_code; } /** * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @data: word read from the Shadow RAM * * Reads one 16 bit word from the Shadow RAM using the AdminQ **/ static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset, u16 *data) { i40e_status ret_code = I40E_ERR_TIMEOUT; ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true); *data = le16_to_cpu(*(__le16 *)data); return ret_code; } /** * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @data: word read from the Shadow RAM * * Reads one 16 bit word from the Shadow RAM. * * Do not use this function except in cases where the nvm lock is already * taken via i40e_acquire_nvm(). **/ static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw, u16 offset, u16 *data) { if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) return i40e_read_nvm_word_aq(hw, offset, data); return i40e_read_nvm_word_srctl(hw, offset, data); } /** * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) * @data: word read from the Shadow RAM * * Reads one 16 bit word from the Shadow RAM. **/ i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset, u16 *data) { i40e_status ret_code = 0; if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK) ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); if (ret_code) return ret_code; ret_code = __i40e_read_nvm_word(hw, offset, data); if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK) i40e_release_nvm(hw); return ret_code; } /** * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location * @hw: Pointer to the HW structure * @module_ptr: Pointer to module in words with respect to NVM beginning * @module_offset: Offset in words from module start * @data_offset: Offset in words from reading data area start * @words_data_size: Words to read from NVM * @data_ptr: Pointer to memory location where resulting buffer will be stored **/ enum i40e_status_code i40e_read_nvm_module_data(struct i40e_hw *hw, u8 module_ptr, u16 module_offset, u16 data_offset, u16 words_data_size, u16 *data_ptr) { i40e_status status; u16 specific_ptr = 0; u16 ptr_value = 0; u32 offset = 0; if (module_ptr != 0) { status = i40e_read_nvm_word(hw, module_ptr, &ptr_value); if (status) { i40e_debug(hw, I40E_DEBUG_ALL, "Reading nvm word failed.Error code: %d.\n", status); return I40E_ERR_NVM; } } #define I40E_NVM_INVALID_PTR_VAL 0x7FFF #define I40E_NVM_INVALID_VAL 0xFFFF /* Pointer not initialized */ if (ptr_value == I40E_NVM_INVALID_PTR_VAL || ptr_value == I40E_NVM_INVALID_VAL) { i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n"); return I40E_ERR_BAD_PTR; } /* Check whether the module is in SR mapped area or outside */ if (ptr_value & I40E_PTR_TYPE) { /* Pointer points outside of the Shared RAM mapped area */ i40e_debug(hw, I40E_DEBUG_ALL, "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n"); return I40E_ERR_PARAM; } else { /* Read from the Shadow RAM */ status = i40e_read_nvm_word(hw, ptr_value + module_offset, &specific_ptr); if (status) { i40e_debug(hw, I40E_DEBUG_ALL, "Reading nvm word failed.Error code: %d.\n", status); return I40E_ERR_NVM; } offset = ptr_value + module_offset + specific_ptr + data_offset; status = i40e_read_nvm_buffer(hw, offset, &words_data_size, data_ptr); if (status) { i40e_debug(hw, I40E_DEBUG_ALL, "Reading nvm buffer failed.Error code: %d.\n", status); } } return status; } /** * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). * @words: (in) number of words to read; (out) number of words actually read * @data: words read from the Shadow RAM * * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() * method. The buffer read is preceded by the NVM ownership take * and followed by the release. **/ static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset, u16 *words, u16 *data) { i40e_status ret_code = 0; u16 index, word; /* Loop thru the selected region */ for (word = 0; word < *words; word++) { index = offset + word; ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]); if (ret_code) break; } /* Update the number of words read from the Shadow RAM */ *words = word; return ret_code; } /** * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). * @words: (in) number of words to read; (out) number of words actually read * @data: words read from the Shadow RAM * * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq() * method. The buffer read is preceded by the NVM ownership take * and followed by the release. **/ static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset, u16 *words, u16 *data) { i40e_status ret_code; u16 read_size; bool last_cmd = false; u16 words_read = 0; u16 i = 0; do { /* Calculate number of bytes we should read in this step. * FVL AQ do not allow to read more than one page at a time or * to cross page boundaries. */ if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS) read_size = min(*words, (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS - (offset % I40E_SR_SECTOR_SIZE_IN_WORDS))); else read_size = min((*words - words_read), I40E_SR_SECTOR_SIZE_IN_WORDS); /* Check if this is last command, if so set proper flag */ if ((words_read + read_size) >= *words) last_cmd = true; ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size, data + words_read, last_cmd); if (ret_code) goto read_nvm_buffer_aq_exit; /* Increment counter for words already read and move offset to * new read location */ words_read += read_size; offset += read_size; } while (words_read < *words); for (i = 0; i < *words; i++) data[i] = le16_to_cpu(((__le16 *)data)[i]); read_nvm_buffer_aq_exit: *words = words_read; return ret_code; } /** * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). * @words: (in) number of words to read; (out) number of words actually read * @data: words read from the Shadow RAM * * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() * method. **/ static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset, u16 *words, u16 *data) { if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) return i40e_read_nvm_buffer_aq(hw, offset, words, data); return i40e_read_nvm_buffer_srctl(hw, offset, words, data); } /** * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary * @hw: pointer to the HW structure * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF). * @words: (in) number of words to read; (out) number of words actually read * @data: words read from the Shadow RAM * * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd() * method. The buffer read is preceded by the NVM ownership take * and followed by the release. **/ i40e_status i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset, u16 *words, u16 *data) { i40e_status ret_code = 0; if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE) { ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); if (!ret_code) { ret_code = i40e_read_nvm_buffer_aq(hw, offset, words, data); i40e_release_nvm(hw); } } else { ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data); } return ret_code; } /** * i40e_write_nvm_aq - Writes Shadow RAM. * @hw: pointer to the HW structure. * @module_pointer: module pointer location in words from the NVM beginning * @offset: offset in words from module start * @words: number of words to write * @data: buffer with words to write to the Shadow RAM * @last_command: tells the AdminQ that this is the last command * * Writes a 16 bit words buffer to the Shadow RAM using the admin command. **/ static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer, u32 offset, u16 words, void *data, bool last_command) { i40e_status ret_code = I40E_ERR_NVM; struct i40e_asq_cmd_details cmd_details; memset(&cmd_details, 0, sizeof(cmd_details)); cmd_details.wb_desc = &hw->nvm_wb_desc; /* Here we are checking the SR limit only for the flat memory model. * We cannot do it for the module-based model, as we did not acquire * the NVM resource yet (we cannot get the module pointer value). * Firmware will check the module-based model. */ if ((offset + words) > hw->nvm.sr_size) i40e_debug(hw, I40E_DEBUG_NVM, "NVM write error: offset %d beyond Shadow RAM limit %d\n", (offset + words), hw->nvm.sr_size); else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS) /* We can write only up to 4KB (one sector), in one AQ write */ i40e_debug(hw, I40E_DEBUG_NVM, "NVM write fail error: tried to write %d words, limit is %d.\n", words, I40E_SR_SECTOR_SIZE_IN_WORDS); else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS) != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS)) /* A single write cannot spread over two sectors */ i40e_debug(hw, I40E_DEBUG_NVM, "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n", offset, words); else ret_code = i40e_aq_update_nvm(hw, module_pointer, 2 * offset, /*bytes*/ 2 * words, /*bytes*/ data, last_command, 0, &cmd_details); return ret_code; } /** * i40e_calc_nvm_checksum - Calculates and returns the checksum * @hw: pointer to hardware structure * @checksum: pointer to the checksum * * This function calculates SW Checksum that covers the whole 64kB shadow RAM * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD * is customer specific and unknown. Therefore, this function skips all maximum * possible size of VPD (1kB). **/ static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw, u16 *checksum) { i40e_status ret_code; struct i40e_virt_mem vmem; u16 pcie_alt_module = 0; u16 checksum_local = 0; u16 vpd_module = 0; u16 *data; u16 i = 0; ret_code = i40e_allocate_virt_mem(hw, &vmem, I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16)); if (ret_code) goto i40e_calc_nvm_checksum_exit; data = (u16 *)vmem.va; /* read pointer to VPD area */ ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module); if (ret_code) { ret_code = I40E_ERR_NVM_CHECKSUM; goto i40e_calc_nvm_checksum_exit; } /* read pointer to PCIe Alt Auto-load module */ ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR, &pcie_alt_module); if (ret_code) { ret_code = I40E_ERR_NVM_CHECKSUM; goto i40e_calc_nvm_checksum_exit; } /* Calculate SW checksum that covers the whole 64kB shadow RAM * except the VPD and PCIe ALT Auto-load modules */ for (i = 0; i < hw->nvm.sr_size; i++) { /* Read SR page */ if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) { u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS; ret_code = __i40e_read_nvm_buffer(hw, i, &words, data); if (ret_code) { ret_code = I40E_ERR_NVM_CHECKSUM; goto i40e_calc_nvm_checksum_exit; } } /* Skip Checksum word */ if (i == I40E_SR_SW_CHECKSUM_WORD) continue; /* Skip VPD module (convert byte size to word count) */ if ((i >= (u32)vpd_module) && (i < ((u32)vpd_module + (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) { continue; } /* Skip PCIe ALT module (convert byte size to word count) */ if ((i >= (u32)pcie_alt_module) && (i < ((u32)pcie_alt_module + (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) { continue; } checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS]; } *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local; i40e_calc_nvm_checksum_exit: i40e_free_virt_mem(hw, &vmem); return ret_code; } /** * i40e_update_nvm_checksum - Updates the NVM checksum * @hw: pointer to hardware structure * * NVM ownership must be acquired before calling this function and released * on ARQ completion event reception by caller. * This function will commit SR to NVM. **/ i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw) { i40e_status ret_code; u16 checksum; __le16 le_sum; ret_code = i40e_calc_nvm_checksum(hw, &checksum); if (!ret_code) { le_sum = cpu_to_le16(checksum); ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD, 1, &le_sum, true); } return ret_code; } /** * i40e_validate_nvm_checksum - Validate EEPROM checksum * @hw: pointer to hardware structure * @checksum: calculated checksum * * Performs checksum calculation and validates the NVM SW checksum. If the * caller does not need checksum, the value can be NULL. **/ i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw, u16 *checksum) { i40e_status ret_code = 0; u16 checksum_sr = 0; u16 checksum_local = 0; /* We must acquire the NVM lock in order to correctly synchronize the * NVM accesses across multiple PFs. Without doing so it is possible * for one of the PFs to read invalid data potentially indicating that * the checksum is invalid. */ ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); if (ret_code) return ret_code; ret_code = i40e_calc_nvm_checksum(hw, &checksum_local); __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr); i40e_release_nvm(hw); if (ret_code) return ret_code; /* Verify read checksum from EEPROM is the same as * calculated checksum */ if (checksum_local != checksum_sr) ret_code = I40E_ERR_NVM_CHECKSUM; /* If the user cares, return the calculated checksum */ if (checksum) *checksum = checksum_local; return ret_code; } static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno); static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno); static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *errno); static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, struct i40e_nvm_access *cmd, int *perrno); static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw, struct i40e_nvm_access *cmd, int *perrno); static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno); static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno); static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno); static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno); static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno); static inline u8 i40e_nvmupd_get_module(u32 val) { return (u8)(val & I40E_NVM_MOD_PNT_MASK); } static inline u8 i40e_nvmupd_get_transaction(u32 val) { return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT); } static inline u8 i40e_nvmupd_get_preservation_flags(u32 val) { return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >> I40E_NVM_PRESERVATION_FLAGS_SHIFT); } static const char * const i40e_nvm_update_state_str[] = { "I40E_NVMUPD_INVALID", "I40E_NVMUPD_READ_CON", "I40E_NVMUPD_READ_SNT", "I40E_NVMUPD_READ_LCB", "I40E_NVMUPD_READ_SA", "I40E_NVMUPD_WRITE_ERA", "I40E_NVMUPD_WRITE_CON", "I40E_NVMUPD_WRITE_SNT", "I40E_NVMUPD_WRITE_LCB", "I40E_NVMUPD_WRITE_SA", "I40E_NVMUPD_CSUM_CON", "I40E_NVMUPD_CSUM_SA", "I40E_NVMUPD_CSUM_LCB", "I40E_NVMUPD_STATUS", "I40E_NVMUPD_EXEC_AQ", "I40E_NVMUPD_GET_AQ_RESULT", "I40E_NVMUPD_GET_AQ_EVENT", }; /** * i40e_nvmupd_command - Process an NVM update command * @hw: pointer to hardware structure * @cmd: pointer to nvm update command * @bytes: pointer to the data buffer * @perrno: pointer to return error code * * Dispatches command depending on what update state is current **/ i40e_status i40e_nvmupd_command(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno) { i40e_status status; enum i40e_nvmupd_cmd upd_cmd; /* assume success */ *perrno = 0; /* early check for status command and debug msgs */ upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n", i40e_nvm_update_state_str[upd_cmd], hw->nvmupd_state, hw->nvm_release_on_done, hw->nvm_wait_opcode, cmd->command, cmd->config, cmd->offset, cmd->data_size); if (upd_cmd == I40E_NVMUPD_INVALID) { *perrno = -EFAULT; i40e_debug(hw, I40E_DEBUG_NVM, "i40e_nvmupd_validate_command returns %d errno %d\n", upd_cmd, *perrno); } /* a status request returns immediately rather than * going into the state machine */ if (upd_cmd == I40E_NVMUPD_STATUS) { if (!cmd->data_size) { *perrno = -EFAULT; return I40E_ERR_BUF_TOO_SHORT; } bytes[0] = hw->nvmupd_state; if (cmd->data_size >= 4) { bytes[1] = 0; *((u16 *)&bytes[2]) = hw->nvm_wait_opcode; } /* Clear error status on read */ if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; return 0; } /* Clear status even it is not read and log */ if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) { i40e_debug(hw, I40E_DEBUG_NVM, "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n"); hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; } /* Acquire lock to prevent race condition where adminq_task * can execute after i40e_nvmupd_nvm_read/write but before state * variables (nvm_wait_opcode, nvm_release_on_done) are updated. * * During NVMUpdate, it is observed that lock could be held for * ~5ms for most commands. However lock is held for ~60ms for * NVMUPD_CSUM_LCB command. */ mutex_lock(&hw->aq.arq_mutex); switch (hw->nvmupd_state) { case I40E_NVMUPD_STATE_INIT: status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno); break; case I40E_NVMUPD_STATE_READING: status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno); break; case I40E_NVMUPD_STATE_WRITING: status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno); break; case I40E_NVMUPD_STATE_INIT_WAIT: case I40E_NVMUPD_STATE_WRITE_WAIT: /* if we need to stop waiting for an event, clear * the wait info and return before doing anything else */ if (cmd->offset == 0xffff) { i40e_nvmupd_clear_wait_state(hw); status = 0; break; } status = I40E_ERR_NOT_READY; *perrno = -EBUSY; break; default: /* invalid state, should never happen */ i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: no such state %d\n", hw->nvmupd_state); status = I40E_NOT_SUPPORTED; *perrno = -ESRCH; break; } mutex_unlock(&hw->aq.arq_mutex); return status; } /** * i40e_nvmupd_state_init - Handle NVM update state Init * @hw: pointer to hardware structure * @cmd: pointer to nvm update command buffer * @bytes: pointer to the data buffer * @perrno: pointer to return error code * * Process legitimate commands of the Init state and conditionally set next * state. Reject all other commands. **/ static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno) { i40e_status status = 0; enum i40e_nvmupd_cmd upd_cmd; upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); switch (upd_cmd) { case I40E_NVMUPD_READ_SA: status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); if (status) { *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); } else { status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); i40e_release_nvm(hw); } break; case I40E_NVMUPD_READ_SNT: status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ); if (status) { *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); } else { status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); if (status) i40e_release_nvm(hw); else hw->nvmupd_state = I40E_NVMUPD_STATE_READING; } break; case I40E_NVMUPD_WRITE_ERA: status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); if (status) { *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); } else { status = i40e_nvmupd_nvm_erase(hw, cmd, perrno); if (status) { i40e_release_nvm(hw); } else { hw->nvm_release_on_done = true; hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase; hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; } } break; case I40E_NVMUPD_WRITE_SA: status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); if (status) { *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); } else { status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); if (status) { i40e_release_nvm(hw); } else { hw->nvm_release_on_done = true; hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; } } break; case I40E_NVMUPD_WRITE_SNT: status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); if (status) { *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); } else { status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); if (status) { i40e_release_nvm(hw); } else { hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; } } break; case I40E_NVMUPD_CSUM_SA: status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); if (status) { *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); } else { status = i40e_update_nvm_checksum(hw); if (status) { *perrno = hw->aq.asq_last_status ? i40e_aq_rc_to_posix(status, hw->aq.asq_last_status) : -EIO; i40e_release_nvm(hw); } else { hw->nvm_release_on_done = true; hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; } } break; case I40E_NVMUPD_EXEC_AQ: status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno); break; case I40E_NVMUPD_GET_AQ_RESULT: status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno); break; case I40E_NVMUPD_GET_AQ_EVENT: status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno); break; default: i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: bad cmd %s in init state\n", i40e_nvm_update_state_str[upd_cmd]); status = I40E_ERR_NVM; *perrno = -ESRCH; break; } return status; } /** * i40e_nvmupd_state_reading - Handle NVM update state Reading * @hw: pointer to hardware structure * @cmd: pointer to nvm update command buffer * @bytes: pointer to the data buffer * @perrno: pointer to return error code * * NVM ownership is already held. Process legitimate commands and set any * change in state; reject all other commands. **/ static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno) { i40e_status status = 0; enum i40e_nvmupd_cmd upd_cmd; upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); switch (upd_cmd) { case I40E_NVMUPD_READ_SA: case I40E_NVMUPD_READ_CON: status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); break; case I40E_NVMUPD_READ_LCB: status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno); i40e_release_nvm(hw); hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; break; default: i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: bad cmd %s in reading state.\n", i40e_nvm_update_state_str[upd_cmd]); status = I40E_NOT_SUPPORTED; *perrno = -ESRCH; break; } return status; } /** * i40e_nvmupd_state_writing - Handle NVM update state Writing * @hw: pointer to hardware structure * @cmd: pointer to nvm update command buffer * @bytes: pointer to the data buffer * @perrno: pointer to return error code * * NVM ownership is already held. Process legitimate commands and set any * change in state; reject all other commands **/ static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno) { i40e_status status = 0; enum i40e_nvmupd_cmd upd_cmd; bool retry_attempt = false; upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno); retry: switch (upd_cmd) { case I40E_NVMUPD_WRITE_CON: status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); if (!status) { hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; } break; case I40E_NVMUPD_WRITE_LCB: status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno); if (status) { *perrno = hw->aq.asq_last_status ? i40e_aq_rc_to_posix(status, hw->aq.asq_last_status) : -EIO; hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; } else { hw->nvm_release_on_done = true; hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; } break; case I40E_NVMUPD_CSUM_CON: /* Assumes the caller has acquired the nvm */ status = i40e_update_nvm_checksum(hw); if (status) { *perrno = hw->aq.asq_last_status ? i40e_aq_rc_to_posix(status, hw->aq.asq_last_status) : -EIO; hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; } else { hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT; } break; case I40E_NVMUPD_CSUM_LCB: /* Assumes the caller has acquired the nvm */ status = i40e_update_nvm_checksum(hw); if (status) { *perrno = hw->aq.asq_last_status ? i40e_aq_rc_to_posix(status, hw->aq.asq_last_status) : -EIO; hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; } else { hw->nvm_release_on_done = true; hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update; hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; } break; default: i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: bad cmd %s in writing state.\n", i40e_nvm_update_state_str[upd_cmd]); status = I40E_NOT_SUPPORTED; *perrno = -ESRCH; break; } /* In some circumstances, a multi-write transaction takes longer * than the default 3 minute timeout on the write semaphore. If * the write failed with an EBUSY status, this is likely the problem, * so here we try to reacquire the semaphore then retry the write. * We only do one retry, then give up. */ if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) && !retry_attempt) { i40e_status old_status = status; u32 old_asq_status = hw->aq.asq_last_status; u32 gtime; gtime = rd32(hw, I40E_GLVFGEN_TIMER); if (gtime >= hw->nvm.hw_semaphore_timeout) { i40e_debug(hw, I40E_DEBUG_ALL, "NVMUPD: write semaphore expired (%d >= %lld), retrying\n", gtime, hw->nvm.hw_semaphore_timeout); i40e_release_nvm(hw); status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE); if (status) { i40e_debug(hw, I40E_DEBUG_ALL, "NVMUPD: write semaphore reacquire failed aq_err = %d\n", hw->aq.asq_last_status); status = old_status; hw->aq.asq_last_status = old_asq_status; } else { retry_attempt = true; goto retry; } } } return status; } /** * i40e_nvmupd_clear_wait_state - clear wait state on hw * @hw: pointer to the hardware structure **/ void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw) { i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: clearing wait on opcode 0x%04x\n", hw->nvm_wait_opcode); if (hw->nvm_release_on_done) { i40e_release_nvm(hw); hw->nvm_release_on_done = false; } hw->nvm_wait_opcode = 0; if (hw->aq.arq_last_status) { hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR; return; } switch (hw->nvmupd_state) { case I40E_NVMUPD_STATE_INIT_WAIT: hw->nvmupd_state = I40E_NVMUPD_STATE_INIT; break; case I40E_NVMUPD_STATE_WRITE_WAIT: hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING; break; default: break; } } /** * i40e_nvmupd_check_wait_event - handle NVM update operation events * @hw: pointer to the hardware structure * @opcode: the event that just happened * @desc: AdminQ descriptor **/ void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode, struct i40e_aq_desc *desc) { u32 aq_desc_len = sizeof(struct i40e_aq_desc); if (opcode == hw->nvm_wait_opcode) { memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len); i40e_nvmupd_clear_wait_state(hw); } } /** * i40e_nvmupd_validate_command - Validate given command * @hw: pointer to hardware structure * @cmd: pointer to nvm update command buffer * @perrno: pointer to return error code * * Return one of the valid command types or I40E_NVMUPD_INVALID **/ static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw, struct i40e_nvm_access *cmd, int *perrno) { enum i40e_nvmupd_cmd upd_cmd; u8 module, transaction; /* anything that doesn't match a recognized case is an error */ upd_cmd = I40E_NVMUPD_INVALID; transaction = i40e_nvmupd_get_transaction(cmd->config); module = i40e_nvmupd_get_module(cmd->config); /* limits on data size */ if ((cmd->data_size < 1) || (cmd->data_size > I40E_NVMUPD_MAX_DATA)) { i40e_debug(hw, I40E_DEBUG_NVM, "i40e_nvmupd_validate_command data_size %d\n", cmd->data_size); *perrno = -EFAULT; return I40E_NVMUPD_INVALID; } switch (cmd->command) { case I40E_NVM_READ: switch (transaction) { case I40E_NVM_CON: upd_cmd = I40E_NVMUPD_READ_CON; break; case I40E_NVM_SNT: upd_cmd = I40E_NVMUPD_READ_SNT; break; case I40E_NVM_LCB: upd_cmd = I40E_NVMUPD_READ_LCB; break; case I40E_NVM_SA: upd_cmd = I40E_NVMUPD_READ_SA; break; case I40E_NVM_EXEC: if (module == 0xf) upd_cmd = I40E_NVMUPD_STATUS; else if (module == 0) upd_cmd = I40E_NVMUPD_GET_AQ_RESULT; break; case I40E_NVM_AQE: upd_cmd = I40E_NVMUPD_GET_AQ_EVENT; break; } break; case I40E_NVM_WRITE: switch (transaction) { case I40E_NVM_CON: upd_cmd = I40E_NVMUPD_WRITE_CON; break; case I40E_NVM_SNT: upd_cmd = I40E_NVMUPD_WRITE_SNT; break; case I40E_NVM_LCB: upd_cmd = I40E_NVMUPD_WRITE_LCB; break; case I40E_NVM_SA: upd_cmd = I40E_NVMUPD_WRITE_SA; break; case I40E_NVM_ERA: upd_cmd = I40E_NVMUPD_WRITE_ERA; break; case I40E_NVM_CSUM: upd_cmd = I40E_NVMUPD_CSUM_CON; break; case (I40E_NVM_CSUM|I40E_NVM_SA): upd_cmd = I40E_NVMUPD_CSUM_SA; break; case (I40E_NVM_CSUM|I40E_NVM_LCB): upd_cmd = I40E_NVMUPD_CSUM_LCB; break; case I40E_NVM_EXEC: if (module == 0) upd_cmd = I40E_NVMUPD_EXEC_AQ; break; } break; } return upd_cmd; } /** * i40e_nvmupd_exec_aq - Run an AQ command * @hw: pointer to hardware structure * @cmd: pointer to nvm update command buffer * @bytes: pointer to the data buffer * @perrno: pointer to return error code * * cmd structure contains identifiers and data buffer **/ static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno) { struct i40e_asq_cmd_details cmd_details; i40e_status status; struct i40e_aq_desc *aq_desc; u32 buff_size = 0; u8 *buff = NULL; u32 aq_desc_len; u32 aq_data_len; i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); if (cmd->offset == 0xffff) return 0; memset(&cmd_details, 0, sizeof(cmd_details)); cmd_details.wb_desc = &hw->nvm_wb_desc; aq_desc_len = sizeof(struct i40e_aq_desc); memset(&hw->nvm_wb_desc, 0, aq_desc_len); /* get the aq descriptor */ if (cmd->data_size < aq_desc_len) { i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n", cmd->data_size, aq_desc_len); *perrno = -EINVAL; return I40E_ERR_PARAM; } aq_desc = (struct i40e_aq_desc *)bytes; /* if data buffer needed, make sure it's ready */ aq_data_len = cmd->data_size - aq_desc_len; buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen)); if (buff_size) { if (!hw->nvm_buff.va) { status = i40e_allocate_virt_mem(hw, &hw->nvm_buff, hw->aq.asq_buf_size); if (status) i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n", status); } if (hw->nvm_buff.va) { buff = hw->nvm_buff.va; memcpy(buff, &bytes[aq_desc_len], aq_data_len); } } if (cmd->offset) memset(&hw->nvm_aq_event_desc, 0, aq_desc_len); /* and away we go! */ status = i40e_asq_send_command(hw, aq_desc, buff, buff_size, &cmd_details); if (status) { i40e_debug(hw, I40E_DEBUG_NVM, "i40e_nvmupd_exec_aq err %s aq_err %s\n", i40e_stat_str(hw, status), i40e_aq_str(hw, hw->aq.asq_last_status)); *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); return status; } /* should we wait for a followup event? */ if (cmd->offset) { hw->nvm_wait_opcode = cmd->offset; hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT; } return status; } /** * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq * @hw: pointer to hardware structure * @cmd: pointer to nvm update command buffer * @bytes: pointer to the data buffer * @perrno: pointer to return error code * * cmd structure contains identifiers and data buffer **/ static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno) { u32 aq_total_len; u32 aq_desc_len; int remainder; u8 *buff; i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); aq_desc_len = sizeof(struct i40e_aq_desc); aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen); /* check offset range */ if (cmd->offset > aq_total_len) { i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n", __func__, cmd->offset, aq_total_len); *perrno = -EINVAL; return I40E_ERR_PARAM; } /* check copylength range */ if (cmd->data_size > (aq_total_len - cmd->offset)) { int new_len = aq_total_len - cmd->offset; i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n", __func__, cmd->data_size, new_len); cmd->data_size = new_len; } remainder = cmd->data_size; if (cmd->offset < aq_desc_len) { u32 len = aq_desc_len - cmd->offset; len = min(len, cmd->data_size); i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n", __func__, cmd->offset, cmd->offset + len); buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset; memcpy(bytes, buff, len); bytes += len; remainder -= len; buff = hw->nvm_buff.va; } else { buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len); } if (remainder > 0) { int start_byte = buff - (u8 *)hw->nvm_buff.va; i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n", __func__, start_byte, start_byte + remainder); memcpy(bytes, buff, remainder); } return 0; } /** * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq * @hw: pointer to hardware structure * @cmd: pointer to nvm update command buffer * @bytes: pointer to the data buffer * @perrno: pointer to return error code * * cmd structure contains identifiers and data buffer **/ static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno) { u32 aq_total_len; u32 aq_desc_len; i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__); aq_desc_len = sizeof(struct i40e_aq_desc); aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen); /* check copylength range */ if (cmd->data_size > aq_total_len) { i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n", __func__, cmd->data_size, aq_total_len); cmd->data_size = aq_total_len; } memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size); return 0; } /** * i40e_nvmupd_nvm_read - Read NVM * @hw: pointer to hardware structure * @cmd: pointer to nvm update command buffer * @bytes: pointer to the data buffer * @perrno: pointer to return error code * * cmd structure contains identifiers and data buffer **/ static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno) { struct i40e_asq_cmd_details cmd_details; i40e_status status; u8 module, transaction; bool last; transaction = i40e_nvmupd_get_transaction(cmd->config); module = i40e_nvmupd_get_module(cmd->config); last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA); memset(&cmd_details, 0, sizeof(cmd_details)); cmd_details.wb_desc = &hw->nvm_wb_desc; status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size, bytes, last, &cmd_details); if (status) { i40e_debug(hw, I40E_DEBUG_NVM, "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n", module, cmd->offset, cmd->data_size); i40e_debug(hw, I40E_DEBUG_NVM, "i40e_nvmupd_nvm_read status %d aq %d\n", status, hw->aq.asq_last_status); *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); } return status; } /** * i40e_nvmupd_nvm_erase - Erase an NVM module * @hw: pointer to hardware structure * @cmd: pointer to nvm update command buffer * @perrno: pointer to return error code * * module, offset, data_size and data are in cmd structure **/ static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw, struct i40e_nvm_access *cmd, int *perrno) { i40e_status status = 0; struct i40e_asq_cmd_details cmd_details; u8 module, transaction; bool last; transaction = i40e_nvmupd_get_transaction(cmd->config); module = i40e_nvmupd_get_module(cmd->config); last = (transaction & I40E_NVM_LCB); memset(&cmd_details, 0, sizeof(cmd_details)); cmd_details.wb_desc = &hw->nvm_wb_desc; status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size, last, &cmd_details); if (status) { i40e_debug(hw, I40E_DEBUG_NVM, "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n", module, cmd->offset, cmd->data_size); i40e_debug(hw, I40E_DEBUG_NVM, "i40e_nvmupd_nvm_erase status %d aq %d\n", status, hw->aq.asq_last_status); *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); } return status; } /** * i40e_nvmupd_nvm_write - Write NVM * @hw: pointer to hardware structure * @cmd: pointer to nvm update command buffer * @bytes: pointer to the data buffer * @perrno: pointer to return error code * * module, offset, data_size and data are in cmd structure **/ static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw, struct i40e_nvm_access *cmd, u8 *bytes, int *perrno) { i40e_status status = 0; struct i40e_asq_cmd_details cmd_details; u8 module, transaction; u8 preservation_flags; bool last; transaction = i40e_nvmupd_get_transaction(cmd->config); module = i40e_nvmupd_get_module(cmd->config); last = (transaction & I40E_NVM_LCB); preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config); memset(&cmd_details, 0, sizeof(cmd_details)); cmd_details.wb_desc = &hw->nvm_wb_desc; status = i40e_aq_update_nvm(hw, module, cmd->offset, (u16)cmd->data_size, bytes, last, preservation_flags, &cmd_details); if (status) { i40e_debug(hw, I40E_DEBUG_NVM, "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n", module, cmd->offset, cmd->data_size); i40e_debug(hw, I40E_DEBUG_NVM, "i40e_nvmupd_nvm_write status %d aq %d\n", status, hw->aq.asq_last_status); *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status); } return status; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1