Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Naveen Mamindlapalli | 1014 | 48.22% | 5 | 41.67% |
Aleksey Makarov | 673 | 32.00% | 1 | 8.33% |
Yi Guo | 214 | 10.18% | 1 | 8.33% |
Subbaraya Sundeep | 201 | 9.56% | 4 | 33.33% |
Sunil Goutham | 1 | 0.05% | 1 | 8.33% |
Total | 2103 | 12 |
// SPDX-License-Identifier: GPL-2.0 /* Marvell PTP driver * * Copyright (C) 2020 Marvell. * */ #include <linux/bitfield.h> #include <linux/device.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/hrtimer.h> #include <linux/ktime.h> #include "ptp.h" #include "mbox.h" #include "rvu.h" #define DRV_NAME "Marvell PTP Driver" #define PCI_DEVID_OCTEONTX2_PTP 0xA00C #define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP 0xB100 #define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP 0xB200 #define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP 0xB300 #define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP 0xB400 #define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP 0xB500 #define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP 0xB600 #define PCI_DEVID_OCTEONTX2_RST 0xA085 #define PCI_DEVID_CN10K_PTP 0xA09E #define PCI_SUBSYS_DEVID_CN10K_A_PTP 0xB900 #define PCI_SUBSYS_DEVID_CNF10K_A_PTP 0xBA00 #define PCI_SUBSYS_DEVID_CNF10K_B_PTP 0xBC00 #define PCI_PTP_BAR_NO 0 #define PTP_CLOCK_CFG 0xF00ULL #define PTP_CLOCK_CFG_PTP_EN BIT_ULL(0) #define PTP_CLOCK_CFG_EXT_CLK_EN BIT_ULL(1) #define PTP_CLOCK_CFG_EXT_CLK_IN_MASK GENMASK_ULL(7, 2) #define PTP_CLOCK_CFG_TSTMP_EDGE BIT_ULL(9) #define PTP_CLOCK_CFG_TSTMP_EN BIT_ULL(8) #define PTP_CLOCK_CFG_TSTMP_IN_MASK GENMASK_ULL(15, 10) #define PTP_CLOCK_CFG_PPS_EN BIT_ULL(30) #define PTP_CLOCK_CFG_PPS_INV BIT_ULL(31) #define PTP_PPS_HI_INCR 0xF60ULL #define PTP_PPS_LO_INCR 0xF68ULL #define PTP_PPS_THRESH_HI 0xF58ULL #define PTP_CLOCK_LO 0xF08ULL #define PTP_CLOCK_HI 0xF10ULL #define PTP_CLOCK_COMP 0xF18ULL #define PTP_TIMESTAMP 0xF20ULL #define PTP_CLOCK_SEC 0xFD0ULL #define PTP_SEC_ROLLOVER 0xFD8ULL #define CYCLE_MULT 1000 static struct ptp *first_ptp_block; static const struct pci_device_id ptp_id_table[]; static bool is_ptp_dev_cnf10kb(struct ptp *ptp) { return (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_B_PTP) ? true : false; } static bool is_ptp_dev_cn10k(struct ptp *ptp) { return (ptp->pdev->device == PCI_DEVID_CN10K_PTP) ? true : false; } static bool cn10k_ptp_errata(struct ptp *ptp) { if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP || ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP) return true; return false; } static bool is_ptp_tsfmt_sec_nsec(struct ptp *ptp) { if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP || ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP) return true; return false; } static enum hrtimer_restart ptp_reset_thresh(struct hrtimer *hrtimer) { struct ptp *ptp = container_of(hrtimer, struct ptp, hrtimer); ktime_t curr_ts = ktime_get(); ktime_t delta_ns, period_ns; u64 ptp_clock_hi; /* calculate the elapsed time since last restart */ delta_ns = ktime_to_ns(ktime_sub(curr_ts, ptp->last_ts)); /* if the ptp clock value has crossed 0.5 seconds, * its too late to update pps threshold value, so * update threshold after 1 second. */ ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); if (ptp_clock_hi > 500000000) { period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - ptp_clock_hi)); } else { writeq(500000000, ptp->reg_base + PTP_PPS_THRESH_HI); period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - delta_ns)); } hrtimer_forward_now(hrtimer, period_ns); ptp->last_ts = curr_ts; return HRTIMER_RESTART; } static void ptp_hrtimer_start(struct ptp *ptp, ktime_t start_ns) { ktime_t period_ns; period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - start_ns)); hrtimer_start(&ptp->hrtimer, period_ns, HRTIMER_MODE_REL); ptp->last_ts = ktime_get(); } static u64 read_ptp_tstmp_sec_nsec(struct ptp *ptp) { u64 sec, sec1, nsec; unsigned long flags; spin_lock_irqsave(&ptp->ptp_lock, flags); sec = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL; nsec = readq(ptp->reg_base + PTP_CLOCK_HI); sec1 = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL; /* check nsec rollover */ if (sec1 > sec) { nsec = readq(ptp->reg_base + PTP_CLOCK_HI); sec = sec1; } spin_unlock_irqrestore(&ptp->ptp_lock, flags); return sec * NSEC_PER_SEC + nsec; } static u64 read_ptp_tstmp_nsec(struct ptp *ptp) { return readq(ptp->reg_base + PTP_CLOCK_HI); } static u64 ptp_calc_adjusted_comp(u64 ptp_clock_freq) { u64 comp, adj = 0, cycles_per_sec, ns_drift = 0; u32 ptp_clock_nsec, cycle_time; int cycle; /* Errata: * Issue #1: At the time of 1 sec rollover of the nano-second counter, * the nano-second counter is set to 0. However, it should be set to * (existing counter_value - 10^9). * * Issue #2: The nano-second counter rolls over at 0x3B9A_C9FF. * It should roll over at 0x3B9A_CA00. */ /* calculate ptp_clock_comp value */ comp = ((u64)1000000000ULL << 32) / ptp_clock_freq; /* use CYCLE_MULT to avoid accuracy loss due to integer arithmetic */ cycle_time = NSEC_PER_SEC * CYCLE_MULT / ptp_clock_freq; /* cycles per sec */ cycles_per_sec = ptp_clock_freq; /* check whether ptp nanosecond counter rolls over early */ cycle = cycles_per_sec - 1; ptp_clock_nsec = (cycle * comp) >> 32; while (ptp_clock_nsec < NSEC_PER_SEC) { if (ptp_clock_nsec == 0x3B9AC9FF) goto calc_adj_comp; cycle++; ptp_clock_nsec = (cycle * comp) >> 32; } /* compute nanoseconds lost per second when nsec counter rolls over */ ns_drift = ptp_clock_nsec - NSEC_PER_SEC; /* calculate ptp_clock_comp adjustment */ if (ns_drift > 0) { adj = comp * ns_drift; adj = adj / 1000000000ULL; } /* speed up the ptp clock to account for nanoseconds lost */ comp += adj; return comp; calc_adj_comp: /* slow down the ptp clock to not rollover early */ adj = comp * cycle_time; adj = adj / 1000000000ULL; adj = adj / CYCLE_MULT; comp -= adj; return comp; } struct ptp *ptp_get(void) { struct ptp *ptp = first_ptp_block; /* Check PTP block is present in hardware */ if (!pci_dev_present(ptp_id_table)) return ERR_PTR(-ENODEV); /* Check driver is bound to PTP block */ if (!ptp) ptp = ERR_PTR(-EPROBE_DEFER); else pci_dev_get(ptp->pdev); return ptp; } void ptp_put(struct ptp *ptp) { if (!ptp) return; pci_dev_put(ptp->pdev); } static int ptp_adjfine(struct ptp *ptp, long scaled_ppm) { bool neg_adj = false; u32 freq, freq_adj; u64 comp, adj; s64 ppb; if (scaled_ppm < 0) { neg_adj = true; scaled_ppm = -scaled_ppm; } /* The hardware adds the clock compensation value to the PTP clock * on every coprocessor clock cycle. Typical convention is that it * represent number of nanosecond betwen each cycle. In this * convention compensation value is in 64 bit fixed-point * representation where upper 32 bits are number of nanoseconds * and lower is fractions of nanosecond. * The scaled_ppm represent the ratio in "parts per million" by which * the compensation value should be corrected. * To calculate new compenstation value we use 64bit fixed point * arithmetic on following formula * comp = tbase + tbase * scaled_ppm / (1M * 2^16) * where tbase is the basic compensation value calculated * initialy in the probe function. */ /* convert scaled_ppm to ppb */ ppb = 1 + scaled_ppm; ppb *= 125; ppb >>= 13; if (cn10k_ptp_errata(ptp)) { /* calculate the new frequency based on ppb */ freq_adj = (ptp->clock_rate * ppb) / 1000000000ULL; freq = neg_adj ? ptp->clock_rate + freq_adj : ptp->clock_rate - freq_adj; comp = ptp_calc_adjusted_comp(freq); } else { comp = ((u64)1000000000ull << 32) / ptp->clock_rate; adj = comp * ppb; adj = div_u64(adj, 1000000000ull); comp = neg_adj ? comp - adj : comp + adj; } writeq(comp, ptp->reg_base + PTP_CLOCK_COMP); return 0; } static int ptp_get_clock(struct ptp *ptp, u64 *clk) { /* Return the current PTP clock */ *clk = ptp->read_ptp_tstmp(ptp); return 0; } void ptp_start(struct ptp *ptp, u64 sclk, u32 ext_clk_freq, u32 extts) { struct pci_dev *pdev; u64 clock_comp; u64 clock_cfg; if (!ptp) return; pdev = ptp->pdev; if (!sclk) { dev_err(&pdev->dev, "PTP input clock cannot be zero\n"); return; } /* sclk is in MHz */ ptp->clock_rate = sclk * 1000000; /* Program the seconds rollover value to 1 second */ if (is_ptp_dev_cnf10kb(ptp)) writeq(0x3b9aca00, ptp->reg_base + PTP_SEC_ROLLOVER); /* Enable PTP clock */ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); if (ext_clk_freq) { ptp->clock_rate = ext_clk_freq; /* Set GPIO as PTP clock source */ clock_cfg &= ~PTP_CLOCK_CFG_EXT_CLK_IN_MASK; clock_cfg |= PTP_CLOCK_CFG_EXT_CLK_EN; } if (extts) { clock_cfg |= PTP_CLOCK_CFG_TSTMP_EDGE; /* Set GPIO as timestamping source */ clock_cfg &= ~PTP_CLOCK_CFG_TSTMP_IN_MASK; clock_cfg |= PTP_CLOCK_CFG_TSTMP_EN; } clock_cfg |= PTP_CLOCK_CFG_PTP_EN; clock_cfg |= PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV; writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); /* Set 50% duty cycle for 1Hz output */ writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_HI_INCR); writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_LO_INCR); if (cn10k_ptp_errata(ptp)) { /* The ptp_clock_hi rollsover to zero once clock cycle before it * reaches one second boundary. so, program the pps_lo_incr in * such a way that the pps threshold value comparison at one * second boundary will succeed and pps edge changes. After each * one second boundary, the hrtimer handler will be invoked and * reprograms the pps threshold value. */ ptp->clock_period = NSEC_PER_SEC / ptp->clock_rate; writeq((0x1dcd6500ULL - ptp->clock_period) << 32, ptp->reg_base + PTP_PPS_LO_INCR); } if (cn10k_ptp_errata(ptp)) clock_comp = ptp_calc_adjusted_comp(ptp->clock_rate); else clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate; /* Initial compensation value to start the nanosecs counter */ writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP); } static int ptp_get_tstmp(struct ptp *ptp, u64 *clk) { u64 timestamp; if (is_ptp_dev_cn10k(ptp)) { timestamp = readq(ptp->reg_base + PTP_TIMESTAMP); *clk = (timestamp >> 32) * NSEC_PER_SEC + (timestamp & 0xFFFFFFFF); } else { *clk = readq(ptp->reg_base + PTP_TIMESTAMP); } return 0; } static int ptp_set_thresh(struct ptp *ptp, u64 thresh) { if (!cn10k_ptp_errata(ptp)) writeq(thresh, ptp->reg_base + PTP_PPS_THRESH_HI); return 0; } static int ptp_extts_on(struct ptp *ptp, int on) { u64 ptp_clock_hi; if (cn10k_ptp_errata(ptp)) { if (on) { ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); ptp_hrtimer_start(ptp, (ktime_t)ptp_clock_hi); } else { if (hrtimer_active(&ptp->hrtimer)) hrtimer_cancel(&ptp->hrtimer); } } return 0; } static int ptp_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct device *dev = &pdev->dev; struct ptp *ptp; int err; ptp = devm_kzalloc(dev, sizeof(*ptp), GFP_KERNEL); if (!ptp) { err = -ENOMEM; goto error; } ptp->pdev = pdev; err = pcim_enable_device(pdev); if (err) goto error_free; err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev)); if (err) goto error_free; ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO]; pci_set_drvdata(pdev, ptp); if (!first_ptp_block) first_ptp_block = ptp; spin_lock_init(&ptp->ptp_lock); if (is_ptp_tsfmt_sec_nsec(ptp)) ptp->read_ptp_tstmp = &read_ptp_tstmp_sec_nsec; else ptp->read_ptp_tstmp = &read_ptp_tstmp_nsec; if (cn10k_ptp_errata(ptp)) { hrtimer_init(&ptp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); ptp->hrtimer.function = ptp_reset_thresh; } return 0; error_free: devm_kfree(dev, ptp); error: /* For `ptp_get()` we need to differentiate between the case * when the core has not tried to probe this device and the case when * the probe failed. In the later case we pretend that the * initialization was successful and keep the error in * `dev->driver_data`. */ pci_set_drvdata(pdev, ERR_PTR(err)); if (!first_ptp_block) first_ptp_block = ERR_PTR(err); return 0; } static void ptp_remove(struct pci_dev *pdev) { struct ptp *ptp = pci_get_drvdata(pdev); u64 clock_cfg; if (cn10k_ptp_errata(ptp) && hrtimer_active(&ptp->hrtimer)) hrtimer_cancel(&ptp->hrtimer); if (IS_ERR_OR_NULL(ptp)) return; /* Disable PTP clock */ clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN; writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); } static const struct pci_device_id ptp_id_table[] = { { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) }, { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, PCI_VENDOR_ID_CAVIUM, PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) }, { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) }, { 0, } }; struct pci_driver ptp_driver = { .name = DRV_NAME, .id_table = ptp_id_table, .probe = ptp_probe, .remove = ptp_remove, }; int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req, struct ptp_rsp *rsp) { int err = 0; /* This function is the PTP mailbox handler invoked when * called by AF consumers/netdev drivers via mailbox mechanism. * It is used by netdev driver to get the PTP clock and to set * frequency adjustments. Since mailbox can be called without * notion of whether the driver is bound to ptp device below * validation is needed as first step. */ if (!rvu->ptp) return -ENODEV; switch (req->op) { case PTP_OP_ADJFINE: err = ptp_adjfine(rvu->ptp, req->scaled_ppm); break; case PTP_OP_GET_CLOCK: err = ptp_get_clock(rvu->ptp, &rsp->clk); break; case PTP_OP_GET_TSTMP: err = ptp_get_tstmp(rvu->ptp, &rsp->clk); break; case PTP_OP_SET_THRESH: err = ptp_set_thresh(rvu->ptp, req->thresh); break; case PTP_OP_EXTTS_ON: err = ptp_extts_on(rvu->ptp, req->extts_on); break; default: err = -EINVAL; break; } return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1