Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steen Hegelund | 2901 | 99.15% | 1 | 20.00% |
Horatiu Vultur | 11 | 0.38% | 1 | 20.00% |
Zheng Yongjun | 9 | 0.31% | 1 | 20.00% |
Casper Andersson | 4 | 0.14% | 1 | 20.00% |
Jakub Kiciński | 1 | 0.03% | 1 | 20.00% |
Total | 2926 | 5 |
// SPDX-License-Identifier: GPL-2.0+ /* Microchip Sparx5 Switch driver * * Copyright (c) 2021 Microchip Technology Inc. and its subsidiaries. * * The Sparx5 Chip Register Model can be browsed at this location: * https://github.com/microchip-ung/sparx-5_reginfo */ #include <linux/types.h> #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/dma-mapping.h> #include "sparx5_main_regs.h" #include "sparx5_main.h" #include "sparx5_port.h" #define FDMA_XTR_CHANNEL 6 #define FDMA_INJ_CHANNEL 0 #define FDMA_DCB_INFO_DATAL(x) ((x) & GENMASK(15, 0)) #define FDMA_DCB_INFO_TOKEN BIT(17) #define FDMA_DCB_INFO_INTR BIT(18) #define FDMA_DCB_INFO_SW(x) (((x) << 24) & GENMASK(31, 24)) #define FDMA_DCB_STATUS_BLOCKL(x) ((x) & GENMASK(15, 0)) #define FDMA_DCB_STATUS_SOF BIT(16) #define FDMA_DCB_STATUS_EOF BIT(17) #define FDMA_DCB_STATUS_INTR BIT(18) #define FDMA_DCB_STATUS_DONE BIT(19) #define FDMA_DCB_STATUS_BLOCKO(x) (((x) << 20) & GENMASK(31, 20)) #define FDMA_DCB_INVALID_DATA 0x1 #define FDMA_XTR_BUFFER_SIZE 2048 #define FDMA_WEIGHT 4 /* Frame DMA DCB format * * +---------------------------+ * | Next Ptr | * +---------------------------+ * | Reserved | Info | * +---------------------------+ * | Data0 Ptr | * +---------------------------+ * | Reserved | Status0 | * +---------------------------+ * | Data1 Ptr | * +---------------------------+ * | Reserved | Status1 | * +---------------------------+ * | Data2 Ptr | * +---------------------------+ * | Reserved | Status2 | * |-------------|-------------| * | | * | | * | | * | | * | | * |---------------------------| * | Data14 Ptr | * +-------------|-------------+ * | Reserved | Status14 | * +-------------|-------------+ */ /* For each hardware DB there is an entry in this list and when the HW DB * entry is used, this SW DB entry is moved to the back of the list */ struct sparx5_db { struct list_head list; void *cpu_addr; }; static void sparx5_fdma_rx_add_dcb(struct sparx5_rx *rx, struct sparx5_rx_dcb_hw *dcb, u64 nextptr) { int idx = 0; /* Reset the status of the DB */ for (idx = 0; idx < FDMA_RX_DCB_MAX_DBS; ++idx) { struct sparx5_db_hw *db = &dcb->db[idx]; db->status = FDMA_DCB_STATUS_INTR; } dcb->nextptr = FDMA_DCB_INVALID_DATA; dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE); rx->last_entry->nextptr = nextptr; rx->last_entry = dcb; } static void sparx5_fdma_tx_add_dcb(struct sparx5_tx *tx, struct sparx5_tx_dcb_hw *dcb, u64 nextptr) { int idx = 0; /* Reset the status of the DB */ for (idx = 0; idx < FDMA_TX_DCB_MAX_DBS; ++idx) { struct sparx5_db_hw *db = &dcb->db[idx]; db->status = FDMA_DCB_STATUS_DONE; } dcb->nextptr = FDMA_DCB_INVALID_DATA; dcb->info = FDMA_DCB_INFO_DATAL(FDMA_XTR_BUFFER_SIZE); } static void sparx5_fdma_rx_activate(struct sparx5 *sparx5, struct sparx5_rx *rx) { /* Write the buffer address in the LLP and LLP1 regs */ spx5_wr(((u64)rx->dma) & GENMASK(31, 0), sparx5, FDMA_DCB_LLP(rx->channel_id)); spx5_wr(((u64)rx->dma) >> 32, sparx5, FDMA_DCB_LLP1(rx->channel_id)); /* Set the number of RX DBs to be used, and DB end-of-frame interrupt */ spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_RX_DCB_MAX_DBS) | FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) | FDMA_CH_CFG_CH_INJ_PORT_SET(XTR_QUEUE), sparx5, FDMA_CH_CFG(rx->channel_id)); /* Set the RX Watermark to max */ spx5_rmw(FDMA_XTR_CFG_XTR_FIFO_WM_SET(31), FDMA_XTR_CFG_XTR_FIFO_WM, sparx5, FDMA_XTR_CFG); /* Start RX fdma */ spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(0), FDMA_PORT_CTRL_XTR_STOP, sparx5, FDMA_PORT_CTRL(0)); /* Enable RX channel DB interrupt */ spx5_rmw(BIT(rx->channel_id), BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA, sparx5, FDMA_INTR_DB_ENA); /* Activate the RX channel */ spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_ACTIVATE); } static void sparx5_fdma_rx_deactivate(struct sparx5 *sparx5, struct sparx5_rx *rx) { /* Dectivate the RX channel */ spx5_rmw(0, BIT(rx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE, sparx5, FDMA_CH_ACTIVATE); /* Disable RX channel DB interrupt */ spx5_rmw(0, BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA, sparx5, FDMA_INTR_DB_ENA); /* Stop RX fdma */ spx5_rmw(FDMA_PORT_CTRL_XTR_STOP_SET(1), FDMA_PORT_CTRL_XTR_STOP, sparx5, FDMA_PORT_CTRL(0)); } static void sparx5_fdma_tx_activate(struct sparx5 *sparx5, struct sparx5_tx *tx) { /* Write the buffer address in the LLP and LLP1 regs */ spx5_wr(((u64)tx->dma) & GENMASK(31, 0), sparx5, FDMA_DCB_LLP(tx->channel_id)); spx5_wr(((u64)tx->dma) >> 32, sparx5, FDMA_DCB_LLP1(tx->channel_id)); /* Set the number of TX DBs to be used, and DB end-of-frame interrupt */ spx5_wr(FDMA_CH_CFG_CH_DCB_DB_CNT_SET(FDMA_TX_DCB_MAX_DBS) | FDMA_CH_CFG_CH_INTR_DB_EOF_ONLY_SET(1) | FDMA_CH_CFG_CH_INJ_PORT_SET(INJ_QUEUE), sparx5, FDMA_CH_CFG(tx->channel_id)); /* Start TX fdma */ spx5_rmw(FDMA_PORT_CTRL_INJ_STOP_SET(0), FDMA_PORT_CTRL_INJ_STOP, sparx5, FDMA_PORT_CTRL(0)); /* Activate the channel */ spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_ACTIVATE); } static void sparx5_fdma_tx_deactivate(struct sparx5 *sparx5, struct sparx5_tx *tx) { /* Disable the channel */ spx5_rmw(0, BIT(tx->channel_id) & FDMA_CH_ACTIVATE_CH_ACTIVATE, sparx5, FDMA_CH_ACTIVATE); } static void sparx5_fdma_rx_reload(struct sparx5 *sparx5, struct sparx5_rx *rx) { /* Reload the RX channel */ spx5_wr(BIT(rx->channel_id), sparx5, FDMA_CH_RELOAD); } static void sparx5_fdma_tx_reload(struct sparx5 *sparx5, struct sparx5_tx *tx) { /* Reload the TX channel */ spx5_wr(BIT(tx->channel_id), sparx5, FDMA_CH_RELOAD); } static struct sk_buff *sparx5_fdma_rx_alloc_skb(struct sparx5_rx *rx) { return __netdev_alloc_skb(rx->ndev, FDMA_XTR_BUFFER_SIZE, GFP_ATOMIC); } static bool sparx5_fdma_rx_get_frame(struct sparx5 *sparx5, struct sparx5_rx *rx) { struct sparx5_db_hw *db_hw; unsigned int packet_size; struct sparx5_port *port; struct sk_buff *new_skb; struct frame_info fi; struct sk_buff *skb; dma_addr_t dma_addr; /* Check if the DCB is done */ db_hw = &rx->dcb_entries[rx->dcb_index].db[rx->db_index]; if (unlikely(!(db_hw->status & FDMA_DCB_STATUS_DONE))) return false; skb = rx->skb[rx->dcb_index][rx->db_index]; /* Replace the DB entry with a new SKB */ new_skb = sparx5_fdma_rx_alloc_skb(rx); if (unlikely(!new_skb)) return false; /* Map the new skb data and set the new skb */ dma_addr = virt_to_phys(new_skb->data); rx->skb[rx->dcb_index][rx->db_index] = new_skb; db_hw->dataptr = dma_addr; packet_size = FDMA_DCB_STATUS_BLOCKL(db_hw->status); skb_put(skb, packet_size); /* Now do the normal processing of the skb */ sparx5_ifh_parse((u32 *)skb->data, &fi); /* Map to port netdev */ port = fi.src_port < SPX5_PORTS ? sparx5->ports[fi.src_port] : NULL; if (!port || !port->ndev) { dev_err(sparx5->dev, "Data on inactive port %d\n", fi.src_port); sparx5_xtr_flush(sparx5, XTR_QUEUE); return false; } skb->dev = port->ndev; skb_pull(skb, IFH_LEN * sizeof(u32)); if (likely(!(skb->dev->features & NETIF_F_RXFCS))) skb_trim(skb, skb->len - ETH_FCS_LEN); sparx5_ptp_rxtstamp(sparx5, skb, fi.timestamp); skb->protocol = eth_type_trans(skb, skb->dev); /* Everything we see on an interface that is in the HW bridge * has already been forwarded */ if (test_bit(port->portno, sparx5->bridge_mask)) skb->offload_fwd_mark = 1; skb->dev->stats.rx_bytes += skb->len; skb->dev->stats.rx_packets++; rx->packets++; netif_receive_skb(skb); return true; } static int sparx5_fdma_napi_callback(struct napi_struct *napi, int weight) { struct sparx5_rx *rx = container_of(napi, struct sparx5_rx, napi); struct sparx5 *sparx5 = container_of(rx, struct sparx5, rx); int counter = 0; while (counter < weight && sparx5_fdma_rx_get_frame(sparx5, rx)) { struct sparx5_rx_dcb_hw *old_dcb; rx->db_index++; counter++; /* Check if the DCB can be reused */ if (rx->db_index != FDMA_RX_DCB_MAX_DBS) continue; /* As the DCB can be reused, just advance the dcb_index * pointer and set the nextptr in the DCB */ rx->db_index = 0; old_dcb = &rx->dcb_entries[rx->dcb_index]; rx->dcb_index++; rx->dcb_index &= FDMA_DCB_MAX - 1; sparx5_fdma_rx_add_dcb(rx, old_dcb, rx->dma + ((unsigned long)old_dcb - (unsigned long)rx->dcb_entries)); } if (counter < weight) { napi_complete_done(&rx->napi, counter); spx5_rmw(BIT(rx->channel_id), BIT(rx->channel_id) & FDMA_INTR_DB_ENA_INTR_DB_ENA, sparx5, FDMA_INTR_DB_ENA); } if (counter) sparx5_fdma_rx_reload(sparx5, rx); return counter; } static struct sparx5_tx_dcb_hw *sparx5_fdma_next_dcb(struct sparx5_tx *tx, struct sparx5_tx_dcb_hw *dcb) { struct sparx5_tx_dcb_hw *next_dcb; next_dcb = dcb; next_dcb++; /* Handle wrap-around */ if ((unsigned long)next_dcb >= ((unsigned long)tx->first_entry + FDMA_DCB_MAX * sizeof(*dcb))) next_dcb = tx->first_entry; return next_dcb; } int sparx5_fdma_xmit(struct sparx5 *sparx5, u32 *ifh, struct sk_buff *skb) { struct sparx5_tx_dcb_hw *next_dcb_hw; struct sparx5_tx *tx = &sparx5->tx; static bool first_time = true; struct sparx5_db_hw *db_hw; struct sparx5_db *db; next_dcb_hw = sparx5_fdma_next_dcb(tx, tx->curr_entry); db_hw = &next_dcb_hw->db[0]; if (!(db_hw->status & FDMA_DCB_STATUS_DONE)) return -EINVAL; db = list_first_entry(&tx->db_list, struct sparx5_db, list); list_move_tail(&db->list, &tx->db_list); next_dcb_hw->nextptr = FDMA_DCB_INVALID_DATA; tx->curr_entry->nextptr = tx->dma + ((unsigned long)next_dcb_hw - (unsigned long)tx->first_entry); tx->curr_entry = next_dcb_hw; memset(db->cpu_addr, 0, FDMA_XTR_BUFFER_SIZE); memcpy(db->cpu_addr, ifh, IFH_LEN * 4); memcpy(db->cpu_addr + IFH_LEN * 4, skb->data, skb->len); db_hw->status = FDMA_DCB_STATUS_SOF | FDMA_DCB_STATUS_EOF | FDMA_DCB_STATUS_BLOCKO(0) | FDMA_DCB_STATUS_BLOCKL(skb->len + IFH_LEN * 4 + 4); if (first_time) { sparx5_fdma_tx_activate(sparx5, tx); first_time = false; } else { sparx5_fdma_tx_reload(sparx5, tx); } return NETDEV_TX_OK; } static int sparx5_fdma_rx_alloc(struct sparx5 *sparx5) { struct sparx5_rx *rx = &sparx5->rx; struct sparx5_rx_dcb_hw *dcb; int idx, jdx; int size; size = sizeof(struct sparx5_rx_dcb_hw) * FDMA_DCB_MAX; size = ALIGN(size, PAGE_SIZE); rx->dcb_entries = devm_kzalloc(sparx5->dev, size, GFP_KERNEL); if (!rx->dcb_entries) return -ENOMEM; rx->dma = virt_to_phys(rx->dcb_entries); rx->last_entry = rx->dcb_entries; rx->db_index = 0; rx->dcb_index = 0; /* Now for each dcb allocate the db */ for (idx = 0; idx < FDMA_DCB_MAX; ++idx) { dcb = &rx->dcb_entries[idx]; dcb->info = 0; /* For each db allocate an skb and map skb data pointer to the DB * dataptr. In this way when the frame is received the skb->data * will contain the frame, so no memcpy is needed */ for (jdx = 0; jdx < FDMA_RX_DCB_MAX_DBS; ++jdx) { struct sparx5_db_hw *db_hw = &dcb->db[jdx]; dma_addr_t dma_addr; struct sk_buff *skb; skb = sparx5_fdma_rx_alloc_skb(rx); if (!skb) return -ENOMEM; dma_addr = virt_to_phys(skb->data); db_hw->dataptr = dma_addr; db_hw->status = 0; rx->skb[idx][jdx] = skb; } sparx5_fdma_rx_add_dcb(rx, dcb, rx->dma + sizeof(*dcb) * idx); } netif_napi_add_weight(rx->ndev, &rx->napi, sparx5_fdma_napi_callback, FDMA_WEIGHT); napi_enable(&rx->napi); sparx5_fdma_rx_activate(sparx5, rx); return 0; } static int sparx5_fdma_tx_alloc(struct sparx5 *sparx5) { struct sparx5_tx *tx = &sparx5->tx; struct sparx5_tx_dcb_hw *dcb; int idx, jdx; int size; size = sizeof(struct sparx5_tx_dcb_hw) * FDMA_DCB_MAX; size = ALIGN(size, PAGE_SIZE); tx->curr_entry = devm_kzalloc(sparx5->dev, size, GFP_KERNEL); if (!tx->curr_entry) return -ENOMEM; tx->dma = virt_to_phys(tx->curr_entry); tx->first_entry = tx->curr_entry; INIT_LIST_HEAD(&tx->db_list); /* Now for each dcb allocate the db */ for (idx = 0; idx < FDMA_DCB_MAX; ++idx) { dcb = &tx->curr_entry[idx]; dcb->info = 0; /* TX databuffers must be 16byte aligned */ for (jdx = 0; jdx < FDMA_TX_DCB_MAX_DBS; ++jdx) { struct sparx5_db_hw *db_hw = &dcb->db[jdx]; struct sparx5_db *db; dma_addr_t phys; void *cpu_addr; cpu_addr = devm_kzalloc(sparx5->dev, FDMA_XTR_BUFFER_SIZE, GFP_KERNEL); if (!cpu_addr) return -ENOMEM; phys = virt_to_phys(cpu_addr); db_hw->dataptr = phys; db_hw->status = 0; db = devm_kzalloc(sparx5->dev, sizeof(*db), GFP_KERNEL); if (!db) return -ENOMEM; db->cpu_addr = cpu_addr; list_add_tail(&db->list, &tx->db_list); } sparx5_fdma_tx_add_dcb(tx, dcb, tx->dma + sizeof(*dcb) * idx); /* Let the curr_entry to point to the last allocated entry */ if (idx == FDMA_DCB_MAX - 1) tx->curr_entry = dcb; } return 0; } static void sparx5_fdma_rx_init(struct sparx5 *sparx5, struct sparx5_rx *rx, int channel) { int idx; rx->channel_id = channel; /* Fetch a netdev for SKB and NAPI use, any will do */ for (idx = 0; idx < SPX5_PORTS; ++idx) { struct sparx5_port *port = sparx5->ports[idx]; if (port && port->ndev) { rx->ndev = port->ndev; break; } } } static void sparx5_fdma_tx_init(struct sparx5 *sparx5, struct sparx5_tx *tx, int channel) { tx->channel_id = channel; } irqreturn_t sparx5_fdma_handler(int irq, void *args) { struct sparx5 *sparx5 = args; u32 db = 0, err = 0; db = spx5_rd(sparx5, FDMA_INTR_DB); err = spx5_rd(sparx5, FDMA_INTR_ERR); /* Clear interrupt */ if (db) { spx5_wr(0, sparx5, FDMA_INTR_DB_ENA); spx5_wr(db, sparx5, FDMA_INTR_DB); napi_schedule(&sparx5->rx.napi); } if (err) { u32 err_type = spx5_rd(sparx5, FDMA_ERRORS); dev_err_ratelimited(sparx5->dev, "ERR: int: %#x, type: %#x\n", err, err_type); spx5_wr(err, sparx5, FDMA_INTR_ERR); spx5_wr(err_type, sparx5, FDMA_ERRORS); } return IRQ_HANDLED; } static void sparx5_fdma_injection_mode(struct sparx5 *sparx5) { const int byte_swap = 1; int portno; int urgency; /* Change mode to fdma extraction and injection */ spx5_wr(QS_XTR_GRP_CFG_MODE_SET(2) | QS_XTR_GRP_CFG_STATUS_WORD_POS_SET(1) | QS_XTR_GRP_CFG_BYTE_SWAP_SET(byte_swap), sparx5, QS_XTR_GRP_CFG(XTR_QUEUE)); spx5_wr(QS_INJ_GRP_CFG_MODE_SET(2) | QS_INJ_GRP_CFG_BYTE_SWAP_SET(byte_swap), sparx5, QS_INJ_GRP_CFG(INJ_QUEUE)); /* CPU ports capture setup */ for (portno = SPX5_PORT_CPU_0; portno <= SPX5_PORT_CPU_1; portno++) { /* ASM CPU port: No preamble, IFH, enable padding */ spx5_wr(ASM_PORT_CFG_PAD_ENA_SET(1) | ASM_PORT_CFG_NO_PREAMBLE_ENA_SET(1) | ASM_PORT_CFG_INJ_FORMAT_CFG_SET(1), /* 1 = IFH */ sparx5, ASM_PORT_CFG(portno)); /* Reset WM cnt to unclog queued frames */ spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR_SET(1), DSM_DEV_TX_STOP_WM_CFG_DEV_TX_CNT_CLR, sparx5, DSM_DEV_TX_STOP_WM_CFG(portno)); /* Set Disassembler Stop Watermark level */ spx5_rmw(DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM_SET(100), DSM_DEV_TX_STOP_WM_CFG_DEV_TX_STOP_WM, sparx5, DSM_DEV_TX_STOP_WM_CFG(portno)); /* Enable port in queue system */ urgency = sparx5_port_fwd_urg(sparx5, SPEED_2500); spx5_rmw(QFWD_SWITCH_PORT_MODE_PORT_ENA_SET(1) | QFWD_SWITCH_PORT_MODE_FWD_URGENCY_SET(urgency), QFWD_SWITCH_PORT_MODE_PORT_ENA | QFWD_SWITCH_PORT_MODE_FWD_URGENCY, sparx5, QFWD_SWITCH_PORT_MODE(portno)); /* Disable Disassembler buffer underrun watchdog * to avoid truncated packets in XTR */ spx5_rmw(DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS_SET(1), DSM_BUF_CFG_UNDERFLOW_WATCHDOG_DIS, sparx5, DSM_BUF_CFG(portno)); /* Disabling frame aging */ spx5_rmw(HSCH_PORT_MODE_AGE_DIS_SET(1), HSCH_PORT_MODE_AGE_DIS, sparx5, HSCH_PORT_MODE(portno)); } } int sparx5_fdma_start(struct sparx5 *sparx5) { int err; /* Reset FDMA state */ spx5_wr(FDMA_CTRL_NRESET_SET(0), sparx5, FDMA_CTRL); spx5_wr(FDMA_CTRL_NRESET_SET(1), sparx5, FDMA_CTRL); /* Force ACP caching but disable read/write allocation */ spx5_rmw(CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA_SET(1) | CPU_PROC_CTRL_ACP_AWCACHE_SET(0) | CPU_PROC_CTRL_ACP_ARCACHE_SET(0), CPU_PROC_CTRL_ACP_CACHE_FORCE_ENA | CPU_PROC_CTRL_ACP_AWCACHE | CPU_PROC_CTRL_ACP_ARCACHE, sparx5, CPU_PROC_CTRL); sparx5_fdma_injection_mode(sparx5); sparx5_fdma_rx_init(sparx5, &sparx5->rx, FDMA_XTR_CHANNEL); sparx5_fdma_tx_init(sparx5, &sparx5->tx, FDMA_INJ_CHANNEL); err = sparx5_fdma_rx_alloc(sparx5); if (err) { dev_err(sparx5->dev, "Could not allocate RX buffers: %d\n", err); return err; } err = sparx5_fdma_tx_alloc(sparx5); if (err) { dev_err(sparx5->dev, "Could not allocate TX buffers: %d\n", err); return err; } return err; } static u32 sparx5_fdma_port_ctrl(struct sparx5 *sparx5) { return spx5_rd(sparx5, FDMA_PORT_CTRL(0)); } int sparx5_fdma_stop(struct sparx5 *sparx5) { u32 val; napi_disable(&sparx5->rx.napi); /* Stop the fdma and channel interrupts */ sparx5_fdma_rx_deactivate(sparx5, &sparx5->rx); sparx5_fdma_tx_deactivate(sparx5, &sparx5->tx); /* Wait for the RX channel to stop */ read_poll_timeout(sparx5_fdma_port_ctrl, val, FDMA_PORT_CTRL_XTR_BUF_IS_EMPTY_GET(val) == 0, 500, 10000, 0, sparx5); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1