Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jakub Kiciński | 5797 | 81.42% | 1 | 12.50% |
Yinjun Zhang | 1072 | 15.06% | 3 | 37.50% |
Diana Wang | 207 | 2.91% | 2 | 25.00% |
Baowen Zheng | 42 | 0.59% | 1 | 12.50% |
Eric Dumazet | 2 | 0.03% | 1 | 12.50% |
Total | 7120 | 8 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) /* Copyright (C) 2015-2019 Netronome Systems, Inc. */ #include <linux/bpf_trace.h> #include <linux/netdevice.h> #include <linux/overflow.h> #include <linux/sizes.h> #include <linux/bitfield.h> #include "../nfp_app.h" #include "../nfp_net.h" #include "../nfp_net_dp.h" #include "../crypto/crypto.h" #include "../crypto/fw.h" #include "nfdk.h" static int nfp_nfdk_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) { return !nfp_net_tx_full(tx_ring, NFDK_TX_DESC_STOP_CNT * 2); } static int nfp_nfdk_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) { return nfp_net_tx_full(tx_ring, NFDK_TX_DESC_STOP_CNT); } static void nfp_nfdk_tx_ring_stop(struct netdev_queue *nd_q, struct nfp_net_tx_ring *tx_ring) { netif_tx_stop_queue(nd_q); /* We can race with the TX completion out of NAPI so recheck */ smp_mb(); if (unlikely(nfp_nfdk_tx_ring_should_wake(tx_ring))) netif_tx_start_queue(nd_q); } static __le64 nfp_nfdk_tx_tso(struct nfp_net_r_vector *r_vec, struct nfp_nfdk_tx_buf *txbuf, struct sk_buff *skb) { u32 segs, hdrlen, l3_offset, l4_offset; struct nfp_nfdk_tx_desc txd; u16 mss; if (!skb->encapsulation) { l3_offset = skb_network_offset(skb); l4_offset = skb_transport_offset(skb); hdrlen = skb_tcp_all_headers(skb); } else { l3_offset = skb_inner_network_offset(skb); l4_offset = skb_inner_transport_offset(skb); hdrlen = skb_inner_tcp_all_headers(skb); } segs = skb_shinfo(skb)->gso_segs; mss = skb_shinfo(skb)->gso_size & NFDK_DESC_TX_MSS_MASK; txd.l3_offset = l3_offset; txd.l4_offset = l4_offset; txd.lso_meta_res = 0; txd.mss = cpu_to_le16(mss); txd.lso_hdrlen = hdrlen; txd.lso_totsegs = segs; txbuf->pkt_cnt = segs; txbuf->real_len = skb->len + hdrlen * (txbuf->pkt_cnt - 1); u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_lso++; u64_stats_update_end(&r_vec->tx_sync); return txd.raw; } static u8 nfp_nfdk_tx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, unsigned int pkt_cnt, struct sk_buff *skb, u64 flags) { struct ipv6hdr *ipv6h; struct iphdr *iph; if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) return flags; if (skb->ip_summed != CHECKSUM_PARTIAL) return flags; flags |= NFDK_DESC_TX_L4_CSUM; iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); /* L3 checksum offloading flag is not required for ipv6 */ if (iph->version == 4) { flags |= NFDK_DESC_TX_L3_CSUM; } else if (ipv6h->version != 6) { nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); return flags; } u64_stats_update_begin(&r_vec->tx_sync); if (!skb->encapsulation) { r_vec->hw_csum_tx += pkt_cnt; } else { flags |= NFDK_DESC_TX_ENCAP; r_vec->hw_csum_tx_inner += pkt_cnt; } u64_stats_update_end(&r_vec->tx_sync); return flags; } static int nfp_nfdk_tx_maybe_close_block(struct nfp_net_tx_ring *tx_ring, struct sk_buff *skb) { unsigned int n_descs, wr_p, nop_slots; const skb_frag_t *frag, *fend; struct nfp_nfdk_tx_desc *txd; unsigned int nr_frags; unsigned int wr_idx; int err; recount_descs: n_descs = nfp_nfdk_headlen_to_segs(skb_headlen(skb)); nr_frags = skb_shinfo(skb)->nr_frags; frag = skb_shinfo(skb)->frags; fend = frag + nr_frags; for (; frag < fend; frag++) n_descs += DIV_ROUND_UP(skb_frag_size(frag), NFDK_TX_MAX_DATA_PER_DESC); if (unlikely(n_descs > NFDK_TX_DESC_GATHER_MAX)) { if (skb_is_nonlinear(skb)) { err = skb_linearize(skb); if (err) return err; goto recount_descs; } return -EINVAL; } /* Under count by 1 (don't count meta) for the round down to work out */ n_descs += !!skb_is_gso(skb); if (round_down(tx_ring->wr_p, NFDK_TX_DESC_BLOCK_CNT) != round_down(tx_ring->wr_p + n_descs, NFDK_TX_DESC_BLOCK_CNT)) goto close_block; if ((u32)tx_ring->data_pending + skb->len > NFDK_TX_MAX_DATA_PER_BLOCK) goto close_block; return 0; close_block: wr_p = tx_ring->wr_p; nop_slots = D_BLOCK_CPL(wr_p); wr_idx = D_IDX(tx_ring, wr_p); tx_ring->ktxbufs[wr_idx].skb = NULL; txd = &tx_ring->ktxds[wr_idx]; memset(txd, 0, array_size(nop_slots, sizeof(struct nfp_nfdk_tx_desc))); tx_ring->data_pending = 0; tx_ring->wr_p += nop_slots; tx_ring->wr_ptr_add += nop_slots; return 0; } static int nfp_nfdk_prep_tx_meta(struct nfp_net_dp *dp, struct nfp_app *app, struct sk_buff *skb) { struct metadata_dst *md_dst = skb_metadata_dst(skb); unsigned char *data; bool vlan_insert; u32 meta_id = 0; int md_bytes; if (unlikely(md_dst && md_dst->type != METADATA_HW_PORT_MUX)) md_dst = NULL; vlan_insert = skb_vlan_tag_present(skb) && (dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN_V2); if (!(md_dst || vlan_insert)) return 0; md_bytes = sizeof(meta_id) + !!md_dst * NFP_NET_META_PORTID_SIZE + vlan_insert * NFP_NET_META_VLAN_SIZE; if (unlikely(skb_cow_head(skb, md_bytes))) return -ENOMEM; data = skb_push(skb, md_bytes) + md_bytes; if (md_dst) { data -= NFP_NET_META_PORTID_SIZE; put_unaligned_be32(md_dst->u.port_info.port_id, data); meta_id = NFP_NET_META_PORTID; } if (vlan_insert) { data -= NFP_NET_META_VLAN_SIZE; /* data type of skb->vlan_proto is __be16 * so it fills metadata without calling put_unaligned_be16 */ memcpy(data, &skb->vlan_proto, sizeof(skb->vlan_proto)); put_unaligned_be16(skb_vlan_tag_get(skb), data + sizeof(skb->vlan_proto)); meta_id <<= NFP_NET_META_FIELD_SIZE; meta_id |= NFP_NET_META_VLAN; } meta_id = FIELD_PREP(NFDK_META_LEN, md_bytes) | FIELD_PREP(NFDK_META_FIELDS, meta_id); data -= sizeof(meta_id); put_unaligned_be32(meta_id, data); return NFDK_DESC_TX_CHAIN_META; } /** * nfp_nfdk_tx() - Main transmit entry point * @skb: SKB to transmit * @netdev: netdev structure * * Return: NETDEV_TX_OK on success. */ netdev_tx_t nfp_nfdk_tx(struct sk_buff *skb, struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); struct nfp_nfdk_tx_buf *txbuf, *etxbuf; u32 cnt, tmp_dlen, dlen_type = 0; struct nfp_net_tx_ring *tx_ring; struct nfp_net_r_vector *r_vec; const skb_frag_t *frag, *fend; struct nfp_nfdk_tx_desc *txd; unsigned int real_len, qidx; unsigned int dma_len, type; struct netdev_queue *nd_q; struct nfp_net_dp *dp; int nr_frags, wr_idx; dma_addr_t dma_addr; u64 metadata; dp = &nn->dp; qidx = skb_get_queue_mapping(skb); tx_ring = &dp->tx_rings[qidx]; r_vec = tx_ring->r_vec; nd_q = netdev_get_tx_queue(dp->netdev, qidx); /* Don't bother counting frags, assume the worst */ if (unlikely(nfp_net_tx_full(tx_ring, NFDK_TX_DESC_STOP_CNT))) { nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", qidx, tx_ring->wr_p, tx_ring->rd_p); netif_tx_stop_queue(nd_q); nfp_net_tx_xmit_more_flush(tx_ring); u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_busy++; u64_stats_update_end(&r_vec->tx_sync); return NETDEV_TX_BUSY; } metadata = nfp_nfdk_prep_tx_meta(dp, nn->app, skb); if (unlikely((int)metadata < 0)) goto err_flush; if (nfp_nfdk_tx_maybe_close_block(tx_ring, skb)) goto err_flush; /* nr_frags will change after skb_linearize so we get nr_frags after * nfp_nfdk_tx_maybe_close_block function */ nr_frags = skb_shinfo(skb)->nr_frags; /* DMA map all */ wr_idx = D_IDX(tx_ring, tx_ring->wr_p); txd = &tx_ring->ktxds[wr_idx]; txbuf = &tx_ring->ktxbufs[wr_idx]; dma_len = skb_headlen(skb); if (skb_is_gso(skb)) type = NFDK_DESC_TX_TYPE_TSO; else if (!nr_frags && dma_len <= NFDK_TX_MAX_DATA_PER_HEAD) type = NFDK_DESC_TX_TYPE_SIMPLE; else type = NFDK_DESC_TX_TYPE_GATHER; dma_addr = dma_map_single(dp->dev, skb->data, dma_len, DMA_TO_DEVICE); if (dma_mapping_error(dp->dev, dma_addr)) goto err_warn_dma; txbuf->skb = skb; txbuf++; txbuf->dma_addr = dma_addr; txbuf++; /* FIELD_PREP() implicitly truncates to chunk */ dma_len -= 1; /* We will do our best to pass as much data as we can in descriptor * and we need to make sure the first descriptor includes whole head * since there is limitation in firmware side. Sometimes the value of * dma_len bitwise and NFDK_DESC_TX_DMA_LEN_HEAD will less than * headlen. */ dlen_type = FIELD_PREP(NFDK_DESC_TX_DMA_LEN_HEAD, dma_len > NFDK_DESC_TX_DMA_LEN_HEAD ? NFDK_DESC_TX_DMA_LEN_HEAD : dma_len) | FIELD_PREP(NFDK_DESC_TX_TYPE_HEAD, type); txd->dma_len_type = cpu_to_le16(dlen_type); nfp_desc_set_dma_addr_48b(txd, dma_addr); /* starts at bit 0 */ BUILD_BUG_ON(!(NFDK_DESC_TX_DMA_LEN_HEAD & 1)); /* Preserve the original dlen_type, this way below the EOP logic * can use dlen_type. */ tmp_dlen = dlen_type & NFDK_DESC_TX_DMA_LEN_HEAD; dma_len -= tmp_dlen; dma_addr += tmp_dlen + 1; txd++; /* The rest of the data (if any) will be in larger dma descritors * and is handled with the fragment loop. */ frag = skb_shinfo(skb)->frags; fend = frag + nr_frags; while (true) { while (dma_len > 0) { dma_len -= 1; dlen_type = FIELD_PREP(NFDK_DESC_TX_DMA_LEN, dma_len); txd->dma_len_type = cpu_to_le16(dlen_type); nfp_desc_set_dma_addr_48b(txd, dma_addr); dma_len -= dlen_type; dma_addr += dlen_type + 1; txd++; } if (frag >= fend) break; dma_len = skb_frag_size(frag); dma_addr = skb_frag_dma_map(dp->dev, frag, 0, dma_len, DMA_TO_DEVICE); if (dma_mapping_error(dp->dev, dma_addr)) goto err_unmap; txbuf->dma_addr = dma_addr; txbuf++; frag++; } (txd - 1)->dma_len_type = cpu_to_le16(dlen_type | NFDK_DESC_TX_EOP); if (!skb_is_gso(skb)) { real_len = skb->len; /* Metadata desc */ metadata = nfp_nfdk_tx_csum(dp, r_vec, 1, skb, metadata); txd->raw = cpu_to_le64(metadata); txd++; } else { /* lso desc should be placed after metadata desc */ (txd + 1)->raw = nfp_nfdk_tx_tso(r_vec, txbuf, skb); real_len = txbuf->real_len; /* Metadata desc */ metadata = nfp_nfdk_tx_csum(dp, r_vec, txbuf->pkt_cnt, skb, metadata); txd->raw = cpu_to_le64(metadata); txd += 2; txbuf++; } cnt = txd - tx_ring->ktxds - wr_idx; if (unlikely(round_down(wr_idx, NFDK_TX_DESC_BLOCK_CNT) != round_down(wr_idx + cnt - 1, NFDK_TX_DESC_BLOCK_CNT))) goto err_warn_overflow; skb_tx_timestamp(skb); tx_ring->wr_p += cnt; if (tx_ring->wr_p % NFDK_TX_DESC_BLOCK_CNT) tx_ring->data_pending += skb->len; else tx_ring->data_pending = 0; if (nfp_nfdk_tx_ring_should_stop(tx_ring)) nfp_nfdk_tx_ring_stop(nd_q, tx_ring); tx_ring->wr_ptr_add += cnt; if (__netdev_tx_sent_queue(nd_q, real_len, netdev_xmit_more())) nfp_net_tx_xmit_more_flush(tx_ring); return NETDEV_TX_OK; err_warn_overflow: WARN_ONCE(1, "unable to fit packet into a descriptor wr_idx:%d head:%d frags:%d cnt:%d", wr_idx, skb_headlen(skb), nr_frags, cnt); if (skb_is_gso(skb)) txbuf--; err_unmap: /* txbuf pointed to the next-to-use */ etxbuf = txbuf; /* first txbuf holds the skb */ txbuf = &tx_ring->ktxbufs[wr_idx + 1]; if (txbuf < etxbuf) { dma_unmap_single(dp->dev, txbuf->dma_addr, skb_headlen(skb), DMA_TO_DEVICE); txbuf->raw = 0; txbuf++; } frag = skb_shinfo(skb)->frags; while (etxbuf < txbuf) { dma_unmap_page(dp->dev, txbuf->dma_addr, skb_frag_size(frag), DMA_TO_DEVICE); txbuf->raw = 0; frag++; txbuf++; } err_warn_dma: nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); err_flush: nfp_net_tx_xmit_more_flush(tx_ring); u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_errors++; u64_stats_update_end(&r_vec->tx_sync); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /** * nfp_nfdk_tx_complete() - Handled completed TX packets * @tx_ring: TX ring structure * @budget: NAPI budget (only used as bool to determine if in NAPI context) */ static void nfp_nfdk_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) { struct nfp_net_r_vector *r_vec = tx_ring->r_vec; struct nfp_net_dp *dp = &r_vec->nfp_net->dp; u32 done_pkts = 0, done_bytes = 0; struct nfp_nfdk_tx_buf *ktxbufs; struct device *dev = dp->dev; struct netdev_queue *nd_q; u32 rd_p, qcp_rd_p; int todo; rd_p = tx_ring->rd_p; if (tx_ring->wr_p == rd_p) return; /* Work out how many descriptors have been transmitted */ qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp); if (qcp_rd_p == tx_ring->qcp_rd_p) return; todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); ktxbufs = tx_ring->ktxbufs; while (todo > 0) { const skb_frag_t *frag, *fend; unsigned int size, n_descs = 1; struct nfp_nfdk_tx_buf *txbuf; struct sk_buff *skb; txbuf = &ktxbufs[D_IDX(tx_ring, rd_p)]; skb = txbuf->skb; txbuf++; /* Closed block */ if (!skb) { n_descs = D_BLOCK_CPL(rd_p); goto next; } /* Unmap head */ size = skb_headlen(skb); n_descs += nfp_nfdk_headlen_to_segs(size); dma_unmap_single(dev, txbuf->dma_addr, size, DMA_TO_DEVICE); txbuf++; /* Unmap frags */ frag = skb_shinfo(skb)->frags; fend = frag + skb_shinfo(skb)->nr_frags; for (; frag < fend; frag++) { size = skb_frag_size(frag); n_descs += DIV_ROUND_UP(size, NFDK_TX_MAX_DATA_PER_DESC); dma_unmap_page(dev, txbuf->dma_addr, skb_frag_size(frag), DMA_TO_DEVICE); txbuf++; } if (!skb_is_gso(skb)) { done_bytes += skb->len; done_pkts++; } else { done_bytes += txbuf->real_len; done_pkts += txbuf->pkt_cnt; n_descs++; } napi_consume_skb(skb, budget); next: rd_p += n_descs; todo -= n_descs; } tx_ring->rd_p = rd_p; tx_ring->qcp_rd_p = qcp_rd_p; u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_bytes += done_bytes; r_vec->tx_pkts += done_pkts; u64_stats_update_end(&r_vec->tx_sync); if (!dp->netdev) return; nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); if (nfp_nfdk_tx_ring_should_wake(tx_ring)) { /* Make sure TX thread will see updated tx_ring->rd_p */ smp_mb(); if (unlikely(netif_tx_queue_stopped(nd_q))) netif_tx_wake_queue(nd_q); } WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); } /* Receive processing */ static void * nfp_nfdk_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) { void *frag; if (!dp->xdp_prog) { frag = napi_alloc_frag(dp->fl_bufsz); if (unlikely(!frag)) return NULL; } else { struct page *page; page = dev_alloc_page(); if (unlikely(!page)) return NULL; frag = page_address(page); } *dma_addr = nfp_net_dma_map_rx(dp, frag); if (dma_mapping_error(dp->dev, *dma_addr)) { nfp_net_free_frag(frag, dp->xdp_prog); nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); return NULL; } return frag; } /** * nfp_nfdk_rx_give_one() - Put mapped skb on the software and hardware rings * @dp: NFP Net data path struct * @rx_ring: RX ring structure * @frag: page fragment buffer * @dma_addr: DMA address of skb mapping */ static void nfp_nfdk_rx_give_one(const struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, void *frag, dma_addr_t dma_addr) { unsigned int wr_idx; wr_idx = D_IDX(rx_ring, rx_ring->wr_p); nfp_net_dma_sync_dev_rx(dp, dma_addr); /* Stash SKB and DMA address away */ rx_ring->rxbufs[wr_idx].frag = frag; rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; /* Fill freelist descriptor */ rx_ring->rxds[wr_idx].fld.reserved = 0; rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; nfp_desc_set_dma_addr_48b(&rx_ring->rxds[wr_idx].fld, dma_addr + dp->rx_dma_off); rx_ring->wr_p++; if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { /* Update write pointer of the freelist queue. Make * sure all writes are flushed before telling the hardware. */ wmb(); nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); } } /** * nfp_nfdk_rx_ring_fill_freelist() - Give buffers from the ring to FW * @dp: NFP Net data path struct * @rx_ring: RX ring to fill */ void nfp_nfdk_rx_ring_fill_freelist(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) { unsigned int i; for (i = 0; i < rx_ring->cnt - 1; i++) nfp_nfdk_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, rx_ring->rxbufs[i].dma_addr); } /** * nfp_nfdk_rx_csum_has_errors() - group check if rxd has any csum errors * @flags: RX descriptor flags field in CPU byte order */ static int nfp_nfdk_rx_csum_has_errors(u16 flags) { u16 csum_all_checked, csum_all_ok; csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); } /** * nfp_nfdk_rx_csum() - set SKB checksum field based on RX descriptor flags * @dp: NFP Net data path struct * @r_vec: per-ring structure * @rxd: Pointer to RX descriptor * @meta: Parsed metadata prepend * @skb: Pointer to SKB */ static void nfp_nfdk_rx_csum(struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, struct nfp_net_rx_desc *rxd, struct nfp_meta_parsed *meta, struct sk_buff *skb) { skb_checksum_none_assert(skb); if (!(dp->netdev->features & NETIF_F_RXCSUM)) return; if (meta->csum_type) { skb->ip_summed = meta->csum_type; skb->csum = meta->csum; u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_complete++; u64_stats_update_end(&r_vec->rx_sync); return; } if (nfp_nfdk_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_error++; u64_stats_update_end(&r_vec->rx_sync); return; } /* Assume that the firmware will never report inner CSUM_OK unless outer * L4 headers were successfully parsed. FW will always report zero UDP * checksum as CSUM_OK. */ if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { __skb_incr_checksum_unnecessary(skb); u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_ok++; u64_stats_update_end(&r_vec->rx_sync); } if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { __skb_incr_checksum_unnecessary(skb); u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_inner_ok++; u64_stats_update_end(&r_vec->rx_sync); } } static void nfp_nfdk_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, unsigned int type, __be32 *hash) { if (!(netdev->features & NETIF_F_RXHASH)) return; switch (type) { case NFP_NET_RSS_IPV4: case NFP_NET_RSS_IPV6: case NFP_NET_RSS_IPV6_EX: meta->hash_type = PKT_HASH_TYPE_L3; break; default: meta->hash_type = PKT_HASH_TYPE_L4; break; } meta->hash = get_unaligned_be32(hash); } static bool nfp_nfdk_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, void *data, void *pkt, unsigned int pkt_len, int meta_len) { u32 meta_info, vlan_info; meta_info = get_unaligned_be32(data); data += 4; while (meta_info) { switch (meta_info & NFP_NET_META_FIELD_MASK) { case NFP_NET_META_HASH: meta_info >>= NFP_NET_META_FIELD_SIZE; nfp_nfdk_set_hash(netdev, meta, meta_info & NFP_NET_META_FIELD_MASK, (__be32 *)data); data += 4; break; case NFP_NET_META_MARK: meta->mark = get_unaligned_be32(data); data += 4; break; case NFP_NET_META_VLAN: vlan_info = get_unaligned_be32(data); if (FIELD_GET(NFP_NET_META_VLAN_STRIP, vlan_info)) { meta->vlan.stripped = true; meta->vlan.tpid = FIELD_GET(NFP_NET_META_VLAN_TPID_MASK, vlan_info); meta->vlan.tci = FIELD_GET(NFP_NET_META_VLAN_TCI_MASK, vlan_info); } data += 4; break; case NFP_NET_META_PORTID: meta->portid = get_unaligned_be32(data); data += 4; break; case NFP_NET_META_CSUM: meta->csum_type = CHECKSUM_COMPLETE; meta->csum = (__force __wsum)__get_unaligned_cpu32(data); data += 4; break; case NFP_NET_META_RESYNC_INFO: if (nfp_net_tls_rx_resync_req(netdev, data, pkt, pkt_len)) return false; data += sizeof(struct nfp_net_tls_resync_req); break; default: return true; } meta_info >>= NFP_NET_META_FIELD_SIZE; } return data != pkt; } static void nfp_nfdk_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, struct sk_buff *skb) { u64_stats_update_begin(&r_vec->rx_sync); r_vec->rx_drops++; /* If we have both skb and rxbuf the replacement buffer allocation * must have failed, count this as an alloc failure. */ if (skb && rxbuf) r_vec->rx_replace_buf_alloc_fail++; u64_stats_update_end(&r_vec->rx_sync); /* skb is build based on the frag, free_skb() would free the frag * so to be able to reuse it we need an extra ref. */ if (skb && rxbuf && skb->head == rxbuf->frag) page_ref_inc(virt_to_head_page(rxbuf->frag)); if (rxbuf) nfp_nfdk_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); if (skb) dev_kfree_skb_any(skb); } static bool nfp_nfdk_xdp_complete(struct nfp_net_tx_ring *tx_ring) { struct nfp_net_r_vector *r_vec = tx_ring->r_vec; struct nfp_net_dp *dp = &r_vec->nfp_net->dp; struct nfp_net_rx_ring *rx_ring; u32 qcp_rd_p, done = 0; bool done_all; int todo; /* Work out how many descriptors have been transmitted */ qcp_rd_p = nfp_net_read_tx_cmpl(tx_ring, dp); if (qcp_rd_p == tx_ring->qcp_rd_p) return true; todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); rx_ring = r_vec->rx_ring; while (todo > 0) { int idx = D_IDX(tx_ring, tx_ring->rd_p + done); struct nfp_nfdk_tx_buf *txbuf; unsigned int step = 1; txbuf = &tx_ring->ktxbufs[idx]; if (!txbuf->raw) goto next; if (NFDK_TX_BUF_INFO(txbuf->val) != NFDK_TX_BUF_INFO_SOP) { WARN_ONCE(1, "Unexpected TX buffer in XDP TX ring\n"); goto next; } /* Two successive txbufs are used to stash virtual and dma * address respectively, recycle and clean them here. */ nfp_nfdk_rx_give_one(dp, rx_ring, (void *)NFDK_TX_BUF_PTR(txbuf[0].val), txbuf[1].dma_addr); txbuf[0].raw = 0; txbuf[1].raw = 0; step = 2; u64_stats_update_begin(&r_vec->tx_sync); /* Note: tx_bytes not accumulated. */ r_vec->tx_pkts++; u64_stats_update_end(&r_vec->tx_sync); next: todo -= step; done += step; } tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + done); tx_ring->rd_p += done; WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); return done_all; } static bool nfp_nfdk_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, struct nfp_net_tx_ring *tx_ring, struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, unsigned int pkt_len, bool *completed) { unsigned int dma_map_sz = dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA; unsigned int dma_len, type, cnt, dlen_type, tmp_dlen; struct nfp_nfdk_tx_buf *txbuf; struct nfp_nfdk_tx_desc *txd; unsigned int n_descs; dma_addr_t dma_addr; int wr_idx; /* Reject if xdp_adjust_tail grow packet beyond DMA area */ if (pkt_len + dma_off > dma_map_sz) return false; /* Make sure there's still at least one block available after * aligning to block boundary, so that the txds used below * won't wrap around the tx_ring. */ if (unlikely(nfp_net_tx_full(tx_ring, NFDK_TX_DESC_STOP_CNT))) { if (!*completed) { nfp_nfdk_xdp_complete(tx_ring); *completed = true; } if (unlikely(nfp_net_tx_full(tx_ring, NFDK_TX_DESC_STOP_CNT))) { nfp_nfdk_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, NULL); return false; } } /* Check if cross block boundary */ n_descs = nfp_nfdk_headlen_to_segs(pkt_len); if ((round_down(tx_ring->wr_p, NFDK_TX_DESC_BLOCK_CNT) != round_down(tx_ring->wr_p + n_descs, NFDK_TX_DESC_BLOCK_CNT)) || ((u32)tx_ring->data_pending + pkt_len > NFDK_TX_MAX_DATA_PER_BLOCK)) { unsigned int nop_slots = D_BLOCK_CPL(tx_ring->wr_p); wr_idx = D_IDX(tx_ring, tx_ring->wr_p); txd = &tx_ring->ktxds[wr_idx]; memset(txd, 0, array_size(nop_slots, sizeof(struct nfp_nfdk_tx_desc))); tx_ring->data_pending = 0; tx_ring->wr_p += nop_slots; tx_ring->wr_ptr_add += nop_slots; } wr_idx = D_IDX(tx_ring, tx_ring->wr_p); txbuf = &tx_ring->ktxbufs[wr_idx]; txbuf[0].val = (unsigned long)rxbuf->frag | NFDK_TX_BUF_INFO_SOP; txbuf[1].dma_addr = rxbuf->dma_addr; /* Note: pkt len not stored */ dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, pkt_len, DMA_BIDIRECTIONAL); /* Build TX descriptor */ txd = &tx_ring->ktxds[wr_idx]; dma_len = pkt_len; dma_addr = rxbuf->dma_addr + dma_off; if (dma_len <= NFDK_TX_MAX_DATA_PER_HEAD) type = NFDK_DESC_TX_TYPE_SIMPLE; else type = NFDK_DESC_TX_TYPE_GATHER; /* FIELD_PREP() implicitly truncates to chunk */ dma_len -= 1; dlen_type = FIELD_PREP(NFDK_DESC_TX_DMA_LEN_HEAD, dma_len > NFDK_DESC_TX_DMA_LEN_HEAD ? NFDK_DESC_TX_DMA_LEN_HEAD : dma_len) | FIELD_PREP(NFDK_DESC_TX_TYPE_HEAD, type); txd->dma_len_type = cpu_to_le16(dlen_type); nfp_desc_set_dma_addr_48b(txd, dma_addr); tmp_dlen = dlen_type & NFDK_DESC_TX_DMA_LEN_HEAD; dma_len -= tmp_dlen; dma_addr += tmp_dlen + 1; txd++; while (dma_len > 0) { dma_len -= 1; dlen_type = FIELD_PREP(NFDK_DESC_TX_DMA_LEN, dma_len); txd->dma_len_type = cpu_to_le16(dlen_type); nfp_desc_set_dma_addr_48b(txd, dma_addr); dlen_type &= NFDK_DESC_TX_DMA_LEN; dma_len -= dlen_type; dma_addr += dlen_type + 1; txd++; } (txd - 1)->dma_len_type = cpu_to_le16(dlen_type | NFDK_DESC_TX_EOP); /* Metadata desc */ txd->raw = 0; txd++; cnt = txd - tx_ring->ktxds - wr_idx; tx_ring->wr_p += cnt; if (tx_ring->wr_p % NFDK_TX_DESC_BLOCK_CNT) tx_ring->data_pending += pkt_len; else tx_ring->data_pending = 0; tx_ring->wr_ptr_add += cnt; return true; } /** * nfp_nfdk_rx() - receive up to @budget packets on @rx_ring * @rx_ring: RX ring to receive from * @budget: NAPI budget * * Note, this function is separated out from the napi poll function to * more cleanly separate packet receive code from other bookkeeping * functions performed in the napi poll function. * * Return: Number of packets received. */ static int nfp_nfdk_rx(struct nfp_net_rx_ring *rx_ring, int budget) { struct nfp_net_r_vector *r_vec = rx_ring->r_vec; struct nfp_net_dp *dp = &r_vec->nfp_net->dp; struct nfp_net_tx_ring *tx_ring; struct bpf_prog *xdp_prog; bool xdp_tx_cmpl = false; unsigned int true_bufsz; struct sk_buff *skb; int pkts_polled = 0; struct xdp_buff xdp; int idx; xdp_prog = READ_ONCE(dp->xdp_prog); true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; xdp_init_buff(&xdp, PAGE_SIZE - NFP_NET_RX_BUF_HEADROOM, &rx_ring->xdp_rxq); tx_ring = r_vec->xdp_ring; while (pkts_polled < budget) { unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; struct nfp_net_rx_buf *rxbuf; struct nfp_net_rx_desc *rxd; struct nfp_meta_parsed meta; bool redir_egress = false; struct net_device *netdev; dma_addr_t new_dma_addr; u32 meta_len_xdp = 0; void *new_frag; idx = D_IDX(rx_ring, rx_ring->rd_p); rxd = &rx_ring->rxds[idx]; if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) break; /* Memory barrier to ensure that we won't do other reads * before the DD bit. */ dma_rmb(); memset(&meta, 0, sizeof(meta)); rx_ring->rd_p++; pkts_polled++; rxbuf = &rx_ring->rxbufs[idx]; /* < meta_len > * <-- [rx_offset] --> * --------------------------------------------------------- * | [XX] | metadata | packet | XXXX | * --------------------------------------------------------- * <---------------- data_len ---------------> * * The rx_offset is fixed for all packets, the meta_len can vary * on a packet by packet basis. If rx_offset is set to zero * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the * buffer and is immediately followed by the packet (no [XX]). */ meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; data_len = le16_to_cpu(rxd->rxd.data_len); pkt_len = data_len - meta_len; pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) pkt_off += meta_len; else pkt_off += dp->rx_offset; meta_off = pkt_off - meta_len; /* Stats update */ u64_stats_update_begin(&r_vec->rx_sync); r_vec->rx_pkts++; r_vec->rx_bytes += pkt_len; u64_stats_update_end(&r_vec->rx_sync); if (unlikely(meta_len > NFP_NET_MAX_PREPEND || (dp->rx_offset && meta_len > dp->rx_offset))) { nn_dp_warn(dp, "oversized RX packet metadata %u\n", meta_len); nfp_nfdk_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); continue; } nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); if (meta_len) { if (unlikely(nfp_nfdk_parse_meta(dp->netdev, &meta, rxbuf->frag + meta_off, rxbuf->frag + pkt_off, pkt_len, meta_len))) { nn_dp_warn(dp, "invalid RX packet metadata\n"); nfp_nfdk_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); continue; } } if (xdp_prog && !meta.portid) { void *orig_data = rxbuf->frag + pkt_off; unsigned int dma_off; int act; xdp_prepare_buff(&xdp, rxbuf->frag + NFP_NET_RX_BUF_HEADROOM, pkt_off - NFP_NET_RX_BUF_HEADROOM, pkt_len, true); act = bpf_prog_run_xdp(xdp_prog, &xdp); pkt_len = xdp.data_end - xdp.data; pkt_off += xdp.data - orig_data; switch (act) { case XDP_PASS: meta_len_xdp = xdp.data - xdp.data_meta; break; case XDP_TX: dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; if (unlikely(!nfp_nfdk_tx_xdp_buf(dp, rx_ring, tx_ring, rxbuf, dma_off, pkt_len, &xdp_tx_cmpl))) trace_xdp_exception(dp->netdev, xdp_prog, act); continue; default: bpf_warn_invalid_xdp_action(dp->netdev, xdp_prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(dp->netdev, xdp_prog, act); fallthrough; case XDP_DROP: nfp_nfdk_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); continue; } } if (likely(!meta.portid)) { netdev = dp->netdev; } else if (meta.portid == NFP_META_PORT_ID_CTRL) { struct nfp_net *nn = netdev_priv(dp->netdev); nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, pkt_len); nfp_nfdk_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); continue; } else { struct nfp_net *nn; nn = netdev_priv(dp->netdev); netdev = nfp_app_dev_get(nn->app, meta.portid, &redir_egress); if (unlikely(!netdev)) { nfp_nfdk_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); continue; } if (nfp_netdev_is_nfp_repr(netdev)) nfp_repr_inc_rx_stats(netdev, pkt_len); } skb = build_skb(rxbuf->frag, true_bufsz); if (unlikely(!skb)) { nfp_nfdk_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); continue; } new_frag = nfp_nfdk_napi_alloc_one(dp, &new_dma_addr); if (unlikely(!new_frag)) { nfp_nfdk_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); continue; } nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); nfp_nfdk_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); skb_reserve(skb, pkt_off); skb_put(skb, pkt_len); skb->mark = meta.mark; skb_set_hash(skb, meta.hash, meta.hash_type); skb_record_rx_queue(skb, rx_ring->idx); skb->protocol = eth_type_trans(skb, netdev); nfp_nfdk_rx_csum(dp, r_vec, rxd, &meta, skb); if (unlikely(!nfp_net_vlan_strip(skb, rxd, &meta))) { nfp_nfdk_rx_drop(dp, r_vec, rx_ring, NULL, skb); continue; } if (meta_len_xdp) skb_metadata_set(skb, meta_len_xdp); if (likely(!redir_egress)) { napi_gro_receive(&rx_ring->r_vec->napi, skb); } else { skb->dev = netdev; skb_reset_network_header(skb); __skb_push(skb, ETH_HLEN); dev_queue_xmit(skb); } } if (xdp_prog) { if (tx_ring->wr_ptr_add) nfp_net_tx_xmit_more_flush(tx_ring); else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && !xdp_tx_cmpl) if (!nfp_nfdk_xdp_complete(tx_ring)) pkts_polled = budget; } return pkts_polled; } /** * nfp_nfdk_poll() - napi poll function * @napi: NAPI structure * @budget: NAPI budget * * Return: number of packets polled. */ int nfp_nfdk_poll(struct napi_struct *napi, int budget) { struct nfp_net_r_vector *r_vec = container_of(napi, struct nfp_net_r_vector, napi); unsigned int pkts_polled = 0; if (r_vec->tx_ring) nfp_nfdk_tx_complete(r_vec->tx_ring, budget); if (r_vec->rx_ring) pkts_polled = nfp_nfdk_rx(r_vec->rx_ring, budget); if (pkts_polled < budget) if (napi_complete_done(napi, pkts_polled)) nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); if (r_vec->nfp_net->rx_coalesce_adapt_on && r_vec->rx_ring) { struct dim_sample dim_sample = {}; unsigned int start; u64 pkts, bytes; do { start = u64_stats_fetch_begin(&r_vec->rx_sync); pkts = r_vec->rx_pkts; bytes = r_vec->rx_bytes; } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample); net_dim(&r_vec->rx_dim, dim_sample); } if (r_vec->nfp_net->tx_coalesce_adapt_on && r_vec->tx_ring) { struct dim_sample dim_sample = {}; unsigned int start; u64 pkts, bytes; do { start = u64_stats_fetch_begin(&r_vec->tx_sync); pkts = r_vec->tx_pkts; bytes = r_vec->tx_bytes; } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); dim_update_sample(r_vec->event_ctr, pkts, bytes, &dim_sample); net_dim(&r_vec->tx_dim, dim_sample); } return pkts_polled; } /* Control device data path */ bool nfp_nfdk_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, struct sk_buff *skb, bool old) { u32 cnt, tmp_dlen, dlen_type = 0; struct nfp_net_tx_ring *tx_ring; struct nfp_nfdk_tx_buf *txbuf; struct nfp_nfdk_tx_desc *txd; unsigned int dma_len, type; struct nfp_net_dp *dp; dma_addr_t dma_addr; u64 metadata = 0; int wr_idx; dp = &r_vec->nfp_net->dp; tx_ring = r_vec->tx_ring; if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); goto err_free; } /* Don't bother counting frags, assume the worst */ if (unlikely(nfp_net_tx_full(tx_ring, NFDK_TX_DESC_STOP_CNT))) { u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_busy++; u64_stats_update_end(&r_vec->tx_sync); if (!old) __skb_queue_tail(&r_vec->queue, skb); else __skb_queue_head(&r_vec->queue, skb); return NETDEV_TX_BUSY; } if (nfp_app_ctrl_has_meta(nn->app)) { if (unlikely(skb_headroom(skb) < 8)) { nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); goto err_free; } metadata = NFDK_DESC_TX_CHAIN_META; put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); put_unaligned_be32(FIELD_PREP(NFDK_META_LEN, 8) | FIELD_PREP(NFDK_META_FIELDS, NFP_NET_META_PORTID), skb_push(skb, 4)); } if (nfp_nfdk_tx_maybe_close_block(tx_ring, skb)) goto err_free; /* DMA map all */ wr_idx = D_IDX(tx_ring, tx_ring->wr_p); txd = &tx_ring->ktxds[wr_idx]; txbuf = &tx_ring->ktxbufs[wr_idx]; dma_len = skb_headlen(skb); if (dma_len <= NFDK_TX_MAX_DATA_PER_HEAD) type = NFDK_DESC_TX_TYPE_SIMPLE; else type = NFDK_DESC_TX_TYPE_GATHER; dma_addr = dma_map_single(dp->dev, skb->data, dma_len, DMA_TO_DEVICE); if (dma_mapping_error(dp->dev, dma_addr)) goto err_warn_dma; txbuf->skb = skb; txbuf++; txbuf->dma_addr = dma_addr; txbuf++; dma_len -= 1; dlen_type = FIELD_PREP(NFDK_DESC_TX_DMA_LEN_HEAD, dma_len > NFDK_DESC_TX_DMA_LEN_HEAD ? NFDK_DESC_TX_DMA_LEN_HEAD : dma_len) | FIELD_PREP(NFDK_DESC_TX_TYPE_HEAD, type); txd->dma_len_type = cpu_to_le16(dlen_type); nfp_desc_set_dma_addr_48b(txd, dma_addr); tmp_dlen = dlen_type & NFDK_DESC_TX_DMA_LEN_HEAD; dma_len -= tmp_dlen; dma_addr += tmp_dlen + 1; txd++; while (dma_len > 0) { dma_len -= 1; dlen_type = FIELD_PREP(NFDK_DESC_TX_DMA_LEN, dma_len); txd->dma_len_type = cpu_to_le16(dlen_type); nfp_desc_set_dma_addr_48b(txd, dma_addr); dlen_type &= NFDK_DESC_TX_DMA_LEN; dma_len -= dlen_type; dma_addr += dlen_type + 1; txd++; } (txd - 1)->dma_len_type = cpu_to_le16(dlen_type | NFDK_DESC_TX_EOP); /* Metadata desc */ txd->raw = cpu_to_le64(metadata); txd++; cnt = txd - tx_ring->ktxds - wr_idx; if (unlikely(round_down(wr_idx, NFDK_TX_DESC_BLOCK_CNT) != round_down(wr_idx + cnt - 1, NFDK_TX_DESC_BLOCK_CNT))) goto err_warn_overflow; tx_ring->wr_p += cnt; if (tx_ring->wr_p % NFDK_TX_DESC_BLOCK_CNT) tx_ring->data_pending += skb->len; else tx_ring->data_pending = 0; tx_ring->wr_ptr_add += cnt; nfp_net_tx_xmit_more_flush(tx_ring); return NETDEV_TX_OK; err_warn_overflow: WARN_ONCE(1, "unable to fit packet into a descriptor wr_idx:%d head:%d frags:%d cnt:%d", wr_idx, skb_headlen(skb), 0, cnt); txbuf--; dma_unmap_single(dp->dev, txbuf->dma_addr, skb_headlen(skb), DMA_TO_DEVICE); txbuf->raw = 0; err_warn_dma: nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); err_free: u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_errors++; u64_stats_update_end(&r_vec->tx_sync); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) { struct sk_buff *skb; while ((skb = __skb_dequeue(&r_vec->queue))) if (nfp_nfdk_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) return; } static bool nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) { u32 meta_type, meta_tag; if (!nfp_app_ctrl_has_meta(nn->app)) return !meta_len; if (meta_len != 8) return false; meta_type = get_unaligned_be32(data); meta_tag = get_unaligned_be32(data + 4); return (meta_type == NFP_NET_META_PORTID && meta_tag == NFP_META_PORT_ID_CTRL); } static bool nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) { unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; struct nfp_net_rx_buf *rxbuf; struct nfp_net_rx_desc *rxd; dma_addr_t new_dma_addr; struct sk_buff *skb; void *new_frag; int idx; idx = D_IDX(rx_ring, rx_ring->rd_p); rxd = &rx_ring->rxds[idx]; if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) return false; /* Memory barrier to ensure that we won't do other reads * before the DD bit. */ dma_rmb(); rx_ring->rd_p++; rxbuf = &rx_ring->rxbufs[idx]; meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; data_len = le16_to_cpu(rxd->rxd.data_len); pkt_len = data_len - meta_len; pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) pkt_off += meta_len; else pkt_off += dp->rx_offset; meta_off = pkt_off - meta_len; /* Stats update */ u64_stats_update_begin(&r_vec->rx_sync); r_vec->rx_pkts++; r_vec->rx_bytes += pkt_len; u64_stats_update_end(&r_vec->rx_sync); nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", meta_len); nfp_nfdk_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); return true; } skb = build_skb(rxbuf->frag, dp->fl_bufsz); if (unlikely(!skb)) { nfp_nfdk_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); return true; } new_frag = nfp_nfdk_napi_alloc_one(dp, &new_dma_addr); if (unlikely(!new_frag)) { nfp_nfdk_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); return true; } nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); nfp_nfdk_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); skb_reserve(skb, pkt_off); skb_put(skb, pkt_len); nfp_app_ctrl_rx(nn->app, skb); return true; } static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) { struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; struct nfp_net *nn = r_vec->nfp_net; struct nfp_net_dp *dp = &nn->dp; unsigned int budget = 512; while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) continue; return budget; } void nfp_nfdk_ctrl_poll(struct tasklet_struct *t) { struct nfp_net_r_vector *r_vec = from_tasklet(r_vec, t, tasklet); spin_lock(&r_vec->lock); nfp_nfdk_tx_complete(r_vec->tx_ring, 0); __nfp_ctrl_tx_queued(r_vec); spin_unlock(&r_vec->lock); if (nfp_ctrl_rx(r_vec)) { nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); } else { tasklet_schedule(&r_vec->tasklet); nn_dp_warn(&r_vec->nfp_net->dp, "control message budget exceeded!\n"); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1