Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Hutchings | 1337 | 94.69% | 13 | 76.47% |
Edward Cree | 67 | 4.75% | 2 | 11.76% |
Jon Cooper | 6 | 0.42% | 1 | 5.88% |
Thomas Gleixner | 2 | 0.14% | 1 | 5.88% |
Total | 1412 | 17 |
/* SPDX-License-Identifier: GPL-2.0-only */ /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2013 Solarflare Communications Inc. */ #ifndef EFX_IO_H #define EFX_IO_H #include <linux/io.h> #include <linux/spinlock.h> /************************************************************************** * * NIC register I/O * ************************************************************************** * * Notes on locking strategy for the Falcon architecture: * * Many CSRs are very wide and cannot be read or written atomically. * Writes from the host are buffered by the Bus Interface Unit (BIU) * up to 128 bits. Whenever the host writes part of such a register, * the BIU collects the written value and does not write to the * underlying register until all 4 dwords have been written. A * similar buffering scheme applies to host access to the NIC's 64-bit * SRAM. * * Writes to different CSRs and 64-bit SRAM words must be serialised, * since interleaved access can result in lost writes. We use * efx_nic::biu_lock for this. * * We also serialise reads from 128-bit CSRs and SRAM with the same * spinlock. This may not be necessary, but it doesn't really matter * as there are no such reads on the fast path. * * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are * 128-bit but are special-cased in the BIU to avoid the need for * locking in the host: * * - They are write-only. * - The semantics of writing to these registers are such that * replacing the low 96 bits with zero does not affect functionality. * - If the host writes to the last dword address of such a register * (i.e. the high 32 bits) the underlying register will always be * written. If the collector and the current write together do not * provide values for all 128 bits of the register, the low 96 bits * will be written as zero. * - If the host writes to the address of any other part of such a * register while the collector already holds values for some other * register, the write is discarded and the collector maintains its * current state. * * The EF10 architecture exposes very few registers to the host and * most of them are only 32 bits wide. The only exceptions are the MC * doorbell register pair, which has its own latching, and * TX_DESC_UPD, which works in a similar way to the Falcon * architecture. */ #if BITS_PER_LONG == 64 #define EFX_USE_QWORD_IO 1 #endif /* Hardware issue requires that only 64-bit naturally aligned writes * are seen by hardware. Its not strictly necessary to restrict to * x86_64 arch, but done for safety since unusual write combining behaviour * can break PIO. */ #ifdef CONFIG_X86_64 /* PIO is a win only if write-combining is possible */ #ifdef ARCH_HAS_IOREMAP_WC #define EFX_USE_PIO 1 #endif #endif static inline u32 efx_reg(struct efx_nic *efx, unsigned int reg) { return efx->reg_base + reg; } #ifdef EFX_USE_QWORD_IO static inline void _efx_writeq(struct efx_nic *efx, __le64 value, unsigned int reg) { __raw_writeq((__force u64)value, efx->membase + reg); } static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg) { return (__force __le64)__raw_readq(efx->membase + reg); } #endif static inline void _efx_writed(struct efx_nic *efx, __le32 value, unsigned int reg) { __raw_writel((__force u32)value, efx->membase + reg); } static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg) { return (__force __le32)__raw_readl(efx->membase + reg); } /* Write a normal 128-bit CSR, locking as appropriate. */ static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value, unsigned int reg) { unsigned long flags __attribute__ ((unused)); netif_vdbg(efx, hw, efx->net_dev, "writing register %x with " EFX_OWORD_FMT "\n", reg, EFX_OWORD_VAL(*value)); spin_lock_irqsave(&efx->biu_lock, flags); #ifdef EFX_USE_QWORD_IO _efx_writeq(efx, value->u64[0], reg + 0); _efx_writeq(efx, value->u64[1], reg + 8); #else _efx_writed(efx, value->u32[0], reg + 0); _efx_writed(efx, value->u32[1], reg + 4); _efx_writed(efx, value->u32[2], reg + 8); _efx_writed(efx, value->u32[3], reg + 12); #endif spin_unlock_irqrestore(&efx->biu_lock, flags); } /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */ static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase, const efx_qword_t *value, unsigned int index) { unsigned int addr = index * sizeof(*value); unsigned long flags __attribute__ ((unused)); netif_vdbg(efx, hw, efx->net_dev, "writing SRAM address %x with " EFX_QWORD_FMT "\n", addr, EFX_QWORD_VAL(*value)); spin_lock_irqsave(&efx->biu_lock, flags); #ifdef EFX_USE_QWORD_IO __raw_writeq((__force u64)value->u64[0], membase + addr); #else __raw_writel((__force u32)value->u32[0], membase + addr); __raw_writel((__force u32)value->u32[1], membase + addr + 4); #endif spin_unlock_irqrestore(&efx->biu_lock, flags); } /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */ static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value, unsigned int reg) { netif_vdbg(efx, hw, efx->net_dev, "writing register %x with "EFX_DWORD_FMT"\n", reg, EFX_DWORD_VAL(*value)); /* No lock required */ _efx_writed(efx, value->u32[0], reg); } /* Read a 128-bit CSR, locking as appropriate. */ static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value, unsigned int reg) { unsigned long flags __attribute__ ((unused)); spin_lock_irqsave(&efx->biu_lock, flags); value->u32[0] = _efx_readd(efx, reg + 0); value->u32[1] = _efx_readd(efx, reg + 4); value->u32[2] = _efx_readd(efx, reg + 8); value->u32[3] = _efx_readd(efx, reg + 12); spin_unlock_irqrestore(&efx->biu_lock, flags); netif_vdbg(efx, hw, efx->net_dev, "read from register %x, got " EFX_OWORD_FMT "\n", reg, EFX_OWORD_VAL(*value)); } /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */ static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase, efx_qword_t *value, unsigned int index) { unsigned int addr = index * sizeof(*value); unsigned long flags __attribute__ ((unused)); spin_lock_irqsave(&efx->biu_lock, flags); #ifdef EFX_USE_QWORD_IO value->u64[0] = (__force __le64)__raw_readq(membase + addr); #else value->u32[0] = (__force __le32)__raw_readl(membase + addr); value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4); #endif spin_unlock_irqrestore(&efx->biu_lock, flags); netif_vdbg(efx, hw, efx->net_dev, "read from SRAM address %x, got "EFX_QWORD_FMT"\n", addr, EFX_QWORD_VAL(*value)); } /* Read a 32-bit CSR or SRAM */ static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value, unsigned int reg) { value->u32[0] = _efx_readd(efx, reg); netif_vdbg(efx, hw, efx->net_dev, "read from register %x, got "EFX_DWORD_FMT"\n", reg, EFX_DWORD_VAL(*value)); } /* Write a 128-bit CSR forming part of a table */ static inline void efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value, unsigned int reg, unsigned int index) { efx_writeo(efx, value, reg + index * sizeof(efx_oword_t)); } /* Read a 128-bit CSR forming part of a table */ static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value, unsigned int reg, unsigned int index) { efx_reado(efx, value, reg + index * sizeof(efx_oword_t)); } /* default VI stride (step between per-VI registers) is 8K on EF10 and * 64K on EF100 */ #define EFX_DEFAULT_VI_STRIDE 0x2000 #define EF100_DEFAULT_VI_STRIDE 0x10000 /* Calculate offset to page-mapped register */ static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page, unsigned int reg) { return page * efx->vi_stride + reg; } /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */ static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value, unsigned int reg, unsigned int page) { reg = efx_paged_reg(efx, page, reg); netif_vdbg(efx, hw, efx->net_dev, "writing register %x with " EFX_OWORD_FMT "\n", reg, EFX_OWORD_VAL(*value)); #ifdef EFX_USE_QWORD_IO _efx_writeq(efx, value->u64[0], reg + 0); _efx_writeq(efx, value->u64[1], reg + 8); #else _efx_writed(efx, value->u32[0], reg + 0); _efx_writed(efx, value->u32[1], reg + 4); _efx_writed(efx, value->u32[2], reg + 8); _efx_writed(efx, value->u32[3], reg + 12); #endif } #define efx_writeo_page(efx, value, reg, page) \ _efx_writeo_page(efx, value, \ reg + \ BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \ page) /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the * high bits of RX_DESC_UPD or TX_DESC_UPD) */ static inline void _efx_writed_page(struct efx_nic *efx, const efx_dword_t *value, unsigned int reg, unsigned int page) { efx_writed(efx, value, efx_paged_reg(efx, page, reg)); } #define efx_writed_page(efx, value, reg, page) \ _efx_writed_page(efx, value, \ reg + \ BUILD_BUG_ON_ZERO((reg) != 0x180 && \ (reg) != 0x200 && \ (reg) != 0x400 && \ (reg) != 0x420 && \ (reg) != 0x830 && \ (reg) != 0x83c && \ (reg) != 0xa18 && \ (reg) != 0xa1c), \ page) /* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug * in the BIU means that writes to TIMER_COMMAND[0] invalidate the * collector register. */ static inline void _efx_writed_page_locked(struct efx_nic *efx, const efx_dword_t *value, unsigned int reg, unsigned int page) { unsigned long flags __attribute__ ((unused)); if (page == 0) { spin_lock_irqsave(&efx->biu_lock, flags); efx_writed(efx, value, efx_paged_reg(efx, page, reg)); spin_unlock_irqrestore(&efx->biu_lock, flags); } else { efx_writed(efx, value, efx_paged_reg(efx, page, reg)); } } #define efx_writed_page_locked(efx, value, reg, page) \ _efx_writed_page_locked(efx, value, \ reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \ page) #endif /* EFX_IO_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1