Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Joao Pinto | 1428 | 22.59% | 14 | 19.44% |
Alexandre Torgue | 1377 | 21.78% | 1 | 1.39% |
Jose Abreu | 1271 | 20.11% | 21 | 29.17% |
Wong Vee Khee | 876 | 13.86% | 2 | 2.78% |
Chuah, Kim Tatt | 364 | 5.76% | 2 | 2.78% |
Corentin Labbe | 284 | 4.49% | 4 | 5.56% |
Giuseppe Cavallaro | 228 | 3.61% | 4 | 5.56% |
Biao Huang | 118 | 1.87% | 3 | 4.17% |
Niklas Cassel | 101 | 1.60% | 4 | 5.56% |
Vineetha G. Jaya Kumaran | 97 | 1.53% | 1 | 1.39% |
Ong Boon Leong | 40 | 0.63% | 1 | 1.39% |
Ed Blake | 32 | 0.51% | 1 | 1.39% |
Junxiao Chang | 29 | 0.46% | 1 | 1.39% |
Tan, Tee Min | 14 | 0.22% | 1 | 1.39% |
Mohammad Athari Bin Ismail | 10 | 0.16% | 1 | 1.39% |
Cheng Han | 9 | 0.14% | 1 | 1.39% |
Verma, Aashish | 8 | 0.13% | 1 | 1.39% |
Weifeng Voon | 8 | 0.13% | 1 | 1.39% |
Goh, Wei Sheng | 8 | 0.13% | 1 | 1.39% |
Antonio Borneo | 5 | 0.08% | 1 | 1.39% |
Ramesh Babu B | 5 | 0.08% | 1 | 1.39% |
Florian Fainelli | 4 | 0.06% | 1 | 1.39% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.39% |
Jakub Kiciński | 1 | 0.02% | 1 | 1.39% |
Ben Dooks | 1 | 0.02% | 1 | 1.39% |
Colin Ian King | 1 | 0.02% | 1 | 1.39% |
Total | 6321 | 72 |
// SPDX-License-Identifier: GPL-2.0-only /* * This is the driver for the GMAC on-chip Ethernet controller for ST SoCs. * DWC Ether MAC version 4.00 has been used for developing this code. * * This only implements the mac core functions for this chip. * * Copyright (C) 2015 STMicroelectronics Ltd * * Author: Alexandre Torgue <alexandre.torgue@st.com> */ #include <linux/crc32.h> #include <linux/slab.h> #include <linux/ethtool.h> #include <linux/io.h> #include "stmmac.h" #include "stmmac_pcs.h" #include "dwmac4.h" #include "dwmac5.h" static void dwmac4_core_init(struct mac_device_info *hw, struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); void __iomem *ioaddr = hw->pcsr; u32 value = readl(ioaddr + GMAC_CONFIG); value |= GMAC_CORE_INIT; if (hw->ps) { value |= GMAC_CONFIG_TE; value &= hw->link.speed_mask; switch (hw->ps) { case SPEED_1000: value |= hw->link.speed1000; break; case SPEED_100: value |= hw->link.speed100; break; case SPEED_10: value |= hw->link.speed10; break; } } writel(value, ioaddr + GMAC_CONFIG); /* Enable GMAC interrupts */ value = GMAC_INT_DEFAULT_ENABLE; if (hw->pcs) value |= GMAC_PCS_IRQ_DEFAULT; /* Enable FPE interrupt */ if ((GMAC_HW_FEAT_FPESEL & readl(ioaddr + GMAC_HW_FEATURE3)) >> 26) value |= GMAC_INT_FPE_EN; writel(value, ioaddr + GMAC_INT_EN); if (GMAC_INT_DEFAULT_ENABLE & GMAC_INT_TSIE) init_waitqueue_head(&priv->tstamp_busy_wait); } static void dwmac4_rx_queue_enable(struct mac_device_info *hw, u8 mode, u32 queue) { void __iomem *ioaddr = hw->pcsr; u32 value = readl(ioaddr + GMAC_RXQ_CTRL0); value &= GMAC_RX_QUEUE_CLEAR(queue); if (mode == MTL_QUEUE_AVB) value |= GMAC_RX_AV_QUEUE_ENABLE(queue); else if (mode == MTL_QUEUE_DCB) value |= GMAC_RX_DCB_QUEUE_ENABLE(queue); writel(value, ioaddr + GMAC_RXQ_CTRL0); } static void dwmac4_rx_queue_priority(struct mac_device_info *hw, u32 prio, u32 queue) { void __iomem *ioaddr = hw->pcsr; u32 base_register; u32 value; base_register = (queue < 4) ? GMAC_RXQ_CTRL2 : GMAC_RXQ_CTRL3; if (queue >= 4) queue -= 4; value = readl(ioaddr + base_register); value &= ~GMAC_RXQCTRL_PSRQX_MASK(queue); value |= (prio << GMAC_RXQCTRL_PSRQX_SHIFT(queue)) & GMAC_RXQCTRL_PSRQX_MASK(queue); writel(value, ioaddr + base_register); } static void dwmac4_tx_queue_priority(struct mac_device_info *hw, u32 prio, u32 queue) { void __iomem *ioaddr = hw->pcsr; u32 base_register; u32 value; base_register = (queue < 4) ? GMAC_TXQ_PRTY_MAP0 : GMAC_TXQ_PRTY_MAP1; if (queue >= 4) queue -= 4; value = readl(ioaddr + base_register); value &= ~GMAC_TXQCTRL_PSTQX_MASK(queue); value |= (prio << GMAC_TXQCTRL_PSTQX_SHIFT(queue)) & GMAC_TXQCTRL_PSTQX_MASK(queue); writel(value, ioaddr + base_register); } static void dwmac4_rx_queue_routing(struct mac_device_info *hw, u8 packet, u32 queue) { void __iomem *ioaddr = hw->pcsr; u32 value; static const struct stmmac_rx_routing route_possibilities[] = { { GMAC_RXQCTRL_AVCPQ_MASK, GMAC_RXQCTRL_AVCPQ_SHIFT }, { GMAC_RXQCTRL_PTPQ_MASK, GMAC_RXQCTRL_PTPQ_SHIFT }, { GMAC_RXQCTRL_DCBCPQ_MASK, GMAC_RXQCTRL_DCBCPQ_SHIFT }, { GMAC_RXQCTRL_UPQ_MASK, GMAC_RXQCTRL_UPQ_SHIFT }, { GMAC_RXQCTRL_MCBCQ_MASK, GMAC_RXQCTRL_MCBCQ_SHIFT }, }; value = readl(ioaddr + GMAC_RXQ_CTRL1); /* routing configuration */ value &= ~route_possibilities[packet - 1].reg_mask; value |= (queue << route_possibilities[packet-1].reg_shift) & route_possibilities[packet - 1].reg_mask; /* some packets require extra ops */ if (packet == PACKET_AVCPQ) { value &= ~GMAC_RXQCTRL_TACPQE; value |= 0x1 << GMAC_RXQCTRL_TACPQE_SHIFT; } else if (packet == PACKET_MCBCQ) { value &= ~GMAC_RXQCTRL_MCBCQEN; value |= 0x1 << GMAC_RXQCTRL_MCBCQEN_SHIFT; } writel(value, ioaddr + GMAC_RXQ_CTRL1); } static void dwmac4_prog_mtl_rx_algorithms(struct mac_device_info *hw, u32 rx_alg) { void __iomem *ioaddr = hw->pcsr; u32 value = readl(ioaddr + MTL_OPERATION_MODE); value &= ~MTL_OPERATION_RAA; switch (rx_alg) { case MTL_RX_ALGORITHM_SP: value |= MTL_OPERATION_RAA_SP; break; case MTL_RX_ALGORITHM_WSP: value |= MTL_OPERATION_RAA_WSP; break; default: break; } writel(value, ioaddr + MTL_OPERATION_MODE); } static void dwmac4_prog_mtl_tx_algorithms(struct mac_device_info *hw, u32 tx_alg) { void __iomem *ioaddr = hw->pcsr; u32 value = readl(ioaddr + MTL_OPERATION_MODE); value &= ~MTL_OPERATION_SCHALG_MASK; switch (tx_alg) { case MTL_TX_ALGORITHM_WRR: value |= MTL_OPERATION_SCHALG_WRR; break; case MTL_TX_ALGORITHM_WFQ: value |= MTL_OPERATION_SCHALG_WFQ; break; case MTL_TX_ALGORITHM_DWRR: value |= MTL_OPERATION_SCHALG_DWRR; break; case MTL_TX_ALGORITHM_SP: value |= MTL_OPERATION_SCHALG_SP; break; default: break; } writel(value, ioaddr + MTL_OPERATION_MODE); } static void dwmac4_set_mtl_tx_queue_weight(struct mac_device_info *hw, u32 weight, u32 queue) { void __iomem *ioaddr = hw->pcsr; u32 value = readl(ioaddr + MTL_TXQX_WEIGHT_BASE_ADDR(queue)); value &= ~MTL_TXQ_WEIGHT_ISCQW_MASK; value |= weight & MTL_TXQ_WEIGHT_ISCQW_MASK; writel(value, ioaddr + MTL_TXQX_WEIGHT_BASE_ADDR(queue)); } static void dwmac4_map_mtl_dma(struct mac_device_info *hw, u32 queue, u32 chan) { void __iomem *ioaddr = hw->pcsr; u32 value; if (queue < 4) value = readl(ioaddr + MTL_RXQ_DMA_MAP0); else value = readl(ioaddr + MTL_RXQ_DMA_MAP1); if (queue == 0 || queue == 4) { value &= ~MTL_RXQ_DMA_Q04MDMACH_MASK; value |= MTL_RXQ_DMA_Q04MDMACH(chan); } else if (queue > 4) { value &= ~MTL_RXQ_DMA_QXMDMACH_MASK(queue - 4); value |= MTL_RXQ_DMA_QXMDMACH(chan, queue - 4); } else { value &= ~MTL_RXQ_DMA_QXMDMACH_MASK(queue); value |= MTL_RXQ_DMA_QXMDMACH(chan, queue); } if (queue < 4) writel(value, ioaddr + MTL_RXQ_DMA_MAP0); else writel(value, ioaddr + MTL_RXQ_DMA_MAP1); } static void dwmac4_config_cbs(struct mac_device_info *hw, u32 send_slope, u32 idle_slope, u32 high_credit, u32 low_credit, u32 queue) { void __iomem *ioaddr = hw->pcsr; u32 value; pr_debug("Queue %d configured as AVB. Parameters:\n", queue); pr_debug("\tsend_slope: 0x%08x\n", send_slope); pr_debug("\tidle_slope: 0x%08x\n", idle_slope); pr_debug("\thigh_credit: 0x%08x\n", high_credit); pr_debug("\tlow_credit: 0x%08x\n", low_credit); /* enable AV algorithm */ value = readl(ioaddr + MTL_ETSX_CTRL_BASE_ADDR(queue)); value |= MTL_ETS_CTRL_AVALG; value |= MTL_ETS_CTRL_CC; writel(value, ioaddr + MTL_ETSX_CTRL_BASE_ADDR(queue)); /* configure send slope */ value = readl(ioaddr + MTL_SEND_SLP_CREDX_BASE_ADDR(queue)); value &= ~MTL_SEND_SLP_CRED_SSC_MASK; value |= send_slope & MTL_SEND_SLP_CRED_SSC_MASK; writel(value, ioaddr + MTL_SEND_SLP_CREDX_BASE_ADDR(queue)); /* configure idle slope (same register as tx weight) */ dwmac4_set_mtl_tx_queue_weight(hw, idle_slope, queue); /* configure high credit */ value = readl(ioaddr + MTL_HIGH_CREDX_BASE_ADDR(queue)); value &= ~MTL_HIGH_CRED_HC_MASK; value |= high_credit & MTL_HIGH_CRED_HC_MASK; writel(value, ioaddr + MTL_HIGH_CREDX_BASE_ADDR(queue)); /* configure high credit */ value = readl(ioaddr + MTL_LOW_CREDX_BASE_ADDR(queue)); value &= ~MTL_HIGH_CRED_LC_MASK; value |= low_credit & MTL_HIGH_CRED_LC_MASK; writel(value, ioaddr + MTL_LOW_CREDX_BASE_ADDR(queue)); } static void dwmac4_dump_regs(struct mac_device_info *hw, u32 *reg_space) { void __iomem *ioaddr = hw->pcsr; int i; for (i = 0; i < GMAC_REG_NUM; i++) reg_space[i] = readl(ioaddr + i * 4); } static int dwmac4_rx_ipc_enable(struct mac_device_info *hw) { void __iomem *ioaddr = hw->pcsr; u32 value = readl(ioaddr + GMAC_CONFIG); if (hw->rx_csum) value |= GMAC_CONFIG_IPC; else value &= ~GMAC_CONFIG_IPC; writel(value, ioaddr + GMAC_CONFIG); value = readl(ioaddr + GMAC_CONFIG); return !!(value & GMAC_CONFIG_IPC); } static void dwmac4_pmt(struct mac_device_info *hw, unsigned long mode) { void __iomem *ioaddr = hw->pcsr; unsigned int pmt = 0; u32 config; if (mode & WAKE_MAGIC) { pr_debug("GMAC: WOL Magic frame\n"); pmt |= power_down | magic_pkt_en; } if (mode & WAKE_UCAST) { pr_debug("GMAC: WOL on global unicast\n"); pmt |= power_down | global_unicast | wake_up_frame_en; } if (pmt) { /* The receiver must be enabled for WOL before powering down */ config = readl(ioaddr + GMAC_CONFIG); config |= GMAC_CONFIG_RE; writel(config, ioaddr + GMAC_CONFIG); } writel(pmt, ioaddr + GMAC_PMT); } static void dwmac4_set_umac_addr(struct mac_device_info *hw, const unsigned char *addr, unsigned int reg_n) { void __iomem *ioaddr = hw->pcsr; stmmac_dwmac4_set_mac_addr(ioaddr, addr, GMAC_ADDR_HIGH(reg_n), GMAC_ADDR_LOW(reg_n)); } static void dwmac4_get_umac_addr(struct mac_device_info *hw, unsigned char *addr, unsigned int reg_n) { void __iomem *ioaddr = hw->pcsr; stmmac_dwmac4_get_mac_addr(ioaddr, addr, GMAC_ADDR_HIGH(reg_n), GMAC_ADDR_LOW(reg_n)); } static void dwmac4_set_eee_mode(struct mac_device_info *hw, bool en_tx_lpi_clockgating) { void __iomem *ioaddr = hw->pcsr; u32 value; /* Enable the link status receive on RGMII, SGMII ore SMII * receive path and instruct the transmit to enter in LPI * state. */ value = readl(ioaddr + GMAC4_LPI_CTRL_STATUS); value |= GMAC4_LPI_CTRL_STATUS_LPIEN | GMAC4_LPI_CTRL_STATUS_LPITXA; if (en_tx_lpi_clockgating) value |= GMAC4_LPI_CTRL_STATUS_LPITCSE; writel(value, ioaddr + GMAC4_LPI_CTRL_STATUS); } static void dwmac4_reset_eee_mode(struct mac_device_info *hw) { void __iomem *ioaddr = hw->pcsr; u32 value; value = readl(ioaddr + GMAC4_LPI_CTRL_STATUS); value &= ~(GMAC4_LPI_CTRL_STATUS_LPIEN | GMAC4_LPI_CTRL_STATUS_LPITXA); writel(value, ioaddr + GMAC4_LPI_CTRL_STATUS); } static void dwmac4_set_eee_pls(struct mac_device_info *hw, int link) { void __iomem *ioaddr = hw->pcsr; u32 value; value = readl(ioaddr + GMAC4_LPI_CTRL_STATUS); if (link) value |= GMAC4_LPI_CTRL_STATUS_PLS; else value &= ~GMAC4_LPI_CTRL_STATUS_PLS; writel(value, ioaddr + GMAC4_LPI_CTRL_STATUS); } static void dwmac4_set_eee_lpi_entry_timer(struct mac_device_info *hw, int et) { void __iomem *ioaddr = hw->pcsr; int value = et & STMMAC_ET_MAX; int regval; /* Program LPI entry timer value into register */ writel(value, ioaddr + GMAC4_LPI_ENTRY_TIMER); /* Enable/disable LPI entry timer */ regval = readl(ioaddr + GMAC4_LPI_CTRL_STATUS); regval |= GMAC4_LPI_CTRL_STATUS_LPIEN | GMAC4_LPI_CTRL_STATUS_LPITXA; if (et) regval |= GMAC4_LPI_CTRL_STATUS_LPIATE; else regval &= ~GMAC4_LPI_CTRL_STATUS_LPIATE; writel(regval, ioaddr + GMAC4_LPI_CTRL_STATUS); } static void dwmac4_set_eee_timer(struct mac_device_info *hw, int ls, int tw) { void __iomem *ioaddr = hw->pcsr; int value = ((tw & 0xffff)) | ((ls & 0x3ff) << 16); /* Program the timers in the LPI timer control register: * LS: minimum time (ms) for which the link * status from PHY should be ok before transmitting * the LPI pattern. * TW: minimum time (us) for which the core waits * after it has stopped transmitting the LPI pattern. */ writel(value, ioaddr + GMAC4_LPI_TIMER_CTRL); } static void dwmac4_write_single_vlan(struct net_device *dev, u16 vid) { void __iomem *ioaddr = (void __iomem *)dev->base_addr; u32 val; val = readl(ioaddr + GMAC_VLAN_TAG); val &= ~GMAC_VLAN_TAG_VID; val |= GMAC_VLAN_TAG_ETV | vid; writel(val, ioaddr + GMAC_VLAN_TAG); } static int dwmac4_write_vlan_filter(struct net_device *dev, struct mac_device_info *hw, u8 index, u32 data) { void __iomem *ioaddr = (void __iomem *)dev->base_addr; int i, timeout = 10; u32 val; if (index >= hw->num_vlan) return -EINVAL; writel(data, ioaddr + GMAC_VLAN_TAG_DATA); val = readl(ioaddr + GMAC_VLAN_TAG); val &= ~(GMAC_VLAN_TAG_CTRL_OFS_MASK | GMAC_VLAN_TAG_CTRL_CT | GMAC_VLAN_TAG_CTRL_OB); val |= (index << GMAC_VLAN_TAG_CTRL_OFS_SHIFT) | GMAC_VLAN_TAG_CTRL_OB; writel(val, ioaddr + GMAC_VLAN_TAG); for (i = 0; i < timeout; i++) { val = readl(ioaddr + GMAC_VLAN_TAG); if (!(val & GMAC_VLAN_TAG_CTRL_OB)) return 0; udelay(1); } netdev_err(dev, "Timeout accessing MAC_VLAN_Tag_Filter\n"); return -EBUSY; } static int dwmac4_add_hw_vlan_rx_fltr(struct net_device *dev, struct mac_device_info *hw, __be16 proto, u16 vid) { int index = -1; u32 val = 0; int i, ret; if (vid > 4095) return -EINVAL; if (hw->promisc) { netdev_err(dev, "Adding VLAN in promisc mode not supported\n"); return -EPERM; } /* Single Rx VLAN Filter */ if (hw->num_vlan == 1) { /* For single VLAN filter, VID 0 means VLAN promiscuous */ if (vid == 0) { netdev_warn(dev, "Adding VLAN ID 0 is not supported\n"); return -EPERM; } if (hw->vlan_filter[0] & GMAC_VLAN_TAG_VID) { netdev_err(dev, "Only single VLAN ID supported\n"); return -EPERM; } hw->vlan_filter[0] = vid; dwmac4_write_single_vlan(dev, vid); return 0; } /* Extended Rx VLAN Filter Enable */ val |= GMAC_VLAN_TAG_DATA_ETV | GMAC_VLAN_TAG_DATA_VEN | vid; for (i = 0; i < hw->num_vlan; i++) { if (hw->vlan_filter[i] == val) return 0; else if (!(hw->vlan_filter[i] & GMAC_VLAN_TAG_DATA_VEN)) index = i; } if (index == -1) { netdev_err(dev, "MAC_VLAN_Tag_Filter full (size: %0u)\n", hw->num_vlan); return -EPERM; } ret = dwmac4_write_vlan_filter(dev, hw, index, val); if (!ret) hw->vlan_filter[index] = val; return ret; } static int dwmac4_del_hw_vlan_rx_fltr(struct net_device *dev, struct mac_device_info *hw, __be16 proto, u16 vid) { int i, ret = 0; if (hw->promisc) { netdev_err(dev, "Deleting VLAN in promisc mode not supported\n"); return -EPERM; } /* Single Rx VLAN Filter */ if (hw->num_vlan == 1) { if ((hw->vlan_filter[0] & GMAC_VLAN_TAG_VID) == vid) { hw->vlan_filter[0] = 0; dwmac4_write_single_vlan(dev, 0); } return 0; } /* Extended Rx VLAN Filter Enable */ for (i = 0; i < hw->num_vlan; i++) { if ((hw->vlan_filter[i] & GMAC_VLAN_TAG_DATA_VID) == vid) { ret = dwmac4_write_vlan_filter(dev, hw, i, 0); if (!ret) hw->vlan_filter[i] = 0; else return ret; } } return ret; } static void dwmac4_vlan_promisc_enable(struct net_device *dev, struct mac_device_info *hw) { void __iomem *ioaddr = hw->pcsr; u32 value; u32 hash; u32 val; int i; /* Single Rx VLAN Filter */ if (hw->num_vlan == 1) { dwmac4_write_single_vlan(dev, 0); return; } /* Extended Rx VLAN Filter Enable */ for (i = 0; i < hw->num_vlan; i++) { if (hw->vlan_filter[i] & GMAC_VLAN_TAG_DATA_VEN) { val = hw->vlan_filter[i] & ~GMAC_VLAN_TAG_DATA_VEN; dwmac4_write_vlan_filter(dev, hw, i, val); } } hash = readl(ioaddr + GMAC_VLAN_HASH_TABLE); if (hash & GMAC_VLAN_VLHT) { value = readl(ioaddr + GMAC_VLAN_TAG); if (value & GMAC_VLAN_VTHM) { value &= ~GMAC_VLAN_VTHM; writel(value, ioaddr + GMAC_VLAN_TAG); } } } static void dwmac4_restore_hw_vlan_rx_fltr(struct net_device *dev, struct mac_device_info *hw) { void __iomem *ioaddr = hw->pcsr; u32 value; u32 hash; u32 val; int i; /* Single Rx VLAN Filter */ if (hw->num_vlan == 1) { dwmac4_write_single_vlan(dev, hw->vlan_filter[0]); return; } /* Extended Rx VLAN Filter Enable */ for (i = 0; i < hw->num_vlan; i++) { if (hw->vlan_filter[i] & GMAC_VLAN_TAG_DATA_VEN) { val = hw->vlan_filter[i]; dwmac4_write_vlan_filter(dev, hw, i, val); } } hash = readl(ioaddr + GMAC_VLAN_HASH_TABLE); if (hash & GMAC_VLAN_VLHT) { value = readl(ioaddr + GMAC_VLAN_TAG); value |= GMAC_VLAN_VTHM; writel(value, ioaddr + GMAC_VLAN_TAG); } } static void dwmac4_set_filter(struct mac_device_info *hw, struct net_device *dev) { void __iomem *ioaddr = (void __iomem *)dev->base_addr; int numhashregs = (hw->multicast_filter_bins >> 5); int mcbitslog2 = hw->mcast_bits_log2; unsigned int value; u32 mc_filter[8]; int i; memset(mc_filter, 0, sizeof(mc_filter)); value = readl(ioaddr + GMAC_PACKET_FILTER); value &= ~GMAC_PACKET_FILTER_HMC; value &= ~GMAC_PACKET_FILTER_HPF; value &= ~GMAC_PACKET_FILTER_PCF; value &= ~GMAC_PACKET_FILTER_PM; value &= ~GMAC_PACKET_FILTER_PR; value &= ~GMAC_PACKET_FILTER_RA; if (dev->flags & IFF_PROMISC) { /* VLAN Tag Filter Fail Packets Queuing */ if (hw->vlan_fail_q_en) { value = readl(ioaddr + GMAC_RXQ_CTRL4); value &= ~GMAC_RXQCTRL_VFFQ_MASK; value |= GMAC_RXQCTRL_VFFQE | (hw->vlan_fail_q << GMAC_RXQCTRL_VFFQ_SHIFT); writel(value, ioaddr + GMAC_RXQ_CTRL4); value = GMAC_PACKET_FILTER_PR | GMAC_PACKET_FILTER_RA; } else { value = GMAC_PACKET_FILTER_PR | GMAC_PACKET_FILTER_PCF; } } else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > hw->multicast_filter_bins)) { /* Pass all multi */ value |= GMAC_PACKET_FILTER_PM; /* Set all the bits of the HASH tab */ memset(mc_filter, 0xff, sizeof(mc_filter)); } else if (!netdev_mc_empty(dev) && (dev->flags & IFF_MULTICAST)) { struct netdev_hw_addr *ha; /* Hash filter for multicast */ value |= GMAC_PACKET_FILTER_HMC; netdev_for_each_mc_addr(ha, dev) { /* The upper n bits of the calculated CRC are used to * index the contents of the hash table. The number of * bits used depends on the hardware configuration * selected at core configuration time. */ u32 bit_nr = bitrev32(~crc32_le(~0, ha->addr, ETH_ALEN)) >> (32 - mcbitslog2); /* The most significant bit determines the register to * use (H/L) while the other 5 bits determine the bit * within the register. */ mc_filter[bit_nr >> 5] |= (1 << (bit_nr & 0x1f)); } } for (i = 0; i < numhashregs; i++) writel(mc_filter[i], ioaddr + GMAC_HASH_TAB(i)); value |= GMAC_PACKET_FILTER_HPF; /* Handle multiple unicast addresses */ if (netdev_uc_count(dev) > hw->unicast_filter_entries) { /* Switch to promiscuous mode if more than 128 addrs * are required */ value |= GMAC_PACKET_FILTER_PR; } else { struct netdev_hw_addr *ha; int reg = 1; netdev_for_each_uc_addr(ha, dev) { dwmac4_set_umac_addr(hw, ha->addr, reg); reg++; } while (reg < GMAC_MAX_PERFECT_ADDRESSES) { writel(0, ioaddr + GMAC_ADDR_HIGH(reg)); writel(0, ioaddr + GMAC_ADDR_LOW(reg)); reg++; } } /* VLAN filtering */ if (dev->features & NETIF_F_HW_VLAN_CTAG_FILTER) value |= GMAC_PACKET_FILTER_VTFE; writel(value, ioaddr + GMAC_PACKET_FILTER); if (dev->flags & IFF_PROMISC && !hw->vlan_fail_q_en) { if (!hw->promisc) { hw->promisc = 1; dwmac4_vlan_promisc_enable(dev, hw); } } else { if (hw->promisc) { hw->promisc = 0; dwmac4_restore_hw_vlan_rx_fltr(dev, hw); } } } static void dwmac4_flow_ctrl(struct mac_device_info *hw, unsigned int duplex, unsigned int fc, unsigned int pause_time, u32 tx_cnt) { void __iomem *ioaddr = hw->pcsr; unsigned int flow = 0; u32 queue = 0; pr_debug("GMAC Flow-Control:\n"); if (fc & FLOW_RX) { pr_debug("\tReceive Flow-Control ON\n"); flow |= GMAC_RX_FLOW_CTRL_RFE; } else { pr_debug("\tReceive Flow-Control OFF\n"); } writel(flow, ioaddr + GMAC_RX_FLOW_CTRL); if (fc & FLOW_TX) { pr_debug("\tTransmit Flow-Control ON\n"); if (duplex) pr_debug("\tduplex mode: PAUSE %d\n", pause_time); for (queue = 0; queue < tx_cnt; queue++) { flow = GMAC_TX_FLOW_CTRL_TFE; if (duplex) flow |= (pause_time << GMAC_TX_FLOW_CTRL_PT_SHIFT); writel(flow, ioaddr + GMAC_QX_TX_FLOW_CTRL(queue)); } } else { for (queue = 0; queue < tx_cnt; queue++) writel(0, ioaddr + GMAC_QX_TX_FLOW_CTRL(queue)); } } static void dwmac4_ctrl_ane(void __iomem *ioaddr, bool ane, bool srgmi_ral, bool loopback) { dwmac_ctrl_ane(ioaddr, GMAC_PCS_BASE, ane, srgmi_ral, loopback); } static void dwmac4_rane(void __iomem *ioaddr, bool restart) { dwmac_rane(ioaddr, GMAC_PCS_BASE, restart); } static void dwmac4_get_adv_lp(void __iomem *ioaddr, struct rgmii_adv *adv) { dwmac_get_adv_lp(ioaddr, GMAC_PCS_BASE, adv); } /* RGMII or SMII interface */ static void dwmac4_phystatus(void __iomem *ioaddr, struct stmmac_extra_stats *x) { u32 status; status = readl(ioaddr + GMAC_PHYIF_CONTROL_STATUS); x->irq_rgmii_n++; /* Check the link status */ if (status & GMAC_PHYIF_CTRLSTATUS_LNKSTS) { int speed_value; x->pcs_link = 1; speed_value = ((status & GMAC_PHYIF_CTRLSTATUS_SPEED) >> GMAC_PHYIF_CTRLSTATUS_SPEED_SHIFT); if (speed_value == GMAC_PHYIF_CTRLSTATUS_SPEED_125) x->pcs_speed = SPEED_1000; else if (speed_value == GMAC_PHYIF_CTRLSTATUS_SPEED_25) x->pcs_speed = SPEED_100; else x->pcs_speed = SPEED_10; x->pcs_duplex = (status & GMAC_PHYIF_CTRLSTATUS_LNKMOD_MASK); pr_info("Link is Up - %d/%s\n", (int)x->pcs_speed, x->pcs_duplex ? "Full" : "Half"); } else { x->pcs_link = 0; pr_info("Link is Down\n"); } } static int dwmac4_irq_mtl_status(struct mac_device_info *hw, u32 chan) { void __iomem *ioaddr = hw->pcsr; u32 mtl_int_qx_status; int ret = 0; mtl_int_qx_status = readl(ioaddr + MTL_INT_STATUS); /* Check MTL Interrupt */ if (mtl_int_qx_status & MTL_INT_QX(chan)) { /* read Queue x Interrupt status */ u32 status = readl(ioaddr + MTL_CHAN_INT_CTRL(chan)); if (status & MTL_RX_OVERFLOW_INT) { /* clear Interrupt */ writel(status | MTL_RX_OVERFLOW_INT, ioaddr + MTL_CHAN_INT_CTRL(chan)); ret = CORE_IRQ_MTL_RX_OVERFLOW; } } return ret; } static int dwmac4_irq_status(struct mac_device_info *hw, struct stmmac_extra_stats *x) { void __iomem *ioaddr = hw->pcsr; u32 intr_status = readl(ioaddr + GMAC_INT_STATUS); u32 intr_enable = readl(ioaddr + GMAC_INT_EN); int ret = 0; /* Discard disabled bits */ intr_status &= intr_enable; /* Not used events (e.g. MMC interrupts) are not handled. */ if ((intr_status & mmc_tx_irq)) x->mmc_tx_irq_n++; if (unlikely(intr_status & mmc_rx_irq)) x->mmc_rx_irq_n++; if (unlikely(intr_status & mmc_rx_csum_offload_irq)) x->mmc_rx_csum_offload_irq_n++; /* Clear the PMT bits 5 and 6 by reading the PMT status reg */ if (unlikely(intr_status & pmt_irq)) { readl(ioaddr + GMAC_PMT); x->irq_receive_pmt_irq_n++; } /* MAC tx/rx EEE LPI entry/exit interrupts */ if (intr_status & lpi_irq) { /* Clear LPI interrupt by reading MAC_LPI_Control_Status */ u32 status = readl(ioaddr + GMAC4_LPI_CTRL_STATUS); if (status & GMAC4_LPI_CTRL_STATUS_TLPIEN) { ret |= CORE_IRQ_TX_PATH_IN_LPI_MODE; x->irq_tx_path_in_lpi_mode_n++; } if (status & GMAC4_LPI_CTRL_STATUS_TLPIEX) { ret |= CORE_IRQ_TX_PATH_EXIT_LPI_MODE; x->irq_tx_path_exit_lpi_mode_n++; } if (status & GMAC4_LPI_CTRL_STATUS_RLPIEN) x->irq_rx_path_in_lpi_mode_n++; if (status & GMAC4_LPI_CTRL_STATUS_RLPIEX) x->irq_rx_path_exit_lpi_mode_n++; } dwmac_pcs_isr(ioaddr, GMAC_PCS_BASE, intr_status, x); if (intr_status & PCS_RGSMIIIS_IRQ) dwmac4_phystatus(ioaddr, x); return ret; } static void dwmac4_debug(void __iomem *ioaddr, struct stmmac_extra_stats *x, u32 rx_queues, u32 tx_queues) { u32 value; u32 queue; for (queue = 0; queue < tx_queues; queue++) { value = readl(ioaddr + MTL_CHAN_TX_DEBUG(queue)); if (value & MTL_DEBUG_TXSTSFSTS) x->mtl_tx_status_fifo_full++; if (value & MTL_DEBUG_TXFSTS) x->mtl_tx_fifo_not_empty++; if (value & MTL_DEBUG_TWCSTS) x->mmtl_fifo_ctrl++; if (value & MTL_DEBUG_TRCSTS_MASK) { u32 trcsts = (value & MTL_DEBUG_TRCSTS_MASK) >> MTL_DEBUG_TRCSTS_SHIFT; if (trcsts == MTL_DEBUG_TRCSTS_WRITE) x->mtl_tx_fifo_read_ctrl_write++; else if (trcsts == MTL_DEBUG_TRCSTS_TXW) x->mtl_tx_fifo_read_ctrl_wait++; else if (trcsts == MTL_DEBUG_TRCSTS_READ) x->mtl_tx_fifo_read_ctrl_read++; else x->mtl_tx_fifo_read_ctrl_idle++; } if (value & MTL_DEBUG_TXPAUSED) x->mac_tx_in_pause++; } for (queue = 0; queue < rx_queues; queue++) { value = readl(ioaddr + MTL_CHAN_RX_DEBUG(queue)); if (value & MTL_DEBUG_RXFSTS_MASK) { u32 rxfsts = (value & MTL_DEBUG_RXFSTS_MASK) >> MTL_DEBUG_RRCSTS_SHIFT; if (rxfsts == MTL_DEBUG_RXFSTS_FULL) x->mtl_rx_fifo_fill_level_full++; else if (rxfsts == MTL_DEBUG_RXFSTS_AT) x->mtl_rx_fifo_fill_above_thresh++; else if (rxfsts == MTL_DEBUG_RXFSTS_BT) x->mtl_rx_fifo_fill_below_thresh++; else x->mtl_rx_fifo_fill_level_empty++; } if (value & MTL_DEBUG_RRCSTS_MASK) { u32 rrcsts = (value & MTL_DEBUG_RRCSTS_MASK) >> MTL_DEBUG_RRCSTS_SHIFT; if (rrcsts == MTL_DEBUG_RRCSTS_FLUSH) x->mtl_rx_fifo_read_ctrl_flush++; else if (rrcsts == MTL_DEBUG_RRCSTS_RSTAT) x->mtl_rx_fifo_read_ctrl_read_data++; else if (rrcsts == MTL_DEBUG_RRCSTS_RDATA) x->mtl_rx_fifo_read_ctrl_status++; else x->mtl_rx_fifo_read_ctrl_idle++; } if (value & MTL_DEBUG_RWCSTS) x->mtl_rx_fifo_ctrl_active++; } /* GMAC debug */ value = readl(ioaddr + GMAC_DEBUG); if (value & GMAC_DEBUG_TFCSTS_MASK) { u32 tfcsts = (value & GMAC_DEBUG_TFCSTS_MASK) >> GMAC_DEBUG_TFCSTS_SHIFT; if (tfcsts == GMAC_DEBUG_TFCSTS_XFER) x->mac_tx_frame_ctrl_xfer++; else if (tfcsts == GMAC_DEBUG_TFCSTS_GEN_PAUSE) x->mac_tx_frame_ctrl_pause++; else if (tfcsts == GMAC_DEBUG_TFCSTS_WAIT) x->mac_tx_frame_ctrl_wait++; else x->mac_tx_frame_ctrl_idle++; } if (value & GMAC_DEBUG_TPESTS) x->mac_gmii_tx_proto_engine++; if (value & GMAC_DEBUG_RFCFCSTS_MASK) x->mac_rx_frame_ctrl_fifo = (value & GMAC_DEBUG_RFCFCSTS_MASK) >> GMAC_DEBUG_RFCFCSTS_SHIFT; if (value & GMAC_DEBUG_RPESTS) x->mac_gmii_rx_proto_engine++; } static void dwmac4_set_mac_loopback(void __iomem *ioaddr, bool enable) { u32 value = readl(ioaddr + GMAC_CONFIG); if (enable) value |= GMAC_CONFIG_LM; else value &= ~GMAC_CONFIG_LM; writel(value, ioaddr + GMAC_CONFIG); } static void dwmac4_update_vlan_hash(struct mac_device_info *hw, u32 hash, __le16 perfect_match, bool is_double) { void __iomem *ioaddr = hw->pcsr; u32 value; writel(hash, ioaddr + GMAC_VLAN_HASH_TABLE); value = readl(ioaddr + GMAC_VLAN_TAG); if (hash) { value |= GMAC_VLAN_VTHM | GMAC_VLAN_ETV; if (is_double) { value |= GMAC_VLAN_EDVLP; value |= GMAC_VLAN_ESVL; value |= GMAC_VLAN_DOVLTC; } writel(value, ioaddr + GMAC_VLAN_TAG); } else if (perfect_match) { u32 value = GMAC_VLAN_ETV; if (is_double) { value |= GMAC_VLAN_EDVLP; value |= GMAC_VLAN_ESVL; value |= GMAC_VLAN_DOVLTC; } writel(value | perfect_match, ioaddr + GMAC_VLAN_TAG); } else { value &= ~(GMAC_VLAN_VTHM | GMAC_VLAN_ETV); value &= ~(GMAC_VLAN_EDVLP | GMAC_VLAN_ESVL); value &= ~GMAC_VLAN_DOVLTC; value &= ~GMAC_VLAN_VID; writel(value, ioaddr + GMAC_VLAN_TAG); } } static void dwmac4_sarc_configure(void __iomem *ioaddr, int val) { u32 value = readl(ioaddr + GMAC_CONFIG); value &= ~GMAC_CONFIG_SARC; value |= val << GMAC_CONFIG_SARC_SHIFT; writel(value, ioaddr + GMAC_CONFIG); } static void dwmac4_enable_vlan(struct mac_device_info *hw, u32 type) { void __iomem *ioaddr = hw->pcsr; u32 value; value = readl(ioaddr + GMAC_VLAN_INCL); value |= GMAC_VLAN_VLTI; value |= GMAC_VLAN_CSVL; /* Only use SVLAN */ value &= ~GMAC_VLAN_VLC; value |= (type << GMAC_VLAN_VLC_SHIFT) & GMAC_VLAN_VLC; writel(value, ioaddr + GMAC_VLAN_INCL); } static void dwmac4_set_arp_offload(struct mac_device_info *hw, bool en, u32 addr) { void __iomem *ioaddr = hw->pcsr; u32 value; writel(addr, ioaddr + GMAC_ARP_ADDR); value = readl(ioaddr + GMAC_CONFIG); if (en) value |= GMAC_CONFIG_ARPEN; else value &= ~GMAC_CONFIG_ARPEN; writel(value, ioaddr + GMAC_CONFIG); } static int dwmac4_config_l3_filter(struct mac_device_info *hw, u32 filter_no, bool en, bool ipv6, bool sa, bool inv, u32 match) { void __iomem *ioaddr = hw->pcsr; u32 value; value = readl(ioaddr + GMAC_PACKET_FILTER); value |= GMAC_PACKET_FILTER_IPFE; writel(value, ioaddr + GMAC_PACKET_FILTER); value = readl(ioaddr + GMAC_L3L4_CTRL(filter_no)); /* For IPv6 not both SA/DA filters can be active */ if (ipv6) { value |= GMAC_L3PEN0; value &= ~(GMAC_L3SAM0 | GMAC_L3SAIM0); value &= ~(GMAC_L3DAM0 | GMAC_L3DAIM0); if (sa) { value |= GMAC_L3SAM0; if (inv) value |= GMAC_L3SAIM0; } else { value |= GMAC_L3DAM0; if (inv) value |= GMAC_L3DAIM0; } } else { value &= ~GMAC_L3PEN0; if (sa) { value |= GMAC_L3SAM0; if (inv) value |= GMAC_L3SAIM0; } else { value |= GMAC_L3DAM0; if (inv) value |= GMAC_L3DAIM0; } } writel(value, ioaddr + GMAC_L3L4_CTRL(filter_no)); if (sa) { writel(match, ioaddr + GMAC_L3_ADDR0(filter_no)); } else { writel(match, ioaddr + GMAC_L3_ADDR1(filter_no)); } if (!en) writel(0, ioaddr + GMAC_L3L4_CTRL(filter_no)); return 0; } static int dwmac4_config_l4_filter(struct mac_device_info *hw, u32 filter_no, bool en, bool udp, bool sa, bool inv, u32 match) { void __iomem *ioaddr = hw->pcsr; u32 value; value = readl(ioaddr + GMAC_PACKET_FILTER); value |= GMAC_PACKET_FILTER_IPFE; writel(value, ioaddr + GMAC_PACKET_FILTER); value = readl(ioaddr + GMAC_L3L4_CTRL(filter_no)); if (udp) { value |= GMAC_L4PEN0; } else { value &= ~GMAC_L4PEN0; } value &= ~(GMAC_L4SPM0 | GMAC_L4SPIM0); value &= ~(GMAC_L4DPM0 | GMAC_L4DPIM0); if (sa) { value |= GMAC_L4SPM0; if (inv) value |= GMAC_L4SPIM0; } else { value |= GMAC_L4DPM0; if (inv) value |= GMAC_L4DPIM0; } writel(value, ioaddr + GMAC_L3L4_CTRL(filter_no)); if (sa) { value = match & GMAC_L4SP0; } else { value = (match << GMAC_L4DP0_SHIFT) & GMAC_L4DP0; } writel(value, ioaddr + GMAC_L4_ADDR(filter_no)); if (!en) writel(0, ioaddr + GMAC_L3L4_CTRL(filter_no)); return 0; } const struct stmmac_ops dwmac4_ops = { .core_init = dwmac4_core_init, .set_mac = stmmac_set_mac, .rx_ipc = dwmac4_rx_ipc_enable, .rx_queue_enable = dwmac4_rx_queue_enable, .rx_queue_prio = dwmac4_rx_queue_priority, .tx_queue_prio = dwmac4_tx_queue_priority, .rx_queue_routing = dwmac4_rx_queue_routing, .prog_mtl_rx_algorithms = dwmac4_prog_mtl_rx_algorithms, .prog_mtl_tx_algorithms = dwmac4_prog_mtl_tx_algorithms, .set_mtl_tx_queue_weight = dwmac4_set_mtl_tx_queue_weight, .map_mtl_to_dma = dwmac4_map_mtl_dma, .config_cbs = dwmac4_config_cbs, .dump_regs = dwmac4_dump_regs, .host_irq_status = dwmac4_irq_status, .host_mtl_irq_status = dwmac4_irq_mtl_status, .flow_ctrl = dwmac4_flow_ctrl, .pmt = dwmac4_pmt, .set_umac_addr = dwmac4_set_umac_addr, .get_umac_addr = dwmac4_get_umac_addr, .set_eee_mode = dwmac4_set_eee_mode, .reset_eee_mode = dwmac4_reset_eee_mode, .set_eee_lpi_entry_timer = dwmac4_set_eee_lpi_entry_timer, .set_eee_timer = dwmac4_set_eee_timer, .set_eee_pls = dwmac4_set_eee_pls, .pcs_ctrl_ane = dwmac4_ctrl_ane, .pcs_rane = dwmac4_rane, .pcs_get_adv_lp = dwmac4_get_adv_lp, .debug = dwmac4_debug, .set_filter = dwmac4_set_filter, .set_mac_loopback = dwmac4_set_mac_loopback, .update_vlan_hash = dwmac4_update_vlan_hash, .sarc_configure = dwmac4_sarc_configure, .enable_vlan = dwmac4_enable_vlan, .set_arp_offload = dwmac4_set_arp_offload, .config_l3_filter = dwmac4_config_l3_filter, .config_l4_filter = dwmac4_config_l4_filter, .add_hw_vlan_rx_fltr = dwmac4_add_hw_vlan_rx_fltr, .del_hw_vlan_rx_fltr = dwmac4_del_hw_vlan_rx_fltr, .restore_hw_vlan_rx_fltr = dwmac4_restore_hw_vlan_rx_fltr, }; const struct stmmac_ops dwmac410_ops = { .core_init = dwmac4_core_init, .set_mac = stmmac_dwmac4_set_mac, .rx_ipc = dwmac4_rx_ipc_enable, .rx_queue_enable = dwmac4_rx_queue_enable, .rx_queue_prio = dwmac4_rx_queue_priority, .tx_queue_prio = dwmac4_tx_queue_priority, .rx_queue_routing = dwmac4_rx_queue_routing, .prog_mtl_rx_algorithms = dwmac4_prog_mtl_rx_algorithms, .prog_mtl_tx_algorithms = dwmac4_prog_mtl_tx_algorithms, .set_mtl_tx_queue_weight = dwmac4_set_mtl_tx_queue_weight, .map_mtl_to_dma = dwmac4_map_mtl_dma, .config_cbs = dwmac4_config_cbs, .dump_regs = dwmac4_dump_regs, .host_irq_status = dwmac4_irq_status, .host_mtl_irq_status = dwmac4_irq_mtl_status, .flow_ctrl = dwmac4_flow_ctrl, .pmt = dwmac4_pmt, .set_umac_addr = dwmac4_set_umac_addr, .get_umac_addr = dwmac4_get_umac_addr, .set_eee_mode = dwmac4_set_eee_mode, .reset_eee_mode = dwmac4_reset_eee_mode, .set_eee_lpi_entry_timer = dwmac4_set_eee_lpi_entry_timer, .set_eee_timer = dwmac4_set_eee_timer, .set_eee_pls = dwmac4_set_eee_pls, .pcs_ctrl_ane = dwmac4_ctrl_ane, .pcs_rane = dwmac4_rane, .pcs_get_adv_lp = dwmac4_get_adv_lp, .debug = dwmac4_debug, .set_filter = dwmac4_set_filter, .flex_pps_config = dwmac5_flex_pps_config, .set_mac_loopback = dwmac4_set_mac_loopback, .update_vlan_hash = dwmac4_update_vlan_hash, .sarc_configure = dwmac4_sarc_configure, .enable_vlan = dwmac4_enable_vlan, .set_arp_offload = dwmac4_set_arp_offload, .config_l3_filter = dwmac4_config_l3_filter, .config_l4_filter = dwmac4_config_l4_filter, .est_configure = dwmac5_est_configure, .est_irq_status = dwmac5_est_irq_status, .fpe_configure = dwmac5_fpe_configure, .fpe_send_mpacket = dwmac5_fpe_send_mpacket, .fpe_irq_status = dwmac5_fpe_irq_status, .add_hw_vlan_rx_fltr = dwmac4_add_hw_vlan_rx_fltr, .del_hw_vlan_rx_fltr = dwmac4_del_hw_vlan_rx_fltr, .restore_hw_vlan_rx_fltr = dwmac4_restore_hw_vlan_rx_fltr, }; const struct stmmac_ops dwmac510_ops = { .core_init = dwmac4_core_init, .set_mac = stmmac_dwmac4_set_mac, .rx_ipc = dwmac4_rx_ipc_enable, .rx_queue_enable = dwmac4_rx_queue_enable, .rx_queue_prio = dwmac4_rx_queue_priority, .tx_queue_prio = dwmac4_tx_queue_priority, .rx_queue_routing = dwmac4_rx_queue_routing, .prog_mtl_rx_algorithms = dwmac4_prog_mtl_rx_algorithms, .prog_mtl_tx_algorithms = dwmac4_prog_mtl_tx_algorithms, .set_mtl_tx_queue_weight = dwmac4_set_mtl_tx_queue_weight, .map_mtl_to_dma = dwmac4_map_mtl_dma, .config_cbs = dwmac4_config_cbs, .dump_regs = dwmac4_dump_regs, .host_irq_status = dwmac4_irq_status, .host_mtl_irq_status = dwmac4_irq_mtl_status, .flow_ctrl = dwmac4_flow_ctrl, .pmt = dwmac4_pmt, .set_umac_addr = dwmac4_set_umac_addr, .get_umac_addr = dwmac4_get_umac_addr, .set_eee_mode = dwmac4_set_eee_mode, .reset_eee_mode = dwmac4_reset_eee_mode, .set_eee_lpi_entry_timer = dwmac4_set_eee_lpi_entry_timer, .set_eee_timer = dwmac4_set_eee_timer, .set_eee_pls = dwmac4_set_eee_pls, .pcs_ctrl_ane = dwmac4_ctrl_ane, .pcs_rane = dwmac4_rane, .pcs_get_adv_lp = dwmac4_get_adv_lp, .debug = dwmac4_debug, .set_filter = dwmac4_set_filter, .safety_feat_config = dwmac5_safety_feat_config, .safety_feat_irq_status = dwmac5_safety_feat_irq_status, .safety_feat_dump = dwmac5_safety_feat_dump, .rxp_config = dwmac5_rxp_config, .flex_pps_config = dwmac5_flex_pps_config, .set_mac_loopback = dwmac4_set_mac_loopback, .update_vlan_hash = dwmac4_update_vlan_hash, .sarc_configure = dwmac4_sarc_configure, .enable_vlan = dwmac4_enable_vlan, .set_arp_offload = dwmac4_set_arp_offload, .config_l3_filter = dwmac4_config_l3_filter, .config_l4_filter = dwmac4_config_l4_filter, .est_configure = dwmac5_est_configure, .est_irq_status = dwmac5_est_irq_status, .fpe_configure = dwmac5_fpe_configure, .fpe_send_mpacket = dwmac5_fpe_send_mpacket, .fpe_irq_status = dwmac5_fpe_irq_status, .add_hw_vlan_rx_fltr = dwmac4_add_hw_vlan_rx_fltr, .del_hw_vlan_rx_fltr = dwmac4_del_hw_vlan_rx_fltr, .restore_hw_vlan_rx_fltr = dwmac4_restore_hw_vlan_rx_fltr, }; static u32 dwmac4_get_num_vlan(void __iomem *ioaddr) { u32 val, num_vlan; val = readl(ioaddr + GMAC_HW_FEATURE3); switch (val & GMAC_HW_FEAT_NRVF) { case 0: num_vlan = 1; break; case 1: num_vlan = 4; break; case 2: num_vlan = 8; break; case 3: num_vlan = 16; break; case 4: num_vlan = 24; break; case 5: num_vlan = 32; break; default: num_vlan = 1; } return num_vlan; } int dwmac4_setup(struct stmmac_priv *priv) { struct mac_device_info *mac = priv->hw; dev_info(priv->device, "\tDWMAC4/5\n"); priv->dev->priv_flags |= IFF_UNICAST_FLT; mac->pcsr = priv->ioaddr; mac->multicast_filter_bins = priv->plat->multicast_filter_bins; mac->unicast_filter_entries = priv->plat->unicast_filter_entries; mac->mcast_bits_log2 = 0; if (mac->multicast_filter_bins) mac->mcast_bits_log2 = ilog2(mac->multicast_filter_bins); mac->link.duplex = GMAC_CONFIG_DM; mac->link.speed10 = GMAC_CONFIG_PS; mac->link.speed100 = GMAC_CONFIG_FES | GMAC_CONFIG_PS; mac->link.speed1000 = 0; mac->link.speed2500 = GMAC_CONFIG_FES; mac->link.speed_mask = GMAC_CONFIG_FES | GMAC_CONFIG_PS; mac->mii.addr = GMAC_MDIO_ADDR; mac->mii.data = GMAC_MDIO_DATA; mac->mii.addr_shift = 21; mac->mii.addr_mask = GENMASK(25, 21); mac->mii.reg_shift = 16; mac->mii.reg_mask = GENMASK(20, 16); mac->mii.clk_csr_shift = 8; mac->mii.clk_csr_mask = GENMASK(11, 8); mac->num_vlan = dwmac4_get_num_vlan(priv->ioaddr); return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1