Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ong Boon Leong | 21418 | 59.40% | 23 | 5.08% |
Giuseppe Cavallaro | 3360 | 9.32% | 69 | 15.23% |
Jose Abreu | 2894 | 8.03% | 79 | 17.44% |
Joao Pinto | 1553 | 4.31% | 25 | 5.52% |
Ansuel Smith | 1270 | 3.52% | 5 | 1.10% |
Rayagond Kokatanur | 823 | 2.28% | 3 | 0.66% |
Joakim Zhang | 504 | 1.40% | 10 | 2.21% |
Russell King | 317 | 0.88% | 4 | 0.88% |
Corentin Labbe | 302 | 0.84% | 11 | 2.43% |
Alexandre Torgue | 243 | 0.67% | 2 | 0.44% |
Holger Assmann | 211 | 0.59% | 1 | 0.22% |
Vincent Whitchurch | 176 | 0.49% | 3 | 0.66% |
Vineetha G. Jaya Kumaran | 161 | 0.45% | 2 | 0.44% |
Weifeng Voon | 157 | 0.44% | 6 | 1.32% |
Song, Yoong Siang | 154 | 0.43% | 3 | 0.66% |
Srinivas Kandagatla | 147 | 0.41% | 9 | 1.99% |
Wong Vee Khee | 133 | 0.37% | 9 | 1.99% |
Xiaoliang Yang | 113 | 0.31% | 1 | 0.22% |
Biao Huang | 105 | 0.29% | 5 | 1.10% |
Joachim Eastwood | 99 | 0.27% | 5 | 1.10% |
Artem Panfilov | 99 | 0.27% | 1 | 0.22% |
Fugang Duan | 98 | 0.27% | 5 | 1.10% |
Mathieu Olivari | 93 | 0.26% | 3 | 0.66% |
Thierry Reding | 83 | 0.23% | 10 | 2.21% |
Mohammad Athari Bin Ismail | 78 | 0.22% | 6 | 1.32% |
Junxiao Chang | 73 | 0.20% | 1 | 0.22% |
JiSheng Zhang | 64 | 0.18% | 6 | 1.32% |
David Wu | 58 | 0.16% | 1 | 0.22% |
Jarod Wilson | 55 | 0.15% | 1 | 0.22% |
Vince Bridgers | 52 | 0.14% | 6 | 1.32% |
Florian Fainelli | 48 | 0.13% | 3 | 0.66% |
Deepak Sikri | 47 | 0.13% | 2 | 0.44% |
Vijayakannan Ayyathurai | 46 | 0.13% | 1 | 0.22% |
Bartlomiej Zolnierkiewicz | 46 | 0.13% | 1 | 0.22% |
Kweh, Hock Leong | 46 | 0.13% | 2 | 0.44% |
Matthew Hagan | 41 | 0.11% | 1 | 0.22% |
Francesco Virlinzi | 40 | 0.11% | 2 | 0.44% |
Goh, Wei Sheng | 39 | 0.11% | 1 | 0.22% |
Jiping Ma | 39 | 0.11% | 1 | 0.22% |
Chen-Yu Tsai | 33 | 0.09% | 3 | 0.66% |
Nicolin Chen | 32 | 0.09% | 1 | 0.22% |
Eugeniy Paltsev | 30 | 0.08% | 1 | 0.22% |
Aaro Koskinen | 27 | 0.07% | 3 | 0.66% |
Matteo Croce | 25 | 0.07% | 2 | 0.44% |
Andy Shevchenko | 25 | 0.07% | 3 | 0.66% |
Niklas Cassel | 24 | 0.07% | 7 | 1.55% |
Chuah, Kim Tatt | 24 | 0.07% | 1 | 0.22% |
Bhadram Varka | 21 | 0.06% | 2 | 0.44% |
Arnd Bergmann | 21 | 0.06% | 4 | 0.88% |
Heiner Kallweit | 21 | 0.06% | 4 | 0.88% |
Vincent Palatin | 21 | 0.06% | 1 | 0.22% |
Bhupesh Sharma | 21 | 0.06% | 1 | 0.22% |
Bryan O'Donoghue | 19 | 0.05% | 1 | 0.22% |
Ezequiel García | 18 | 0.05% | 1 | 0.22% |
Jakub Kiciński | 18 | 0.05% | 3 | 0.66% |
David S. Miller | 18 | 0.05% | 1 | 0.22% |
Ben Hutchings | 18 | 0.05% | 1 | 0.22% |
Michael Weiser | 15 | 0.04% | 1 | 0.22% |
Vladimir Oltean | 15 | 0.04% | 3 | 0.66% |
Tan, Tee Min | 14 | 0.04% | 2 | 0.44% |
Kees Cook | 14 | 0.04% | 1 | 0.22% |
Sonic Zhang | 14 | 0.04% | 3 | 0.66% |
Eric Dumazet | 13 | 0.04% | 4 | 0.88% |
Andrew Lunn | 13 | 0.04% | 2 | 0.44% |
Jon Hunter | 13 | 0.04% | 2 | 0.44% |
Byungho An | 13 | 0.04% | 2 | 0.44% |
Zekun Shen | 12 | 0.03% | 1 | 0.22% |
Kurt Kanzenbach | 12 | 0.03% | 3 | 0.66% |
Dan Carpenter | 10 | 0.03% | 3 | 0.66% |
Beniamino Galvani | 10 | 0.03% | 1 | 0.22% |
Joe Perches | 9 | 0.02% | 1 | 0.22% |
shenwei.wang at nxp.com | 8 | 0.02% | 1 | 0.22% |
Marek Szyprowski | 8 | 0.02% | 1 | 0.22% |
Kai-Heng Feng | 8 | 0.02% | 1 | 0.22% |
Sriranjani P | 8 | 0.02% | 1 | 0.22% |
Viresh Kumar | 8 | 0.02% | 1 | 0.22% |
Michał Mirosław | 7 | 0.02% | 1 | 0.22% |
Ling Pei Lee | 7 | 0.02% | 1 | 0.22% |
Paolo Abeni | 6 | 0.02% | 1 | 0.22% |
Mohd Faizal Abdul Rahim | 6 | 0.02% | 1 | 0.22% |
Pablo Neira Ayuso | 5 | 0.01% | 2 | 0.44% |
Thomas Gleixner | 5 | 0.01% | 2 | 0.44% |
Leon Yu | 5 | 0.01% | 1 | 0.22% |
Vinod Koul | 5 | 0.01% | 1 | 0.22% |
Vaishali Thakkar | 5 | 0.01% | 1 | 0.22% |
Elad Nachman | 5 | 0.01% | 1 | 0.22% |
Jerome Brunet | 4 | 0.01% | 1 | 0.22% |
Rasmus Villemoes | 4 | 0.01% | 1 | 0.22% |
Huacai Chen | 4 | 0.01% | 1 | 0.22% |
Fabrice Gasnier | 4 | 0.01% | 2 | 0.44% |
Nathan Chancellor | 4 | 0.01% | 1 | 0.22% |
damuzi000 | 3 | 0.01% | 1 | 0.22% |
Jesse Brandeburg | 3 | 0.01% | 1 | 0.22% |
Miroslav Lichvar | 3 | 0.01% | 1 | 0.22% |
Tejun Heo | 3 | 0.01% | 1 | 0.22% |
Ilias Apalodimas | 3 | 0.01% | 2 | 0.44% |
Fredrik Hallenberg | 3 | 0.01% | 1 | 0.22% |
Luo Jiaxing | 3 | 0.01% | 1 | 0.22% |
Mario Molitor | 3 | 0.01% | 1 | 0.22% |
Phil Reid | 3 | 0.01% | 1 | 0.22% |
Randy Dunlap | 3 | 0.01% | 1 | 0.22% |
Jiri Pirko | 3 | 0.01% | 1 | 0.22% |
Petr Štetiar | 3 | 0.01% | 1 | 0.22% |
Paul Gortmaker | 3 | 0.01% | 1 | 0.22% |
Chi Minghao | 2 | 0.01% | 1 | 0.22% |
Petr Machata | 2 | 0.01% | 1 | 0.22% |
Allen Pais | 2 | 0.01% | 1 | 0.22% |
Toke Höiland-Jörgensen | 2 | 0.01% | 1 | 0.22% |
Maciej Fijalkowski | 2 | 0.01% | 1 | 0.22% |
Bernd Edlinger | 1 | 0.00% | 1 | 0.22% |
Patrick McHardy | 1 | 0.00% | 1 | 0.22% |
Tobias Klauser | 1 | 0.00% | 1 | 0.22% |
Greg Kroah-Hartman | 1 | 0.00% | 1 | 0.22% |
Verma, Aashish | 1 | 0.00% | 1 | 0.22% |
Jesper Nilsson | 1 | 0.00% | 1 | 0.22% |
Yannick Vignon | 1 | 0.00% | 1 | 0.22% |
Lino Sanfilippo | 1 | 0.00% | 1 | 0.22% |
Michael Walle | 1 | 0.00% | 1 | 0.22% |
Stephen Hemminger | 1 | 0.00% | 1 | 0.22% |
Pavel Machek | 1 | 0.00% | 1 | 0.22% |
Alexandru Ardelean | 1 | 0.00% | 1 | 0.22% |
Yang Yingliang | 1 | 0.00% | 1 | 0.22% |
Total | 36056 | 453 |
// SPDX-License-Identifier: GPL-2.0-only /******************************************************************************* This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. ST Ethernet IPs are built around a Synopsys IP Core. Copyright(C) 2007-2011 STMicroelectronics Ltd Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> Documentation available at: http://www.stlinux.com Support available at: https://bugzilla.stlinux.com/ *******************************************************************************/ #include <linux/clk.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <linux/if_ether.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/if.h> #include <linux/if_vlan.h> #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/pm_runtime.h> #include <linux/prefetch.h> #include <linux/pinctrl/consumer.h> #ifdef CONFIG_DEBUG_FS #include <linux/debugfs.h> #include <linux/seq_file.h> #endif /* CONFIG_DEBUG_FS */ #include <linux/net_tstamp.h> #include <linux/phylink.h> #include <linux/udp.h> #include <linux/bpf_trace.h> #include <net/pkt_cls.h> #include <net/xdp_sock_drv.h> #include "stmmac_ptp.h" #include "stmmac.h" #include "stmmac_xdp.h" #include <linux/reset.h> #include <linux/of_mdio.h> #include "dwmac1000.h" #include "dwxgmac2.h" #include "hwif.h" /* As long as the interface is active, we keep the timestamping counter enabled * with fine resolution and binary rollover. This avoid non-monotonic behavior * (clock jumps) when changing timestamping settings at runtime. */ #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ PTP_TCR_TSCTRLSSR) #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) /* Module parameters */ #define TX_TIMEO 5000 static int watchdog = TX_TIMEO; module_param(watchdog, int, 0644); MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); static int debug = -1; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); static int phyaddr = -1; module_param(phyaddr, int, 0444); MODULE_PARM_DESC(phyaddr, "Physical device address"); #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4) #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4) /* Limit to make sure XDP TX and slow path can coexist */ #define STMMAC_XSK_TX_BUDGET_MAX 256 #define STMMAC_TX_XSK_AVAIL 16 #define STMMAC_RX_FILL_BATCH 16 #define STMMAC_XDP_PASS 0 #define STMMAC_XDP_CONSUMED BIT(0) #define STMMAC_XDP_TX BIT(1) #define STMMAC_XDP_REDIRECT BIT(2) static int flow_ctrl = FLOW_AUTO; module_param(flow_ctrl, int, 0644); MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); static int pause = PAUSE_TIME; module_param(pause, int, 0644); MODULE_PARM_DESC(pause, "Flow Control Pause Time"); #define TC_DEFAULT 64 static int tc = TC_DEFAULT; module_param(tc, int, 0644); MODULE_PARM_DESC(tc, "DMA threshold control value"); #define DEFAULT_BUFSIZE 1536 static int buf_sz = DEFAULT_BUFSIZE; module_param(buf_sz, int, 0644); MODULE_PARM_DESC(buf_sz, "DMA buffer size"); #define STMMAC_RX_COPYBREAK 256 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); #define STMMAC_DEFAULT_LPI_TIMER 1000 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; module_param(eee_timer, int, 0644); MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) /* By default the driver will use the ring mode to manage tx and rx descriptors, * but allow user to force to use the chain instead of the ring */ static unsigned int chain_mode; module_param(chain_mode, int, 0444); MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); static irqreturn_t stmmac_interrupt(int irq, void *dev_id); /* For MSI interrupts handling */ static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue); static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue); static void stmmac_reset_queues_param(struct stmmac_priv *priv); static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, u32 rxmode, u32 chan); #ifdef CONFIG_DEBUG_FS static const struct net_device_ops stmmac_netdev_ops; static void stmmac_init_fs(struct net_device *dev); static void stmmac_exit_fs(struct net_device *dev); #endif #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) { int ret = 0; if (enabled) { ret = clk_prepare_enable(priv->plat->stmmac_clk); if (ret) return ret; ret = clk_prepare_enable(priv->plat->pclk); if (ret) { clk_disable_unprepare(priv->plat->stmmac_clk); return ret; } if (priv->plat->clks_config) { ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); if (ret) { clk_disable_unprepare(priv->plat->stmmac_clk); clk_disable_unprepare(priv->plat->pclk); return ret; } } } else { clk_disable_unprepare(priv->plat->stmmac_clk); clk_disable_unprepare(priv->plat->pclk); if (priv->plat->clks_config) priv->plat->clks_config(priv->plat->bsp_priv, enabled); } return ret; } EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); /** * stmmac_verify_args - verify the driver parameters. * Description: it checks the driver parameters and set a default in case of * errors. */ static void stmmac_verify_args(void) { if (unlikely(watchdog < 0)) watchdog = TX_TIMEO; if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) buf_sz = DEFAULT_BUFSIZE; if (unlikely(flow_ctrl > 1)) flow_ctrl = FLOW_AUTO; else if (likely(flow_ctrl < 0)) flow_ctrl = FLOW_OFF; if (unlikely((pause < 0) || (pause > 0xffff))) pause = PAUSE_TIME; if (eee_timer < 0) eee_timer = STMMAC_DEFAULT_LPI_TIMER; } static void __stmmac_disable_all_queues(struct stmmac_priv *priv) { u32 rx_queues_cnt = priv->plat->rx_queues_to_use; u32 tx_queues_cnt = priv->plat->tx_queues_to_use; u32 maxq = max(rx_queues_cnt, tx_queues_cnt); u32 queue; for (queue = 0; queue < maxq; queue++) { struct stmmac_channel *ch = &priv->channel[queue]; if (stmmac_xdp_is_enabled(priv) && test_bit(queue, priv->af_xdp_zc_qps)) { napi_disable(&ch->rxtx_napi); continue; } if (queue < rx_queues_cnt) napi_disable(&ch->rx_napi); if (queue < tx_queues_cnt) napi_disable(&ch->tx_napi); } } /** * stmmac_disable_all_queues - Disable all queues * @priv: driver private structure */ static void stmmac_disable_all_queues(struct stmmac_priv *priv) { u32 rx_queues_cnt = priv->plat->rx_queues_to_use; struct stmmac_rx_queue *rx_q; u32 queue; /* synchronize_rcu() needed for pending XDP buffers to drain */ for (queue = 0; queue < rx_queues_cnt; queue++) { rx_q = &priv->dma_conf.rx_queue[queue]; if (rx_q->xsk_pool) { synchronize_rcu(); break; } } __stmmac_disable_all_queues(priv); } /** * stmmac_enable_all_queues - Enable all queues * @priv: driver private structure */ static void stmmac_enable_all_queues(struct stmmac_priv *priv) { u32 rx_queues_cnt = priv->plat->rx_queues_to_use; u32 tx_queues_cnt = priv->plat->tx_queues_to_use; u32 maxq = max(rx_queues_cnt, tx_queues_cnt); u32 queue; for (queue = 0; queue < maxq; queue++) { struct stmmac_channel *ch = &priv->channel[queue]; if (stmmac_xdp_is_enabled(priv) && test_bit(queue, priv->af_xdp_zc_qps)) { napi_enable(&ch->rxtx_napi); continue; } if (queue < rx_queues_cnt) napi_enable(&ch->rx_napi); if (queue < tx_queues_cnt) napi_enable(&ch->tx_napi); } } static void stmmac_service_event_schedule(struct stmmac_priv *priv) { if (!test_bit(STMMAC_DOWN, &priv->state) && !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) queue_work(priv->wq, &priv->service_task); } static void stmmac_global_err(struct stmmac_priv *priv) { netif_carrier_off(priv->dev); set_bit(STMMAC_RESET_REQUESTED, &priv->state); stmmac_service_event_schedule(priv); } /** * stmmac_clk_csr_set - dynamically set the MDC clock * @priv: driver private structure * Description: this is to dynamically set the MDC clock according to the csr * clock input. * Note: * If a specific clk_csr value is passed from the platform * this means that the CSR Clock Range selection cannot be * changed at run-time and it is fixed (as reported in the driver * documentation). Viceversa the driver will try to set the MDC * clock dynamically according to the actual clock input. */ static void stmmac_clk_csr_set(struct stmmac_priv *priv) { u32 clk_rate; clk_rate = clk_get_rate(priv->plat->stmmac_clk); /* Platform provided default clk_csr would be assumed valid * for all other cases except for the below mentioned ones. * For values higher than the IEEE 802.3 specified frequency * we can not estimate the proper divider as it is not known * the frequency of clk_csr_i. So we do not change the default * divider. */ if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { if (clk_rate < CSR_F_35M) priv->clk_csr = STMMAC_CSR_20_35M; else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) priv->clk_csr = STMMAC_CSR_35_60M; else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) priv->clk_csr = STMMAC_CSR_60_100M; else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) priv->clk_csr = STMMAC_CSR_100_150M; else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) priv->clk_csr = STMMAC_CSR_150_250M; else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) priv->clk_csr = STMMAC_CSR_250_300M; } if (priv->plat->has_sun8i) { if (clk_rate > 160000000) priv->clk_csr = 0x03; else if (clk_rate > 80000000) priv->clk_csr = 0x02; else if (clk_rate > 40000000) priv->clk_csr = 0x01; else priv->clk_csr = 0; } if (priv->plat->has_xgmac) { if (clk_rate > 400000000) priv->clk_csr = 0x5; else if (clk_rate > 350000000) priv->clk_csr = 0x4; else if (clk_rate > 300000000) priv->clk_csr = 0x3; else if (clk_rate > 250000000) priv->clk_csr = 0x2; else if (clk_rate > 150000000) priv->clk_csr = 0x1; else priv->clk_csr = 0x0; } } static void print_pkt(unsigned char *buf, int len) { pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); } static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; u32 avail; if (tx_q->dirty_tx > tx_q->cur_tx) avail = tx_q->dirty_tx - tx_q->cur_tx - 1; else avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; return avail; } /** * stmmac_rx_dirty - Get RX queue dirty * @priv: driver private structure * @queue: RX queue index */ static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; u32 dirty; if (rx_q->dirty_rx <= rx_q->cur_rx) dirty = rx_q->cur_rx - rx_q->dirty_rx; else dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; return dirty; } static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) { int tx_lpi_timer; /* Clear/set the SW EEE timer flag based on LPI ET enablement */ priv->eee_sw_timer_en = en ? 0 : 1; tx_lpi_timer = en ? priv->tx_lpi_timer : 0; stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); } /** * stmmac_enable_eee_mode - check and enter in LPI mode * @priv: driver private structure * Description: this function is to verify and enter in LPI mode in case of * EEE. */ static int stmmac_enable_eee_mode(struct stmmac_priv *priv) { u32 tx_cnt = priv->plat->tx_queues_to_use; u32 queue; /* check if all TX queues have the work finished */ for (queue = 0; queue < tx_cnt; queue++) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; if (tx_q->dirty_tx != tx_q->cur_tx) return -EBUSY; /* still unfinished work */ } /* Check and enter in LPI mode */ if (!priv->tx_path_in_lpi_mode) stmmac_set_eee_mode(priv, priv->hw, priv->plat->en_tx_lpi_clockgating); return 0; } /** * stmmac_disable_eee_mode - disable and exit from LPI mode * @priv: driver private structure * Description: this function is to exit and disable EEE in case of * LPI state is true. This is called by the xmit. */ void stmmac_disable_eee_mode(struct stmmac_priv *priv) { if (!priv->eee_sw_timer_en) { stmmac_lpi_entry_timer_config(priv, 0); return; } stmmac_reset_eee_mode(priv, priv->hw); del_timer_sync(&priv->eee_ctrl_timer); priv->tx_path_in_lpi_mode = false; } /** * stmmac_eee_ctrl_timer - EEE TX SW timer. * @t: timer_list struct containing private info * Description: * if there is no data transfer and if we are not in LPI state, * then MAC Transmitter can be moved to LPI state. */ static void stmmac_eee_ctrl_timer(struct timer_list *t) { struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); if (stmmac_enable_eee_mode(priv)) mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); } /** * stmmac_eee_init - init EEE * @priv: driver private structure * Description: * if the GMAC supports the EEE (from the HW cap reg) and the phy device * can also manage EEE, this function enable the LPI state and start related * timer. */ bool stmmac_eee_init(struct stmmac_priv *priv) { int eee_tw_timer = priv->eee_tw_timer; /* Using PCS we cannot dial with the phy registers at this stage * so we do not support extra feature like EEE. */ if (priv->hw->pcs == STMMAC_PCS_TBI || priv->hw->pcs == STMMAC_PCS_RTBI) return false; /* Check if MAC core supports the EEE feature. */ if (!priv->dma_cap.eee) return false; mutex_lock(&priv->lock); /* Check if it needs to be deactivated */ if (!priv->eee_active) { if (priv->eee_enabled) { netdev_dbg(priv->dev, "disable EEE\n"); stmmac_lpi_entry_timer_config(priv, 0); del_timer_sync(&priv->eee_ctrl_timer); stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); if (priv->hw->xpcs) xpcs_config_eee(priv->hw->xpcs, priv->plat->mult_fact_100ns, false); } mutex_unlock(&priv->lock); return false; } if (priv->eee_active && !priv->eee_enabled) { timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, eee_tw_timer); if (priv->hw->xpcs) xpcs_config_eee(priv->hw->xpcs, priv->plat->mult_fact_100ns, true); } if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { del_timer_sync(&priv->eee_ctrl_timer); priv->tx_path_in_lpi_mode = false; stmmac_lpi_entry_timer_config(priv, 1); } else { stmmac_lpi_entry_timer_config(priv, 0); mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); } mutex_unlock(&priv->lock); netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); return true; } /* stmmac_get_tx_hwtstamp - get HW TX timestamps * @priv: driver private structure * @p : descriptor pointer * @skb : the socket buffer * Description : * This function will read timestamp from the descriptor & pass it to stack. * and also perform some sanity checks. */ static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, struct sk_buff *skb) { struct skb_shared_hwtstamps shhwtstamp; bool found = false; u64 ns = 0; if (!priv->hwts_tx_en) return; /* exit if skb doesn't support hw tstamp */ if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) return; /* check tx tstamp status */ if (stmmac_get_tx_timestamp_status(priv, p)) { stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); found = true; } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { found = true; } if (found) { ns -= priv->plat->cdc_error_adj; memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); shhwtstamp.hwtstamp = ns_to_ktime(ns); netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); /* pass tstamp to stack */ skb_tstamp_tx(skb, &shhwtstamp); } } /* stmmac_get_rx_hwtstamp - get HW RX timestamps * @priv: driver private structure * @p : descriptor pointer * @np : next descriptor pointer * @skb : the socket buffer * Description : * This function will read received packet's timestamp from the descriptor * and pass it to stack. It also perform some sanity checks. */ static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, struct dma_desc *np, struct sk_buff *skb) { struct skb_shared_hwtstamps *shhwtstamp = NULL; struct dma_desc *desc = p; u64 ns = 0; if (!priv->hwts_rx_en) return; /* For GMAC4, the valid timestamp is from CTX next desc. */ if (priv->plat->has_gmac4 || priv->plat->has_xgmac) desc = np; /* Check if timestamp is available */ if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); ns -= priv->plat->cdc_error_adj; netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); shhwtstamp = skb_hwtstamps(skb); memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); shhwtstamp->hwtstamp = ns_to_ktime(ns); } else { netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); } } /** * stmmac_hwtstamp_set - control hardware timestamping. * @dev: device pointer. * @ifr: An IOCTL specific structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * Description: * This function configures the MAC to enable/disable both outgoing(TX) * and incoming(RX) packets time stamping based on user input. * Return Value: * 0 on success and an appropriate -ve integer on failure. */ static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) { struct stmmac_priv *priv = netdev_priv(dev); struct hwtstamp_config config; u32 ptp_v2 = 0; u32 tstamp_all = 0; u32 ptp_over_ipv4_udp = 0; u32 ptp_over_ipv6_udp = 0; u32 ptp_over_ethernet = 0; u32 snap_type_sel = 0; u32 ts_master_en = 0; u32 ts_event_en = 0; if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { netdev_alert(priv->dev, "No support for HW time stamping\n"); priv->hwts_tx_en = 0; priv->hwts_rx_en = 0; return -EOPNOTSUPP; } if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", __func__, config.flags, config.tx_type, config.rx_filter); if (config.tx_type != HWTSTAMP_TX_OFF && config.tx_type != HWTSTAMP_TX_ON) return -ERANGE; if (priv->adv_ts) { switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: /* time stamp no incoming packet at all */ config.rx_filter = HWTSTAMP_FILTER_NONE; break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: /* PTP v1, UDP, any kind of event packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; /* 'xmac' hardware can support Sync, Pdelay_Req and * Pdelay_resp by setting bit14 and bits17/16 to 01 * This leaves Delay_Req timestamps out. * Enable all events *and* general purpose message * timestamping */ snap_type_sel = PTP_TCR_SNAPTYPSEL_1; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: /* PTP v1, UDP, Sync packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; /* take time stamp for SYNC messages only */ ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: /* PTP v1, UDP, Delay_req packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; /* take time stamp for Delay_Req messages only */ ts_master_en = PTP_TCR_TSMSTRENA; ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: /* PTP v2, UDP, any kind of event packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; ptp_v2 = PTP_TCR_TSVER2ENA; /* take time stamp for all event messages */ snap_type_sel = PTP_TCR_SNAPTYPSEL_1; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: /* PTP v2, UDP, Sync packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; ptp_v2 = PTP_TCR_TSVER2ENA; /* take time stamp for SYNC messages only */ ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: /* PTP v2, UDP, Delay_req packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; ptp_v2 = PTP_TCR_TSVER2ENA; /* take time stamp for Delay_Req messages only */ ts_master_en = PTP_TCR_TSMSTRENA; ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: /* PTP v2/802.AS1 any layer, any kind of event packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; ptp_v2 = PTP_TCR_TSVER2ENA; snap_type_sel = PTP_TCR_SNAPTYPSEL_1; if (priv->synopsys_id < DWMAC_CORE_4_10) ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; ptp_over_ethernet = PTP_TCR_TSIPENA; break; case HWTSTAMP_FILTER_PTP_V2_SYNC: /* PTP v2/802.AS1, any layer, Sync packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; ptp_v2 = PTP_TCR_TSVER2ENA; /* take time stamp for SYNC messages only */ ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; ptp_over_ethernet = PTP_TCR_TSIPENA; break; case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: /* PTP v2/802.AS1, any layer, Delay_req packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; ptp_v2 = PTP_TCR_TSVER2ENA; /* take time stamp for Delay_Req messages only */ ts_master_en = PTP_TCR_TSMSTRENA; ts_event_en = PTP_TCR_TSEVNTENA; ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; ptp_over_ethernet = PTP_TCR_TSIPENA; break; case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_ALL: /* time stamp any incoming packet */ config.rx_filter = HWTSTAMP_FILTER_ALL; tstamp_all = PTP_TCR_TSENALL; break; default: return -ERANGE; } } else { switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: config.rx_filter = HWTSTAMP_FILTER_NONE; break; default: /* PTP v1, UDP, any kind of event packet */ config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; break; } } priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; priv->systime_flags = STMMAC_HWTS_ACTIVE; if (priv->hwts_tx_en || priv->hwts_rx_en) { priv->systime_flags |= tstamp_all | ptp_v2 | ptp_over_ethernet | ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | ts_master_en | snap_type_sel; } stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); memcpy(&priv->tstamp_config, &config, sizeof(config)); return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } /** * stmmac_hwtstamp_get - read hardware timestamping. * @dev: device pointer. * @ifr: An IOCTL specific structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * Description: * This function obtain the current hardware timestamping settings * as requested. */ static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) { struct stmmac_priv *priv = netdev_priv(dev); struct hwtstamp_config *config = &priv->tstamp_config; if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) return -EOPNOTSUPP; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * stmmac_init_tstamp_counter - init hardware timestamping counter * @priv: driver private structure * @systime_flags: timestamping flags * Description: * Initialize hardware counter for packet timestamping. * This is valid as long as the interface is open and not suspended. * Will be rerun after resuming from suspend, case in which the timestamping * flags updated by stmmac_hwtstamp_set() also need to be restored. */ int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) { bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; struct timespec64 now; u32 sec_inc = 0; u64 temp = 0; if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) return -EOPNOTSUPP; stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); priv->systime_flags = systime_flags; /* program Sub Second Increment reg */ stmmac_config_sub_second_increment(priv, priv->ptpaddr, priv->plat->clk_ptp_rate, xmac, &sec_inc); temp = div_u64(1000000000ULL, sec_inc); /* Store sub second increment for later use */ priv->sub_second_inc = sec_inc; /* calculate default added value: * formula is : * addend = (2^32)/freq_div_ratio; * where, freq_div_ratio = 1e9ns/sec_inc */ temp = (u64)(temp << 32); priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); /* initialize system time */ ktime_get_real_ts64(&now); /* lower 32 bits of tv_sec are safe until y2106 */ stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); return 0; } EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); /** * stmmac_init_ptp - init PTP * @priv: driver private structure * Description: this is to verify if the HW supports the PTPv1 or PTPv2. * This is done by looking at the HW cap. register. * This function also registers the ptp driver. */ static int stmmac_init_ptp(struct stmmac_priv *priv) { bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; int ret; if (priv->plat->ptp_clk_freq_config) priv->plat->ptp_clk_freq_config(priv); ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); if (ret) return ret; priv->adv_ts = 0; /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ if (xmac && priv->dma_cap.atime_stamp) priv->adv_ts = 1; /* Dwmac 3.x core with extend_desc can support adv_ts */ else if (priv->extend_desc && priv->dma_cap.atime_stamp) priv->adv_ts = 1; if (priv->dma_cap.time_stamp) netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); if (priv->adv_ts) netdev_info(priv->dev, "IEEE 1588-2008 Advanced Timestamp supported\n"); priv->hwts_tx_en = 0; priv->hwts_rx_en = 0; return 0; } static void stmmac_release_ptp(struct stmmac_priv *priv) { clk_disable_unprepare(priv->plat->clk_ptp_ref); stmmac_ptp_unregister(priv); } /** * stmmac_mac_flow_ctrl - Configure flow control in all queues * @priv: driver private structure * @duplex: duplex passed to the next function * Description: It is used for configuring the flow control in all queues */ static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) { u32 tx_cnt = priv->plat->tx_queues_to_use; stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, priv->pause, tx_cnt); } static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config, phy_interface_t interface) { struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); if (!priv->hw->xpcs) return NULL; return &priv->hw->xpcs->pcs; } static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state) { /* Nothing to do, xpcs_config() handles everything */ } static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) { struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; bool *hs_enable = &fpe_cfg->hs_enable; if (is_up && *hs_enable) { stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); } else { *lo_state = FPE_STATE_OFF; *lp_state = FPE_STATE_OFF; } } static void stmmac_mac_link_down(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); stmmac_mac_set(priv, priv->ioaddr, false); priv->eee_active = false; priv->tx_lpi_enabled = false; priv->eee_enabled = stmmac_eee_init(priv); stmmac_set_eee_pls(priv, priv->hw, false); if (priv->dma_cap.fpesel) stmmac_fpe_link_state_handle(priv, false); } static void stmmac_mac_link_up(struct phylink_config *config, struct phy_device *phy, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause) { struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); u32 old_ctrl, ctrl; old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG); ctrl = old_ctrl & ~priv->hw->link.speed_mask; if (interface == PHY_INTERFACE_MODE_USXGMII) { switch (speed) { case SPEED_10000: ctrl |= priv->hw->link.xgmii.speed10000; break; case SPEED_5000: ctrl |= priv->hw->link.xgmii.speed5000; break; case SPEED_2500: ctrl |= priv->hw->link.xgmii.speed2500; break; default: return; } } else if (interface == PHY_INTERFACE_MODE_XLGMII) { switch (speed) { case SPEED_100000: ctrl |= priv->hw->link.xlgmii.speed100000; break; case SPEED_50000: ctrl |= priv->hw->link.xlgmii.speed50000; break; case SPEED_40000: ctrl |= priv->hw->link.xlgmii.speed40000; break; case SPEED_25000: ctrl |= priv->hw->link.xlgmii.speed25000; break; case SPEED_10000: ctrl |= priv->hw->link.xgmii.speed10000; break; case SPEED_2500: ctrl |= priv->hw->link.speed2500; break; case SPEED_1000: ctrl |= priv->hw->link.speed1000; break; default: return; } } else { switch (speed) { case SPEED_2500: ctrl |= priv->hw->link.speed2500; break; case SPEED_1000: ctrl |= priv->hw->link.speed1000; break; case SPEED_100: ctrl |= priv->hw->link.speed100; break; case SPEED_10: ctrl |= priv->hw->link.speed10; break; default: return; } } priv->speed = speed; if (priv->plat->fix_mac_speed) priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); if (!duplex) ctrl &= ~priv->hw->link.duplex; else ctrl |= priv->hw->link.duplex; /* Flow Control operation */ if (rx_pause && tx_pause) priv->flow_ctrl = FLOW_AUTO; else if (rx_pause && !tx_pause) priv->flow_ctrl = FLOW_RX; else if (!rx_pause && tx_pause) priv->flow_ctrl = FLOW_TX; else priv->flow_ctrl = FLOW_OFF; stmmac_mac_flow_ctrl(priv, duplex); if (ctrl != old_ctrl) writel(ctrl, priv->ioaddr + MAC_CTRL_REG); stmmac_mac_set(priv, priv->ioaddr, true); if (phy && priv->dma_cap.eee) { priv->eee_active = phy_init_eee(phy, 1) >= 0; priv->eee_enabled = stmmac_eee_init(priv); priv->tx_lpi_enabled = priv->eee_enabled; stmmac_set_eee_pls(priv, priv->hw, true); } if (priv->dma_cap.fpesel) stmmac_fpe_link_state_handle(priv, true); } static const struct phylink_mac_ops stmmac_phylink_mac_ops = { .validate = phylink_generic_validate, .mac_select_pcs = stmmac_mac_select_pcs, .mac_config = stmmac_mac_config, .mac_link_down = stmmac_mac_link_down, .mac_link_up = stmmac_mac_link_up, }; /** * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported * @priv: driver private structure * Description: this is to verify if the HW supports the PCS. * Physical Coding Sublayer (PCS) interface that can be used when the MAC is * configured for the TBI, RTBI, or SGMII PHY interface. */ static void stmmac_check_pcs_mode(struct stmmac_priv *priv) { int interface = priv->plat->interface; if (priv->dma_cap.pcs) { if ((interface == PHY_INTERFACE_MODE_RGMII) || (interface == PHY_INTERFACE_MODE_RGMII_ID) || (interface == PHY_INTERFACE_MODE_RGMII_RXID) || (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); priv->hw->pcs = STMMAC_PCS_RGMII; } else if (interface == PHY_INTERFACE_MODE_SGMII) { netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); priv->hw->pcs = STMMAC_PCS_SGMII; } } } /** * stmmac_init_phy - PHY initialization * @dev: net device structure * Description: it initializes the driver's PHY state, and attaches the PHY * to the mac driver. * Return value: * 0 on success */ static int stmmac_init_phy(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); struct fwnode_handle *fwnode; int ret; fwnode = of_fwnode_handle(priv->plat->phylink_node); if (!fwnode) fwnode = dev_fwnode(priv->device); if (fwnode) ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0); /* Some DT bindings do not set-up the PHY handle. Let's try to * manually parse it */ if (!fwnode || ret) { int addr = priv->plat->phy_addr; struct phy_device *phydev; phydev = mdiobus_get_phy(priv->mii, addr); if (!phydev) { netdev_err(priv->dev, "no phy at addr %d\n", addr); return -ENODEV; } ret = phylink_connect_phy(priv->phylink, phydev); } if (!priv->plat->pmt) { struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; phylink_ethtool_get_wol(priv->phylink, &wol); device_set_wakeup_capable(priv->device, !!wol.supported); } return ret; } static int stmmac_phy_setup(struct stmmac_priv *priv) { struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); int max_speed = priv->plat->max_speed; int mode = priv->plat->phy_interface; struct phylink *phylink; priv->phylink_config.dev = &priv->dev->dev; priv->phylink_config.type = PHYLINK_NETDEV; if (priv->plat->mdio_bus_data) priv->phylink_config.ovr_an_inband = mdio_bus_data->xpcs_an_inband; if (!fwnode) fwnode = dev_fwnode(priv->device); /* Set the platform/firmware specified interface mode */ __set_bit(mode, priv->phylink_config.supported_interfaces); /* If we have an xpcs, it defines which PHY interfaces are supported. */ if (priv->hw->xpcs) xpcs_get_interfaces(priv->hw->xpcs, priv->phylink_config.supported_interfaces); priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | MAC_10 | MAC_100; if (!max_speed || max_speed >= 1000) priv->phylink_config.mac_capabilities |= MAC_1000; if (priv->plat->has_gmac4) { if (!max_speed || max_speed >= 2500) priv->phylink_config.mac_capabilities |= MAC_2500FD; } else if (priv->plat->has_xgmac) { if (!max_speed || max_speed >= 2500) priv->phylink_config.mac_capabilities |= MAC_2500FD; if (!max_speed || max_speed >= 5000) priv->phylink_config.mac_capabilities |= MAC_5000FD; if (!max_speed || max_speed >= 10000) priv->phylink_config.mac_capabilities |= MAC_10000FD; if (!max_speed || max_speed >= 25000) priv->phylink_config.mac_capabilities |= MAC_25000FD; if (!max_speed || max_speed >= 40000) priv->phylink_config.mac_capabilities |= MAC_40000FD; if (!max_speed || max_speed >= 50000) priv->phylink_config.mac_capabilities |= MAC_50000FD; if (!max_speed || max_speed >= 100000) priv->phylink_config.mac_capabilities |= MAC_100000FD; } /* Half-Duplex can only work with single queue */ if (priv->plat->tx_queues_to_use > 1) priv->phylink_config.mac_capabilities &= ~(MAC_10HD | MAC_100HD | MAC_1000HD); priv->phylink_config.mac_managed_pm = true; phylink = phylink_create(&priv->phylink_config, fwnode, mode, &stmmac_phylink_mac_ops); if (IS_ERR(phylink)) return PTR_ERR(phylink); priv->phylink = phylink; return 0; } static void stmmac_display_rx_rings(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf) { u32 rx_cnt = priv->plat->rx_queues_to_use; unsigned int desc_size; void *head_rx; u32 queue; /* Display RX rings */ for (queue = 0; queue < rx_cnt; queue++) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; pr_info("\tRX Queue %u rings\n", queue); if (priv->extend_desc) { head_rx = (void *)rx_q->dma_erx; desc_size = sizeof(struct dma_extended_desc); } else { head_rx = (void *)rx_q->dma_rx; desc_size = sizeof(struct dma_desc); } /* Display RX ring */ stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true, rx_q->dma_rx_phy, desc_size); } } static void stmmac_display_tx_rings(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf) { u32 tx_cnt = priv->plat->tx_queues_to_use; unsigned int desc_size; void *head_tx; u32 queue; /* Display TX rings */ for (queue = 0; queue < tx_cnt; queue++) { struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; pr_info("\tTX Queue %d rings\n", queue); if (priv->extend_desc) { head_tx = (void *)tx_q->dma_etx; desc_size = sizeof(struct dma_extended_desc); } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { head_tx = (void *)tx_q->dma_entx; desc_size = sizeof(struct dma_edesc); } else { head_tx = (void *)tx_q->dma_tx; desc_size = sizeof(struct dma_desc); } stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false, tx_q->dma_tx_phy, desc_size); } } static void stmmac_display_rings(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf) { /* Display RX ring */ stmmac_display_rx_rings(priv, dma_conf); /* Display TX ring */ stmmac_display_tx_rings(priv, dma_conf); } static int stmmac_set_bfsize(int mtu, int bufsize) { int ret = bufsize; if (mtu >= BUF_SIZE_8KiB) ret = BUF_SIZE_16KiB; else if (mtu >= BUF_SIZE_4KiB) ret = BUF_SIZE_8KiB; else if (mtu >= BUF_SIZE_2KiB) ret = BUF_SIZE_4KiB; else if (mtu > DEFAULT_BUFSIZE) ret = BUF_SIZE_2KiB; else ret = DEFAULT_BUFSIZE; return ret; } /** * stmmac_clear_rx_descriptors - clear RX descriptors * @priv: driver private structure * @dma_conf: structure to take the dma data * @queue: RX queue index * Description: this function is called to clear the RX descriptors * in case of both basic and extended descriptors are used. */ static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; int i; /* Clear the RX descriptors */ for (i = 0; i < dma_conf->dma_rx_size; i++) if (priv->extend_desc) stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, priv->use_riwt, priv->mode, (i == dma_conf->dma_rx_size - 1), dma_conf->dma_buf_sz); else stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], priv->use_riwt, priv->mode, (i == dma_conf->dma_rx_size - 1), dma_conf->dma_buf_sz); } /** * stmmac_clear_tx_descriptors - clear tx descriptors * @priv: driver private structure * @dma_conf: structure to take the dma data * @queue: TX queue index. * Description: this function is called to clear the TX descriptors * in case of both basic and extended descriptors are used. */ static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; int i; /* Clear the TX descriptors */ for (i = 0; i < dma_conf->dma_tx_size; i++) { int last = (i == (dma_conf->dma_tx_size - 1)); struct dma_desc *p; if (priv->extend_desc) p = &tx_q->dma_etx[i].basic; else if (tx_q->tbs & STMMAC_TBS_AVAIL) p = &tx_q->dma_entx[i].basic; else p = &tx_q->dma_tx[i]; stmmac_init_tx_desc(priv, p, priv->mode, last); } } /** * stmmac_clear_descriptors - clear descriptors * @priv: driver private structure * @dma_conf: structure to take the dma data * Description: this function is called to clear the TX and RX descriptors * in case of both basic and extended descriptors are used. */ static void stmmac_clear_descriptors(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf) { u32 rx_queue_cnt = priv->plat->rx_queues_to_use; u32 tx_queue_cnt = priv->plat->tx_queues_to_use; u32 queue; /* Clear the RX descriptors */ for (queue = 0; queue < rx_queue_cnt; queue++) stmmac_clear_rx_descriptors(priv, dma_conf, queue); /* Clear the TX descriptors */ for (queue = 0; queue < tx_queue_cnt; queue++) stmmac_clear_tx_descriptors(priv, dma_conf, queue); } /** * stmmac_init_rx_buffers - init the RX descriptor buffer. * @priv: driver private structure * @dma_conf: structure to take the dma data * @p: descriptor pointer * @i: descriptor index * @flags: gfp flag * @queue: RX queue index * Description: this function is called to allocate a receive buffer, perform * the DMA mapping and init the descriptor. */ static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, struct dma_desc *p, int i, gfp_t flags, u32 queue) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); if (priv->dma_cap.addr64 <= 32) gfp |= GFP_DMA32; if (!buf->page) { buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); if (!buf->page) return -ENOMEM; buf->page_offset = stmmac_rx_offset(priv); } if (priv->sph && !buf->sec_page) { buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); if (!buf->sec_page) return -ENOMEM; buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); } else { buf->sec_page = NULL; stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); } buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; stmmac_set_desc_addr(priv, p, buf->addr); if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB) stmmac_init_desc3(priv, p); return 0; } /** * stmmac_free_rx_buffer - free RX dma buffers * @priv: private structure * @rx_q: RX queue * @i: buffer index. */ static void stmmac_free_rx_buffer(struct stmmac_priv *priv, struct stmmac_rx_queue *rx_q, int i) { struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; if (buf->page) page_pool_put_full_page(rx_q->page_pool, buf->page, false); buf->page = NULL; if (buf->sec_page) page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); buf->sec_page = NULL; } /** * stmmac_free_tx_buffer - free RX dma buffers * @priv: private structure * @dma_conf: structure to take the dma data * @queue: RX queue index * @i: buffer index. */ static void stmmac_free_tx_buffer(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue, int i) { struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; if (tx_q->tx_skbuff_dma[i].buf && tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { if (tx_q->tx_skbuff_dma[i].map_as_page) dma_unmap_page(priv->device, tx_q->tx_skbuff_dma[i].buf, tx_q->tx_skbuff_dma[i].len, DMA_TO_DEVICE); else dma_unmap_single(priv->device, tx_q->tx_skbuff_dma[i].buf, tx_q->tx_skbuff_dma[i].len, DMA_TO_DEVICE); } if (tx_q->xdpf[i] && (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { xdp_return_frame(tx_q->xdpf[i]); tx_q->xdpf[i] = NULL; } if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) tx_q->xsk_frames_done++; if (tx_q->tx_skbuff[i] && tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { dev_kfree_skb_any(tx_q->tx_skbuff[i]); tx_q->tx_skbuff[i] = NULL; } tx_q->tx_skbuff_dma[i].buf = 0; tx_q->tx_skbuff_dma[i].map_as_page = false; } /** * dma_free_rx_skbufs - free RX dma buffers * @priv: private structure * @dma_conf: structure to take the dma data * @queue: RX queue index */ static void dma_free_rx_skbufs(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; int i; for (i = 0; i < dma_conf->dma_rx_size; i++) stmmac_free_rx_buffer(priv, rx_q, i); } static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue, gfp_t flags) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; int i; for (i = 0; i < dma_conf->dma_rx_size; i++) { struct dma_desc *p; int ret; if (priv->extend_desc) p = &((rx_q->dma_erx + i)->basic); else p = rx_q->dma_rx + i; ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags, queue); if (ret) return ret; rx_q->buf_alloc_num++; } return 0; } /** * dma_free_rx_xskbufs - free RX dma buffers from XSK pool * @priv: private structure * @dma_conf: structure to take the dma data * @queue: RX queue index */ static void dma_free_rx_xskbufs(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; int i; for (i = 0; i < dma_conf->dma_rx_size; i++) { struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; if (!buf->xdp) continue; xsk_buff_free(buf->xdp); buf->xdp = NULL; } } static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; int i; for (i = 0; i < dma_conf->dma_rx_size; i++) { struct stmmac_rx_buffer *buf; dma_addr_t dma_addr; struct dma_desc *p; if (priv->extend_desc) p = (struct dma_desc *)(rx_q->dma_erx + i); else p = rx_q->dma_rx + i; buf = &rx_q->buf_pool[i]; buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); if (!buf->xdp) return -ENOMEM; dma_addr = xsk_buff_xdp_get_dma(buf->xdp); stmmac_set_desc_addr(priv, p, dma_addr); rx_q->buf_alloc_num++; } return 0; } static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) { if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) return NULL; return xsk_get_pool_from_qid(priv->dev, queue); } /** * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) * @priv: driver private structure * @dma_conf: structure to take the dma data * @queue: RX queue index * @flags: gfp flag. * Description: this function initializes the DMA RX descriptors * and allocates the socket buffers. It supports the chained and ring * modes. */ static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue, gfp_t flags) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; int ret; netif_dbg(priv, probe, priv->dev, "(%s) dma_rx_phy=0x%08x\n", __func__, (u32)rx_q->dma_rx_phy); stmmac_clear_rx_descriptors(priv, dma_conf, queue); xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); if (rx_q->xsk_pool) { WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, MEM_TYPE_XSK_BUFF_POOL, NULL)); netdev_info(priv->dev, "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", rx_q->queue_index); xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); } else { WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, MEM_TYPE_PAGE_POOL, rx_q->page_pool)); netdev_info(priv->dev, "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", rx_q->queue_index); } if (rx_q->xsk_pool) { /* RX XDP ZC buffer pool may not be populated, e.g. * xdpsock TX-only. */ stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue); } else { ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags); if (ret < 0) return -ENOMEM; } /* Setup the chained descriptor addresses */ if (priv->mode == STMMAC_CHAIN_MODE) { if (priv->extend_desc) stmmac_mode_init(priv, rx_q->dma_erx, rx_q->dma_rx_phy, dma_conf->dma_rx_size, 1); else stmmac_mode_init(priv, rx_q->dma_rx, rx_q->dma_rx_phy, dma_conf->dma_rx_size, 0); } return 0; } static int init_dma_rx_desc_rings(struct net_device *dev, struct stmmac_dma_conf *dma_conf, gfp_t flags) { struct stmmac_priv *priv = netdev_priv(dev); u32 rx_count = priv->plat->rx_queues_to_use; int queue; int ret; /* RX INITIALIZATION */ netif_dbg(priv, probe, priv->dev, "SKB addresses:\nskb\t\tskb data\tdma data\n"); for (queue = 0; queue < rx_count; queue++) { ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags); if (ret) goto err_init_rx_buffers; } return 0; err_init_rx_buffers: while (queue >= 0) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; if (rx_q->xsk_pool) dma_free_rx_xskbufs(priv, dma_conf, queue); else dma_free_rx_skbufs(priv, dma_conf, queue); rx_q->buf_alloc_num = 0; rx_q->xsk_pool = NULL; queue--; } return ret; } /** * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) * @priv: driver private structure * @dma_conf: structure to take the dma data * @queue: TX queue index * Description: this function initializes the DMA TX descriptors * and allocates the socket buffers. It supports the chained and ring * modes. */ static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; int i; netif_dbg(priv, probe, priv->dev, "(%s) dma_tx_phy=0x%08x\n", __func__, (u32)tx_q->dma_tx_phy); /* Setup the chained descriptor addresses */ if (priv->mode == STMMAC_CHAIN_MODE) { if (priv->extend_desc) stmmac_mode_init(priv, tx_q->dma_etx, tx_q->dma_tx_phy, dma_conf->dma_tx_size, 1); else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) stmmac_mode_init(priv, tx_q->dma_tx, tx_q->dma_tx_phy, dma_conf->dma_tx_size, 0); } tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); for (i = 0; i < dma_conf->dma_tx_size; i++) { struct dma_desc *p; if (priv->extend_desc) p = &((tx_q->dma_etx + i)->basic); else if (tx_q->tbs & STMMAC_TBS_AVAIL) p = &((tx_q->dma_entx + i)->basic); else p = tx_q->dma_tx + i; stmmac_clear_desc(priv, p); tx_q->tx_skbuff_dma[i].buf = 0; tx_q->tx_skbuff_dma[i].map_as_page = false; tx_q->tx_skbuff_dma[i].len = 0; tx_q->tx_skbuff_dma[i].last_segment = false; tx_q->tx_skbuff[i] = NULL; } return 0; } static int init_dma_tx_desc_rings(struct net_device *dev, struct stmmac_dma_conf *dma_conf) { struct stmmac_priv *priv = netdev_priv(dev); u32 tx_queue_cnt; u32 queue; tx_queue_cnt = priv->plat->tx_queues_to_use; for (queue = 0; queue < tx_queue_cnt; queue++) __init_dma_tx_desc_rings(priv, dma_conf, queue); return 0; } /** * init_dma_desc_rings - init the RX/TX descriptor rings * @dev: net device structure * @dma_conf: structure to take the dma data * @flags: gfp flag. * Description: this function initializes the DMA RX/TX descriptors * and allocates the socket buffers. It supports the chained and ring * modes. */ static int init_dma_desc_rings(struct net_device *dev, struct stmmac_dma_conf *dma_conf, gfp_t flags) { struct stmmac_priv *priv = netdev_priv(dev); int ret; ret = init_dma_rx_desc_rings(dev, dma_conf, flags); if (ret) return ret; ret = init_dma_tx_desc_rings(dev, dma_conf); stmmac_clear_descriptors(priv, dma_conf); if (netif_msg_hw(priv)) stmmac_display_rings(priv, dma_conf); return ret; } /** * dma_free_tx_skbufs - free TX dma buffers * @priv: private structure * @dma_conf: structure to take the dma data * @queue: TX queue index */ static void dma_free_tx_skbufs(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; int i; tx_q->xsk_frames_done = 0; for (i = 0; i < dma_conf->dma_tx_size; i++) stmmac_free_tx_buffer(priv, dma_conf, queue, i); if (tx_q->xsk_pool && tx_q->xsk_frames_done) { xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); tx_q->xsk_frames_done = 0; tx_q->xsk_pool = NULL; } } /** * stmmac_free_tx_skbufs - free TX skb buffers * @priv: private structure */ static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) { u32 tx_queue_cnt = priv->plat->tx_queues_to_use; u32 queue; for (queue = 0; queue < tx_queue_cnt; queue++) dma_free_tx_skbufs(priv, &priv->dma_conf, queue); } /** * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) * @priv: private structure * @dma_conf: structure to take the dma data * @queue: RX queue index */ static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; /* Release the DMA RX socket buffers */ if (rx_q->xsk_pool) dma_free_rx_xskbufs(priv, dma_conf, queue); else dma_free_rx_skbufs(priv, dma_conf, queue); rx_q->buf_alloc_num = 0; rx_q->xsk_pool = NULL; /* Free DMA regions of consistent memory previously allocated */ if (!priv->extend_desc) dma_free_coherent(priv->device, dma_conf->dma_rx_size * sizeof(struct dma_desc), rx_q->dma_rx, rx_q->dma_rx_phy); else dma_free_coherent(priv->device, dma_conf->dma_rx_size * sizeof(struct dma_extended_desc), rx_q->dma_erx, rx_q->dma_rx_phy); if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) xdp_rxq_info_unreg(&rx_q->xdp_rxq); kfree(rx_q->buf_pool); if (rx_q->page_pool) page_pool_destroy(rx_q->page_pool); } static void free_dma_rx_desc_resources(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf) { u32 rx_count = priv->plat->rx_queues_to_use; u32 queue; /* Free RX queue resources */ for (queue = 0; queue < rx_count; queue++) __free_dma_rx_desc_resources(priv, dma_conf, queue); } /** * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) * @priv: private structure * @dma_conf: structure to take the dma data * @queue: TX queue index */ static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; size_t size; void *addr; /* Release the DMA TX socket buffers */ dma_free_tx_skbufs(priv, dma_conf, queue); if (priv->extend_desc) { size = sizeof(struct dma_extended_desc); addr = tx_q->dma_etx; } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { size = sizeof(struct dma_edesc); addr = tx_q->dma_entx; } else { size = sizeof(struct dma_desc); addr = tx_q->dma_tx; } size *= dma_conf->dma_tx_size; dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); kfree(tx_q->tx_skbuff_dma); kfree(tx_q->tx_skbuff); } static void free_dma_tx_desc_resources(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf) { u32 tx_count = priv->plat->tx_queues_to_use; u32 queue; /* Free TX queue resources */ for (queue = 0; queue < tx_count; queue++) __free_dma_tx_desc_resources(priv, dma_conf, queue); } /** * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). * @priv: private structure * @dma_conf: structure to take the dma data * @queue: RX queue index * Description: according to which descriptor can be used (extend or basic) * this function allocates the resources for TX and RX paths. In case of * reception, for example, it pre-allocated the RX socket buffer in order to * allow zero-copy mechanism. */ static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; struct stmmac_channel *ch = &priv->channel[queue]; bool xdp_prog = stmmac_xdp_is_enabled(priv); struct page_pool_params pp_params = { 0 }; unsigned int num_pages; unsigned int napi_id; int ret; rx_q->queue_index = queue; rx_q->priv_data = priv; pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; pp_params.pool_size = dma_conf->dma_rx_size; num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE); pp_params.order = ilog2(num_pages); pp_params.nid = dev_to_node(priv->device); pp_params.dev = priv->device; pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; pp_params.offset = stmmac_rx_offset(priv); pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); rx_q->page_pool = page_pool_create(&pp_params); if (IS_ERR(rx_q->page_pool)) { ret = PTR_ERR(rx_q->page_pool); rx_q->page_pool = NULL; return ret; } rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size, sizeof(*rx_q->buf_pool), GFP_KERNEL); if (!rx_q->buf_pool) return -ENOMEM; if (priv->extend_desc) { rx_q->dma_erx = dma_alloc_coherent(priv->device, dma_conf->dma_rx_size * sizeof(struct dma_extended_desc), &rx_q->dma_rx_phy, GFP_KERNEL); if (!rx_q->dma_erx) return -ENOMEM; } else { rx_q->dma_rx = dma_alloc_coherent(priv->device, dma_conf->dma_rx_size * sizeof(struct dma_desc), &rx_q->dma_rx_phy, GFP_KERNEL); if (!rx_q->dma_rx) return -ENOMEM; } if (stmmac_xdp_is_enabled(priv) && test_bit(queue, priv->af_xdp_zc_qps)) napi_id = ch->rxtx_napi.napi_id; else napi_id = ch->rx_napi.napi_id; ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, rx_q->queue_index, napi_id); if (ret) { netdev_err(priv->dev, "Failed to register xdp rxq info\n"); return -EINVAL; } return 0; } static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf) { u32 rx_count = priv->plat->rx_queues_to_use; u32 queue; int ret; /* RX queues buffers and DMA */ for (queue = 0; queue < rx_count; queue++) { ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue); if (ret) goto err_dma; } return 0; err_dma: free_dma_rx_desc_resources(priv, dma_conf); return ret; } /** * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). * @priv: private structure * @dma_conf: structure to take the dma data * @queue: TX queue index * Description: according to which descriptor can be used (extend or basic) * this function allocates the resources for TX and RX paths. In case of * reception, for example, it pre-allocated the RX socket buffer in order to * allow zero-copy mechanism. */ static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf, u32 queue) { struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; size_t size; void *addr; tx_q->queue_index = queue; tx_q->priv_data = priv; tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size, sizeof(*tx_q->tx_skbuff_dma), GFP_KERNEL); if (!tx_q->tx_skbuff_dma) return -ENOMEM; tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size, sizeof(struct sk_buff *), GFP_KERNEL); if (!tx_q->tx_skbuff) return -ENOMEM; if (priv->extend_desc) size = sizeof(struct dma_extended_desc); else if (tx_q->tbs & STMMAC_TBS_AVAIL) size = sizeof(struct dma_edesc); else size = sizeof(struct dma_desc); size *= dma_conf->dma_tx_size; addr = dma_alloc_coherent(priv->device, size, &tx_q->dma_tx_phy, GFP_KERNEL); if (!addr) return -ENOMEM; if (priv->extend_desc) tx_q->dma_etx = addr; else if (tx_q->tbs & STMMAC_TBS_AVAIL) tx_q->dma_entx = addr; else tx_q->dma_tx = addr; return 0; } static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf) { u32 tx_count = priv->plat->tx_queues_to_use; u32 queue; int ret; /* TX queues buffers and DMA */ for (queue = 0; queue < tx_count; queue++) { ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue); if (ret) goto err_dma; } return 0; err_dma: free_dma_tx_desc_resources(priv, dma_conf); return ret; } /** * alloc_dma_desc_resources - alloc TX/RX resources. * @priv: private structure * @dma_conf: structure to take the dma data * Description: according to which descriptor can be used (extend or basic) * this function allocates the resources for TX and RX paths. In case of * reception, for example, it pre-allocated the RX socket buffer in order to * allow zero-copy mechanism. */ static int alloc_dma_desc_resources(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf) { /* RX Allocation */ int ret = alloc_dma_rx_desc_resources(priv, dma_conf); if (ret) return ret; ret = alloc_dma_tx_desc_resources(priv, dma_conf); return ret; } /** * free_dma_desc_resources - free dma desc resources * @priv: private structure * @dma_conf: structure to take the dma data */ static void free_dma_desc_resources(struct stmmac_priv *priv, struct stmmac_dma_conf *dma_conf) { /* Release the DMA TX socket buffers */ free_dma_tx_desc_resources(priv, dma_conf); /* Release the DMA RX socket buffers later * to ensure all pending XDP_TX buffers are returned. */ free_dma_rx_desc_resources(priv, dma_conf); } /** * stmmac_mac_enable_rx_queues - Enable MAC rx queues * @priv: driver private structure * Description: It is used for enabling the rx queues in the MAC */ static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) { u32 rx_queues_count = priv->plat->rx_queues_to_use; int queue; u8 mode; for (queue = 0; queue < rx_queues_count; queue++) { mode = priv->plat->rx_queues_cfg[queue].mode_to_use; stmmac_rx_queue_enable(priv, priv->hw, mode, queue); } } /** * stmmac_start_rx_dma - start RX DMA channel * @priv: driver private structure * @chan: RX channel index * Description: * This starts a RX DMA channel */ static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) { netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); stmmac_start_rx(priv, priv->ioaddr, chan); } /** * stmmac_start_tx_dma - start TX DMA channel * @priv: driver private structure * @chan: TX channel index * Description: * This starts a TX DMA channel */ static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) { netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); stmmac_start_tx(priv, priv->ioaddr, chan); } /** * stmmac_stop_rx_dma - stop RX DMA channel * @priv: driver private structure * @chan: RX channel index * Description: * This stops a RX DMA channel */ static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) { netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); stmmac_stop_rx(priv, priv->ioaddr, chan); } /** * stmmac_stop_tx_dma - stop TX DMA channel * @priv: driver private structure * @chan: TX channel index * Description: * This stops a TX DMA channel */ static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) { netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); stmmac_stop_tx(priv, priv->ioaddr, chan); } static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); u32 chan; for (chan = 0; chan < dma_csr_ch; chan++) { struct stmmac_channel *ch = &priv->channel[chan]; unsigned long flags; spin_lock_irqsave(&ch->lock, flags); stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); spin_unlock_irqrestore(&ch->lock, flags); } } /** * stmmac_start_all_dma - start all RX and TX DMA channels * @priv: driver private structure * Description: * This starts all the RX and TX DMA channels */ static void stmmac_start_all_dma(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; u32 chan = 0; for (chan = 0; chan < rx_channels_count; chan++) stmmac_start_rx_dma(priv, chan); for (chan = 0; chan < tx_channels_count; chan++) stmmac_start_tx_dma(priv, chan); } /** * stmmac_stop_all_dma - stop all RX and TX DMA channels * @priv: driver private structure * Description: * This stops the RX and TX DMA channels */ static void stmmac_stop_all_dma(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; u32 chan = 0; for (chan = 0; chan < rx_channels_count; chan++) stmmac_stop_rx_dma(priv, chan); for (chan = 0; chan < tx_channels_count; chan++) stmmac_stop_tx_dma(priv, chan); } /** * stmmac_dma_operation_mode - HW DMA operation mode * @priv: driver private structure * Description: it is used for configuring the DMA operation mode register in * order to program the tx/rx DMA thresholds or Store-And-Forward mode. */ static void stmmac_dma_operation_mode(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; int rxfifosz = priv->plat->rx_fifo_size; int txfifosz = priv->plat->tx_fifo_size; u32 txmode = 0; u32 rxmode = 0; u32 chan = 0; u8 qmode = 0; if (rxfifosz == 0) rxfifosz = priv->dma_cap.rx_fifo_size; if (txfifosz == 0) txfifosz = priv->dma_cap.tx_fifo_size; /* Adjust for real per queue fifo size */ rxfifosz /= rx_channels_count; txfifosz /= tx_channels_count; if (priv->plat->force_thresh_dma_mode) { txmode = tc; rxmode = tc; } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { /* * In case of GMAC, SF mode can be enabled * to perform the TX COE in HW. This depends on: * 1) TX COE if actually supported * 2) There is no bugged Jumbo frame support * that needs to not insert csum in the TDES. */ txmode = SF_DMA_MODE; rxmode = SF_DMA_MODE; priv->xstats.threshold = SF_DMA_MODE; } else { txmode = tc; rxmode = SF_DMA_MODE; } /* configure all channels */ for (chan = 0; chan < rx_channels_count; chan++) { struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; u32 buf_size; qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, qmode); if (rx_q->xsk_pool) { buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); stmmac_set_dma_bfsize(priv, priv->ioaddr, buf_size, chan); } else { stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_conf.dma_buf_sz, chan); } } for (chan = 0; chan < tx_channels_count; chan++) { qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, qmode); } } static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) { struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; struct xsk_buff_pool *pool = tx_q->xsk_pool; unsigned int entry = tx_q->cur_tx; struct dma_desc *tx_desc = NULL; struct xdp_desc xdp_desc; bool work_done = true; /* Avoids TX time-out as we are sharing with slow path */ txq_trans_cond_update(nq); budget = min(budget, stmmac_tx_avail(priv, queue)); while (budget-- > 0) { dma_addr_t dma_addr; bool set_ic; /* We are sharing with slow path and stop XSK TX desc submission when * available TX ring is less than threshold. */ if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || !netif_carrier_ok(priv->dev)) { work_done = false; break; } if (!xsk_tx_peek_desc(pool, &xdp_desc)) break; if (likely(priv->extend_desc)) tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); else if (tx_q->tbs & STMMAC_TBS_AVAIL) tx_desc = &tx_q->dma_entx[entry].basic; else tx_desc = tx_q->dma_tx + entry; dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; /* To return XDP buffer to XSK pool, we simple call * xsk_tx_completed(), so we don't need to fill up * 'buf' and 'xdpf'. */ tx_q->tx_skbuff_dma[entry].buf = 0; tx_q->xdpf[entry] = NULL; tx_q->tx_skbuff_dma[entry].map_as_page = false; tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; tx_q->tx_skbuff_dma[entry].last_segment = true; tx_q->tx_skbuff_dma[entry].is_jumbo = false; stmmac_set_desc_addr(priv, tx_desc, dma_addr); tx_q->tx_count_frames++; if (!priv->tx_coal_frames[queue]) set_ic = false; else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) set_ic = true; else set_ic = false; if (set_ic) { tx_q->tx_count_frames = 0; stmmac_set_tx_ic(priv, tx_desc); priv->xstats.tx_set_ic_bit++; } stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, true, priv->mode, true, true, xdp_desc.len); stmmac_enable_dma_transmission(priv, priv->ioaddr); tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); entry = tx_q->cur_tx; } if (tx_desc) { stmmac_flush_tx_descriptors(priv, queue); xsk_tx_release(pool); } /* Return true if all of the 3 conditions are met * a) TX Budget is still available * b) work_done = true when XSK TX desc peek is empty (no more * pending XSK TX for transmission) */ return !!budget && work_done; } static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) { if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { tc += 64; if (priv->plat->force_thresh_dma_mode) stmmac_set_dma_operation_mode(priv, tc, tc, chan); else stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, chan); priv->xstats.threshold = tc; } } /** * stmmac_tx_clean - to manage the transmission completion * @priv: driver private structure * @budget: napi budget limiting this functions packet handling * @queue: TX queue index * Description: it reclaims the transmit resources after transmission completes. */ static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; unsigned int bytes_compl = 0, pkts_compl = 0; unsigned int entry, xmits = 0, count = 0; __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); priv->xstats.tx_clean++; tx_q->xsk_frames_done = 0; entry = tx_q->dirty_tx; /* Try to clean all TX complete frame in 1 shot */ while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) { struct xdp_frame *xdpf; struct sk_buff *skb; struct dma_desc *p; int status; if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { xdpf = tx_q->xdpf[entry]; skb = NULL; } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { xdpf = NULL; skb = tx_q->tx_skbuff[entry]; } else { xdpf = NULL; skb = NULL; } if (priv->extend_desc) p = (struct dma_desc *)(tx_q->dma_etx + entry); else if (tx_q->tbs & STMMAC_TBS_AVAIL) p = &tx_q->dma_entx[entry].basic; else p = tx_q->dma_tx + entry; status = stmmac_tx_status(priv, &priv->dev->stats, &priv->xstats, p, priv->ioaddr); /* Check if the descriptor is owned by the DMA */ if (unlikely(status & tx_dma_own)) break; count++; /* Make sure descriptor fields are read after reading * the own bit. */ dma_rmb(); /* Just consider the last segment and ...*/ if (likely(!(status & tx_not_ls))) { /* ... verify the status error condition */ if (unlikely(status & tx_err)) { priv->dev->stats.tx_errors++; if (unlikely(status & tx_err_bump_tc)) stmmac_bump_dma_threshold(priv, queue); } else { priv->dev->stats.tx_packets++; priv->xstats.tx_pkt_n++; priv->xstats.txq_stats[queue].tx_pkt_n++; } if (skb) stmmac_get_tx_hwtstamp(priv, p, skb); } if (likely(tx_q->tx_skbuff_dma[entry].buf && tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { if (tx_q->tx_skbuff_dma[entry].map_as_page) dma_unmap_page(priv->device, tx_q->tx_skbuff_dma[entry].buf, tx_q->tx_skbuff_dma[entry].len, DMA_TO_DEVICE); else dma_unmap_single(priv->device, tx_q->tx_skbuff_dma[entry].buf, tx_q->tx_skbuff_dma[entry].len, DMA_TO_DEVICE); tx_q->tx_skbuff_dma[entry].buf = 0; tx_q->tx_skbuff_dma[entry].len = 0; tx_q->tx_skbuff_dma[entry].map_as_page = false; } stmmac_clean_desc3(priv, tx_q, p); tx_q->tx_skbuff_dma[entry].last_segment = false; tx_q->tx_skbuff_dma[entry].is_jumbo = false; if (xdpf && tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { xdp_return_frame_rx_napi(xdpf); tx_q->xdpf[entry] = NULL; } if (xdpf && tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { xdp_return_frame(xdpf); tx_q->xdpf[entry] = NULL; } if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) tx_q->xsk_frames_done++; if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { if (likely(skb)) { pkts_compl++; bytes_compl += skb->len; dev_consume_skb_any(skb); tx_q->tx_skbuff[entry] = NULL; } } stmmac_release_tx_desc(priv, p, priv->mode); entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); } tx_q->dirty_tx = entry; netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), pkts_compl, bytes_compl); if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, queue))) && stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { netif_dbg(priv, tx_done, priv->dev, "%s: restart transmit\n", __func__); netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); } if (tx_q->xsk_pool) { bool work_done; if (tx_q->xsk_frames_done) xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); if (xsk_uses_need_wakeup(tx_q->xsk_pool)) xsk_set_tx_need_wakeup(tx_q->xsk_pool); /* For XSK TX, we try to send as many as possible. * If XSK work done (XSK TX desc empty and budget still * available), return "budget - 1" to reenable TX IRQ. * Else, return "budget" to make NAPI continue polling. */ work_done = stmmac_xdp_xmit_zc(priv, queue, STMMAC_XSK_TX_BUDGET_MAX); if (work_done) xmits = budget - 1; else xmits = budget; } if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) { if (stmmac_enable_eee_mode(priv)) mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); } /* We still have pending packets, let's call for a new scheduling */ if (tx_q->dirty_tx != tx_q->cur_tx) hrtimer_start(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), HRTIMER_MODE_REL); __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); /* Combine decisions from TX clean and XSK TX */ return max(count, xmits); } /** * stmmac_tx_err - to manage the tx error * @priv: driver private structure * @chan: channel index * Description: it cleans the descriptors and restarts the transmission * in case of transmission errors. */ static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); stmmac_stop_tx_dma(priv, chan); dma_free_tx_skbufs(priv, &priv->dma_conf, chan); stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan); stmmac_reset_tx_queue(priv, chan); stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, tx_q->dma_tx_phy, chan); stmmac_start_tx_dma(priv, chan); priv->dev->stats.tx_errors++; netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); } /** * stmmac_set_dma_operation_mode - Set DMA operation mode by channel * @priv: driver private structure * @txmode: TX operating mode * @rxmode: RX operating mode * @chan: channel index * Description: it is used for configuring of the DMA operation mode in * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward * mode. */ static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, u32 rxmode, u32 chan) { u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; int rxfifosz = priv->plat->rx_fifo_size; int txfifosz = priv->plat->tx_fifo_size; if (rxfifosz == 0) rxfifosz = priv->dma_cap.rx_fifo_size; if (txfifosz == 0) txfifosz = priv->dma_cap.tx_fifo_size; /* Adjust for real per queue fifo size */ rxfifosz /= rx_channels_count; txfifosz /= tx_channels_count; stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); } static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) { int ret; ret = stmmac_safety_feat_irq_status(priv, priv->dev, priv->ioaddr, priv->dma_cap.asp, &priv->sstats); if (ret && (ret != -EINVAL)) { stmmac_global_err(priv); return true; } return false; } static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) { int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, &priv->xstats, chan, dir); struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; struct stmmac_channel *ch = &priv->channel[chan]; struct napi_struct *rx_napi; struct napi_struct *tx_napi; unsigned long flags; rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { if (napi_schedule_prep(rx_napi)) { spin_lock_irqsave(&ch->lock, flags); stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); spin_unlock_irqrestore(&ch->lock, flags); __napi_schedule(rx_napi); } } if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { if (napi_schedule_prep(tx_napi)) { spin_lock_irqsave(&ch->lock, flags); stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); spin_unlock_irqrestore(&ch->lock, flags); __napi_schedule(tx_napi); } } return status; } /** * stmmac_dma_interrupt - DMA ISR * @priv: driver private structure * Description: this is the DMA ISR. It is called by the main ISR. * It calls the dwmac dma routine and schedule poll method in case of some * work can be done. */ static void stmmac_dma_interrupt(struct stmmac_priv *priv) { u32 tx_channel_count = priv->plat->tx_queues_to_use; u32 rx_channel_count = priv->plat->rx_queues_to_use; u32 channels_to_check = tx_channel_count > rx_channel_count ? tx_channel_count : rx_channel_count; u32 chan; int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; /* Make sure we never check beyond our status buffer. */ if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) channels_to_check = ARRAY_SIZE(status); for (chan = 0; chan < channels_to_check; chan++) status[chan] = stmmac_napi_check(priv, chan, DMA_DIR_RXTX); for (chan = 0; chan < tx_channel_count; chan++) { if (unlikely(status[chan] & tx_hard_error_bump_tc)) { /* Try to bump up the dma threshold on this failure */ stmmac_bump_dma_threshold(priv, chan); } else if (unlikely(status[chan] == tx_hard_error)) { stmmac_tx_err(priv, chan); } } } /** * stmmac_mmc_setup: setup the Mac Management Counters (MMC) * @priv: driver private structure * Description: this masks the MMC irq, in fact, the counters are managed in SW. */ static void stmmac_mmc_setup(struct stmmac_priv *priv) { unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); if (priv->dma_cap.rmon) { stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); } else netdev_info(priv->dev, "No MAC Management Counters available\n"); } /** * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. * @priv: driver private structure * Description: * new GMAC chip generations have a new register to indicate the * presence of the optional feature/functions. * This can be also used to override the value passed through the * platform and necessary for old MAC10/100 and GMAC chips. */ static int stmmac_get_hw_features(struct stmmac_priv *priv) { return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; } /** * stmmac_check_ether_addr - check if the MAC addr is valid * @priv: driver private structure * Description: * it is to verify if the MAC address is valid, in case of failures it * generates a random MAC address */ static void stmmac_check_ether_addr(struct stmmac_priv *priv) { u8 addr[ETH_ALEN]; if (!is_valid_ether_addr(priv->dev->dev_addr)) { stmmac_get_umac_addr(priv, priv->hw, addr, 0); if (is_valid_ether_addr(addr)) eth_hw_addr_set(priv->dev, addr); else eth_hw_addr_random(priv->dev); dev_info(priv->device, "device MAC address %pM\n", priv->dev->dev_addr); } } /** * stmmac_init_dma_engine - DMA init. * @priv: driver private structure * Description: * It inits the DMA invoking the specific MAC/GMAC callback. * Some DMA parameters can be passed from the platform; * in case of these are not passed a default is kept for the MAC or GMAC. */ static int stmmac_init_dma_engine(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); struct stmmac_rx_queue *rx_q; struct stmmac_tx_queue *tx_q; u32 chan = 0; int atds = 0; int ret = 0; if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { dev_err(priv->device, "Invalid DMA configuration\n"); return -EINVAL; } if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) atds = 1; ret = stmmac_reset(priv, priv->ioaddr); if (ret) { dev_err(priv->device, "Failed to reset the dma\n"); return ret; } /* DMA Configuration */ stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); if (priv->plat->axi) stmmac_axi(priv, priv->ioaddr, priv->plat->axi); /* DMA CSR Channel configuration */ for (chan = 0; chan < dma_csr_ch; chan++) { stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); } /* DMA RX Channel Configuration */ for (chan = 0; chan < rx_channels_count; chan++) { rx_q = &priv->dma_conf.rx_queue[chan]; stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, rx_q->dma_rx_phy, chan); rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * sizeof(struct dma_desc)); stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, chan); } /* DMA TX Channel Configuration */ for (chan = 0; chan < tx_channels_count; chan++) { tx_q = &priv->dma_conf.tx_queue[chan]; stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, tx_q->dma_tx_phy, chan); tx_q->tx_tail_addr = tx_q->dma_tx_phy; stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, chan); } return ret; } static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; hrtimer_start(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), HRTIMER_MODE_REL); } /** * stmmac_tx_timer - mitigation sw timer for tx. * @t: data pointer * Description: * This is the timer handler to directly invoke the stmmac_tx_clean. */ static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) { struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); struct stmmac_priv *priv = tx_q->priv_data; struct stmmac_channel *ch; struct napi_struct *napi; ch = &priv->channel[tx_q->queue_index]; napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; if (likely(napi_schedule_prep(napi))) { unsigned long flags; spin_lock_irqsave(&ch->lock, flags); stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); spin_unlock_irqrestore(&ch->lock, flags); __napi_schedule(napi); } return HRTIMER_NORESTART; } /** * stmmac_init_coalesce - init mitigation options. * @priv: driver private structure * Description: * This inits the coalesce parameters: i.e. timer rate, * timer handler and default threshold used for enabling the * interrupt on completion bit. */ static void stmmac_init_coalesce(struct stmmac_priv *priv) { u32 tx_channel_count = priv->plat->tx_queues_to_use; u32 rx_channel_count = priv->plat->rx_queues_to_use; u32 chan; for (chan = 0; chan < tx_channel_count; chan++) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); tx_q->txtimer.function = stmmac_tx_timer; } for (chan = 0; chan < rx_channel_count; chan++) priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; } static void stmmac_set_rings_length(struct stmmac_priv *priv) { u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use; u32 chan; /* set TX ring length */ for (chan = 0; chan < tx_channels_count; chan++) stmmac_set_tx_ring_len(priv, priv->ioaddr, (priv->dma_conf.dma_tx_size - 1), chan); /* set RX ring length */ for (chan = 0; chan < rx_channels_count; chan++) stmmac_set_rx_ring_len(priv, priv->ioaddr, (priv->dma_conf.dma_rx_size - 1), chan); } /** * stmmac_set_tx_queue_weight - Set TX queue weight * @priv: driver private structure * Description: It is used for setting TX queues weight */ static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) { u32 tx_queues_count = priv->plat->tx_queues_to_use; u32 weight; u32 queue; for (queue = 0; queue < tx_queues_count; queue++) { weight = priv->plat->tx_queues_cfg[queue].weight; stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); } } /** * stmmac_configure_cbs - Configure CBS in TX queue * @priv: driver private structure * Description: It is used for configuring CBS in AVB TX queues */ static void stmmac_configure_cbs(struct stmmac_priv *priv) { u32 tx_queues_count = priv->plat->tx_queues_to_use; u32 mode_to_use; u32 queue; /* queue 0 is reserved for legacy traffic */ for (queue = 1; queue < tx_queues_count; queue++) { mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; if (mode_to_use == MTL_QUEUE_DCB) continue; stmmac_config_cbs(priv, priv->hw, priv->plat->tx_queues_cfg[queue].send_slope, priv->plat->tx_queues_cfg[queue].idle_slope, priv->plat->tx_queues_cfg[queue].high_credit, priv->plat->tx_queues_cfg[queue].low_credit, queue); } } /** * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel * @priv: driver private structure * Description: It is used for mapping RX queues to RX dma channels */ static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) { u32 rx_queues_count = priv->plat->rx_queues_to_use; u32 queue; u32 chan; for (queue = 0; queue < rx_queues_count; queue++) { chan = priv->plat->rx_queues_cfg[queue].chan; stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); } } /** * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority * @priv: driver private structure * Description: It is used for configuring the RX Queue Priority */ static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) { u32 rx_queues_count = priv->plat->rx_queues_to_use; u32 queue; u32 prio; for (queue = 0; queue < rx_queues_count; queue++) { if (!priv->plat->rx_queues_cfg[queue].use_prio) continue; prio = priv->plat->rx_queues_cfg[queue].prio; stmmac_rx_queue_prio(priv, priv->hw, prio, queue); } } /** * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority * @priv: driver private structure * Description: It is used for configuring the TX Queue Priority */ static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) { u32 tx_queues_count = priv->plat->tx_queues_to_use; u32 queue; u32 prio; for (queue = 0; queue < tx_queues_count; queue++) { if (!priv->plat->tx_queues_cfg[queue].use_prio) continue; prio = priv->plat->tx_queues_cfg[queue].prio; stmmac_tx_queue_prio(priv, priv->hw, prio, queue); } } /** * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing * @priv: driver private structure * Description: It is used for configuring the RX queue routing */ static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) { u32 rx_queues_count = priv->plat->rx_queues_to_use; u32 queue; u8 packet; for (queue = 0; queue < rx_queues_count; queue++) { /* no specific packet type routing specified for the queue */ if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) continue; packet = priv->plat->rx_queues_cfg[queue].pkt_route; stmmac_rx_queue_routing(priv, priv->hw, packet, queue); } } static void stmmac_mac_config_rss(struct stmmac_priv *priv) { if (!priv->dma_cap.rssen || !priv->plat->rss_en) { priv->rss.enable = false; return; } if (priv->dev->features & NETIF_F_RXHASH) priv->rss.enable = true; else priv->rss.enable = false; stmmac_rss_configure(priv, priv->hw, &priv->rss, priv->plat->rx_queues_to_use); } /** * stmmac_mtl_configuration - Configure MTL * @priv: driver private structure * Description: It is used for configurring MTL */ static void stmmac_mtl_configuration(struct stmmac_priv *priv) { u32 rx_queues_count = priv->plat->rx_queues_to_use; u32 tx_queues_count = priv->plat->tx_queues_to_use; if (tx_queues_count > 1) stmmac_set_tx_queue_weight(priv); /* Configure MTL RX algorithms */ if (rx_queues_count > 1) stmmac_prog_mtl_rx_algorithms(priv, priv->hw, priv->plat->rx_sched_algorithm); /* Configure MTL TX algorithms */ if (tx_queues_count > 1) stmmac_prog_mtl_tx_algorithms(priv, priv->hw, priv->plat->tx_sched_algorithm); /* Configure CBS in AVB TX queues */ if (tx_queues_count > 1) stmmac_configure_cbs(priv); /* Map RX MTL to DMA channels */ stmmac_rx_queue_dma_chan_map(priv); /* Enable MAC RX Queues */ stmmac_mac_enable_rx_queues(priv); /* Set RX priorities */ if (rx_queues_count > 1) stmmac_mac_config_rx_queues_prio(priv); /* Set TX priorities */ if (tx_queues_count > 1) stmmac_mac_config_tx_queues_prio(priv); /* Set RX routing */ if (rx_queues_count > 1) stmmac_mac_config_rx_queues_routing(priv); /* Receive Side Scaling */ if (rx_queues_count > 1) stmmac_mac_config_rss(priv); } static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) { if (priv->dma_cap.asp) { netdev_info(priv->dev, "Enabling Safety Features\n"); stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, priv->plat->safety_feat_cfg); } else { netdev_info(priv->dev, "No Safety Features support found\n"); } } static int stmmac_fpe_start_wq(struct stmmac_priv *priv) { char *name; clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); clear_bit(__FPE_REMOVING, &priv->fpe_task_state); name = priv->wq_name; sprintf(name, "%s-fpe", priv->dev->name); priv->fpe_wq = create_singlethread_workqueue(name); if (!priv->fpe_wq) { netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); return -ENOMEM; } netdev_info(priv->dev, "FPE workqueue start"); return 0; } /** * stmmac_hw_setup - setup mac in a usable state. * @dev : pointer to the device structure. * @ptp_register: register PTP if set * Description: * this is the main function to setup the HW in a usable state because the * dma engine is reset, the core registers are configured (e.g. AXI, * Checksum features, timers). The DMA is ready to start receiving and * transmitting. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) { struct stmmac_priv *priv = netdev_priv(dev); u32 rx_cnt = priv->plat->rx_queues_to_use; u32 tx_cnt = priv->plat->tx_queues_to_use; bool sph_en; u32 chan; int ret; /* DMA initialization and SW reset */ ret = stmmac_init_dma_engine(priv); if (ret < 0) { netdev_err(priv->dev, "%s: DMA engine initialization failed\n", __func__); return ret; } /* Copy the MAC addr into the HW */ stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); /* PS and related bits will be programmed according to the speed */ if (priv->hw->pcs) { int speed = priv->plat->mac_port_sel_speed; if ((speed == SPEED_10) || (speed == SPEED_100) || (speed == SPEED_1000)) { priv->hw->ps = speed; } else { dev_warn(priv->device, "invalid port speed\n"); priv->hw->ps = 0; } } /* Initialize the MAC Core */ stmmac_core_init(priv, priv->hw, dev); /* Initialize MTL*/ stmmac_mtl_configuration(priv); /* Initialize Safety Features */ stmmac_safety_feat_configuration(priv); ret = stmmac_rx_ipc(priv, priv->hw); if (!ret) { netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); priv->plat->rx_coe = STMMAC_RX_COE_NONE; priv->hw->rx_csum = 0; } /* Enable the MAC Rx/Tx */ stmmac_mac_set(priv, priv->ioaddr, true); /* Set the HW DMA mode and the COE */ stmmac_dma_operation_mode(priv); stmmac_mmc_setup(priv); if (ptp_register) { ret = clk_prepare_enable(priv->plat->clk_ptp_ref); if (ret < 0) netdev_warn(priv->dev, "failed to enable PTP reference clock: %pe\n", ERR_PTR(ret)); } ret = stmmac_init_ptp(priv); if (ret == -EOPNOTSUPP) netdev_info(priv->dev, "PTP not supported by HW\n"); else if (ret) netdev_warn(priv->dev, "PTP init failed\n"); else if (ptp_register) stmmac_ptp_register(priv); priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; /* Convert the timer from msec to usec */ if (!priv->tx_lpi_timer) priv->tx_lpi_timer = eee_timer * 1000; if (priv->use_riwt) { u32 queue; for (queue = 0; queue < rx_cnt; queue++) { if (!priv->rx_riwt[queue]) priv->rx_riwt[queue] = DEF_DMA_RIWT; stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt[queue], queue); } } if (priv->hw->pcs) stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); /* set TX and RX rings length */ stmmac_set_rings_length(priv); /* Enable TSO */ if (priv->tso) { for (chan = 0; chan < tx_cnt; chan++) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; /* TSO and TBS cannot co-exist */ if (tx_q->tbs & STMMAC_TBS_AVAIL) continue; stmmac_enable_tso(priv, priv->ioaddr, 1, chan); } } /* Enable Split Header */ sph_en = (priv->hw->rx_csum > 0) && priv->sph; for (chan = 0; chan < rx_cnt; chan++) stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); /* VLAN Tag Insertion */ if (priv->dma_cap.vlins) stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); /* TBS */ for (chan = 0; chan < tx_cnt; chan++) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; int enable = tx_q->tbs & STMMAC_TBS_AVAIL; stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); } /* Configure real RX and TX queues */ netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); /* Start the ball rolling... */ stmmac_start_all_dma(priv); if (priv->dma_cap.fpesel) { stmmac_fpe_start_wq(priv); if (priv->plat->fpe_cfg->enable) stmmac_fpe_handshake(priv, true); } return 0; } static void stmmac_hw_teardown(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); clk_disable_unprepare(priv->plat->clk_ptp_ref); } static void stmmac_free_irq(struct net_device *dev, enum request_irq_err irq_err, int irq_idx) { struct stmmac_priv *priv = netdev_priv(dev); int j; switch (irq_err) { case REQ_IRQ_ERR_ALL: irq_idx = priv->plat->tx_queues_to_use; fallthrough; case REQ_IRQ_ERR_TX: for (j = irq_idx - 1; j >= 0; j--) { if (priv->tx_irq[j] > 0) { irq_set_affinity_hint(priv->tx_irq[j], NULL); free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]); } } irq_idx = priv->plat->rx_queues_to_use; fallthrough; case REQ_IRQ_ERR_RX: for (j = irq_idx - 1; j >= 0; j--) { if (priv->rx_irq[j] > 0) { irq_set_affinity_hint(priv->rx_irq[j], NULL); free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]); } } if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) free_irq(priv->sfty_ue_irq, dev); fallthrough; case REQ_IRQ_ERR_SFTY_UE: if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) free_irq(priv->sfty_ce_irq, dev); fallthrough; case REQ_IRQ_ERR_SFTY_CE: if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) free_irq(priv->lpi_irq, dev); fallthrough; case REQ_IRQ_ERR_LPI: if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) free_irq(priv->wol_irq, dev); fallthrough; case REQ_IRQ_ERR_WOL: free_irq(dev->irq, dev); fallthrough; case REQ_IRQ_ERR_MAC: case REQ_IRQ_ERR_NO: /* If MAC IRQ request error, no more IRQ to free */ break; } } static int stmmac_request_irq_multi_msi(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); enum request_irq_err irq_err; cpumask_t cpu_mask; int irq_idx = 0; char *int_name; int ret; int i; /* For common interrupt */ int_name = priv->int_name_mac; sprintf(int_name, "%s:%s", dev->name, "mac"); ret = request_irq(dev->irq, stmmac_mac_interrupt, 0, int_name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: alloc mac MSI %d (error: %d)\n", __func__, dev->irq, ret); irq_err = REQ_IRQ_ERR_MAC; goto irq_error; } /* Request the Wake IRQ in case of another line * is used for WoL */ if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { int_name = priv->int_name_wol; sprintf(int_name, "%s:%s", dev->name, "wol"); ret = request_irq(priv->wol_irq, stmmac_mac_interrupt, 0, int_name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: alloc wol MSI %d (error: %d)\n", __func__, priv->wol_irq, ret); irq_err = REQ_IRQ_ERR_WOL; goto irq_error; } } /* Request the LPI IRQ in case of another line * is used for LPI */ if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { int_name = priv->int_name_lpi; sprintf(int_name, "%s:%s", dev->name, "lpi"); ret = request_irq(priv->lpi_irq, stmmac_mac_interrupt, 0, int_name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: alloc lpi MSI %d (error: %d)\n", __func__, priv->lpi_irq, ret); irq_err = REQ_IRQ_ERR_LPI; goto irq_error; } } /* Request the Safety Feature Correctible Error line in * case of another line is used */ if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { int_name = priv->int_name_sfty_ce; sprintf(int_name, "%s:%s", dev->name, "safety-ce"); ret = request_irq(priv->sfty_ce_irq, stmmac_safety_interrupt, 0, int_name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: alloc sfty ce MSI %d (error: %d)\n", __func__, priv->sfty_ce_irq, ret); irq_err = REQ_IRQ_ERR_SFTY_CE; goto irq_error; } } /* Request the Safety Feature Uncorrectible Error line in * case of another line is used */ if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { int_name = priv->int_name_sfty_ue; sprintf(int_name, "%s:%s", dev->name, "safety-ue"); ret = request_irq(priv->sfty_ue_irq, stmmac_safety_interrupt, 0, int_name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: alloc sfty ue MSI %d (error: %d)\n", __func__, priv->sfty_ue_irq, ret); irq_err = REQ_IRQ_ERR_SFTY_UE; goto irq_error; } } /* Request Rx MSI irq */ for (i = 0; i < priv->plat->rx_queues_to_use; i++) { if (i >= MTL_MAX_RX_QUEUES) break; if (priv->rx_irq[i] == 0) continue; int_name = priv->int_name_rx_irq[i]; sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); ret = request_irq(priv->rx_irq[i], stmmac_msi_intr_rx, 0, int_name, &priv->dma_conf.rx_queue[i]); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: alloc rx-%d MSI %d (error: %d)\n", __func__, i, priv->rx_irq[i], ret); irq_err = REQ_IRQ_ERR_RX; irq_idx = i; goto irq_error; } cpumask_clear(&cpu_mask); cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); } /* Request Tx MSI irq */ for (i = 0; i < priv->plat->tx_queues_to_use; i++) { if (i >= MTL_MAX_TX_QUEUES) break; if (priv->tx_irq[i] == 0) continue; int_name = priv->int_name_tx_irq[i]; sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); ret = request_irq(priv->tx_irq[i], stmmac_msi_intr_tx, 0, int_name, &priv->dma_conf.tx_queue[i]); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: alloc tx-%d MSI %d (error: %d)\n", __func__, i, priv->tx_irq[i], ret); irq_err = REQ_IRQ_ERR_TX; irq_idx = i; goto irq_error; } cpumask_clear(&cpu_mask); cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); } return 0; irq_error: stmmac_free_irq(dev, irq_err, irq_idx); return ret; } static int stmmac_request_irq_single(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); enum request_irq_err irq_err; int ret; ret = request_irq(dev->irq, stmmac_interrupt, IRQF_SHARED, dev->name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n", __func__, dev->irq, ret); irq_err = REQ_IRQ_ERR_MAC; goto irq_error; } /* Request the Wake IRQ in case of another line * is used for WoL */ if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { ret = request_irq(priv->wol_irq, stmmac_interrupt, IRQF_SHARED, dev->name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: ERROR: allocating the WoL IRQ %d (%d)\n", __func__, priv->wol_irq, ret); irq_err = REQ_IRQ_ERR_WOL; goto irq_error; } } /* Request the IRQ lines */ if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, dev->name, dev); if (unlikely(ret < 0)) { netdev_err(priv->dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n", __func__, priv->lpi_irq, ret); irq_err = REQ_IRQ_ERR_LPI; goto irq_error; } } return 0; irq_error: stmmac_free_irq(dev, irq_err, 0); return ret; } static int stmmac_request_irq(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); int ret; /* Request the IRQ lines */ if (priv->plat->multi_msi_en) ret = stmmac_request_irq_multi_msi(dev); else ret = stmmac_request_irq_single(dev); return ret; } /** * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue * @priv: driver private structure * @mtu: MTU to setup the dma queue and buf with * Description: Allocate and generate a dma_conf based on the provided MTU. * Allocate the Tx/Rx DMA queue and init them. * Return value: * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure. */ static struct stmmac_dma_conf * stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu) { struct stmmac_dma_conf *dma_conf; int chan, bfsize, ret; dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL); if (!dma_conf) { netdev_err(priv->dev, "%s: DMA conf allocation failed\n", __func__); return ERR_PTR(-ENOMEM); } bfsize = stmmac_set_16kib_bfsize(priv, mtu); if (bfsize < 0) bfsize = 0; if (bfsize < BUF_SIZE_16KiB) bfsize = stmmac_set_bfsize(mtu, 0); dma_conf->dma_buf_sz = bfsize; /* Chose the tx/rx size from the already defined one in the * priv struct. (if defined) */ dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size; dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size; if (!dma_conf->dma_tx_size) dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE; if (!dma_conf->dma_rx_size) dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE; /* Earlier check for TBS */ for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan]; int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; /* Setup per-TXQ tbs flag before TX descriptor alloc */ tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; } ret = alloc_dma_desc_resources(priv, dma_conf); if (ret < 0) { netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", __func__); goto alloc_error; } ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL); if (ret < 0) { netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", __func__); goto init_error; } return dma_conf; init_error: free_dma_desc_resources(priv, dma_conf); alloc_error: kfree(dma_conf); return ERR_PTR(ret); } /** * __stmmac_open - open entry point of the driver * @dev : pointer to the device structure. * @dma_conf : structure to take the dma data * Description: * This function is the open entry point of the driver. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int __stmmac_open(struct net_device *dev, struct stmmac_dma_conf *dma_conf) { struct stmmac_priv *priv = netdev_priv(dev); int mode = priv->plat->phy_interface; u32 chan; int ret; ret = pm_runtime_resume_and_get(priv->device); if (ret < 0) return ret; if (priv->hw->pcs != STMMAC_PCS_TBI && priv->hw->pcs != STMMAC_PCS_RTBI && (!priv->hw->xpcs || xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { ret = stmmac_init_phy(dev); if (ret) { netdev_err(priv->dev, "%s: Cannot attach to PHY (error: %d)\n", __func__, ret); goto init_phy_error; } } /* Extra statistics */ memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); priv->xstats.threshold = tc; priv->rx_copybreak = STMMAC_RX_COPYBREAK; buf_sz = dma_conf->dma_buf_sz; memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf)); stmmac_reset_queues_param(priv); if (priv->plat->serdes_powerup) { ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv); if (ret < 0) { netdev_err(priv->dev, "%s: Serdes powerup failed\n", __func__); goto init_error; } } ret = stmmac_hw_setup(dev, true); if (ret < 0) { netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); goto init_error; } stmmac_init_coalesce(priv); phylink_start(priv->phylink); /* We may have called phylink_speed_down before */ phylink_speed_up(priv->phylink); ret = stmmac_request_irq(dev); if (ret) goto irq_error; stmmac_enable_all_queues(priv); netif_tx_start_all_queues(priv->dev); stmmac_enable_all_dma_irq(priv); return 0; irq_error: phylink_stop(priv->phylink); for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); stmmac_hw_teardown(dev); init_error: free_dma_desc_resources(priv, &priv->dma_conf); phylink_disconnect_phy(priv->phylink); init_phy_error: pm_runtime_put(priv->device); return ret; } static int stmmac_open(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); struct stmmac_dma_conf *dma_conf; int ret; dma_conf = stmmac_setup_dma_desc(priv, dev->mtu); if (IS_ERR(dma_conf)) return PTR_ERR(dma_conf); ret = __stmmac_open(dev, dma_conf); kfree(dma_conf); return ret; } static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) { set_bit(__FPE_REMOVING, &priv->fpe_task_state); if (priv->fpe_wq) destroy_workqueue(priv->fpe_wq); netdev_info(priv->dev, "FPE workqueue stop"); } /** * stmmac_release - close entry point of the driver * @dev : device pointer. * Description: * This is the stop entry point of the driver. */ static int stmmac_release(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); u32 chan; if (device_may_wakeup(priv->device)) phylink_speed_down(priv->phylink, false); /* Stop and disconnect the PHY */ phylink_stop(priv->phylink); phylink_disconnect_phy(priv->phylink); stmmac_disable_all_queues(priv); for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); netif_tx_disable(dev); /* Free the IRQ lines */ stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); if (priv->eee_enabled) { priv->tx_path_in_lpi_mode = false; del_timer_sync(&priv->eee_ctrl_timer); } /* Stop TX/RX DMA and clear the descriptors */ stmmac_stop_all_dma(priv); /* Release and free the Rx/Tx resources */ free_dma_desc_resources(priv, &priv->dma_conf); /* Disable the MAC Rx/Tx */ stmmac_mac_set(priv, priv->ioaddr, false); /* Powerdown Serdes if there is */ if (priv->plat->serdes_powerdown) priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv); netif_carrier_off(dev); stmmac_release_ptp(priv); pm_runtime_put(priv->device); if (priv->dma_cap.fpesel) stmmac_fpe_stop_wq(priv); return 0; } static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, struct stmmac_tx_queue *tx_q) { u16 tag = 0x0, inner_tag = 0x0; u32 inner_type = 0x0; struct dma_desc *p; if (!priv->dma_cap.vlins) return false; if (!skb_vlan_tag_present(skb)) return false; if (skb->vlan_proto == htons(ETH_P_8021AD)) { inner_tag = skb_vlan_tag_get(skb); inner_type = STMMAC_VLAN_INSERT; } tag = skb_vlan_tag_get(skb); if (tx_q->tbs & STMMAC_TBS_AVAIL) p = &tx_q->dma_entx[tx_q->cur_tx].basic; else p = &tx_q->dma_tx[tx_q->cur_tx]; if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) return false; stmmac_set_tx_owner(priv, p); tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); return true; } /** * stmmac_tso_allocator - close entry point of the driver * @priv: driver private structure * @des: buffer start address * @total_len: total length to fill in descriptors * @last_segment: condition for the last descriptor * @queue: TX queue index * Description: * This function fills descriptor and request new descriptors according to * buffer length to fill */ static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, int total_len, bool last_segment, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; struct dma_desc *desc; u32 buff_size; int tmp_len; tmp_len = total_len; while (tmp_len > 0) { dma_addr_t curr_addr; tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[tx_q->cur_tx].basic; else desc = &tx_q->dma_tx[tx_q->cur_tx]; curr_addr = des + (total_len - tmp_len); if (priv->dma_cap.addr64 <= 32) desc->des0 = cpu_to_le32(curr_addr); else stmmac_set_desc_addr(priv, desc, curr_addr); buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? TSO_MAX_BUFF_SIZE : tmp_len; stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 0, 1, (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 0, 0); tmp_len -= TSO_MAX_BUFF_SIZE; } } static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; int desc_size; if (likely(priv->extend_desc)) desc_size = sizeof(struct dma_extended_desc); else if (tx_q->tbs & STMMAC_TBS_AVAIL) desc_size = sizeof(struct dma_edesc); else desc_size = sizeof(struct dma_desc); /* The own bit must be the latest setting done when prepare the * descriptor and then barrier is needed to make sure that * all is coherent before granting the DMA engine. */ wmb(); tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); } /** * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) * @skb : the socket buffer * @dev : device pointer * Description: this is the transmit function that is called on TSO frames * (support available on GMAC4 and newer chips). * Diagram below show the ring programming in case of TSO frames: * * First Descriptor * -------- * | DES0 |---> buffer1 = L2/L3/L4 header * | DES1 |---> TCP Payload (can continue on next descr...) * | DES2 |---> buffer 1 and 2 len * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] * -------- * | * ... * | * -------- * | DES0 | --| Split TCP Payload on Buffers 1 and 2 * | DES1 | --| * | DES2 | --> buffer 1 and 2 len * | DES3 | * -------- * * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. */ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) { struct dma_desc *desc, *first, *mss_desc = NULL; struct stmmac_priv *priv = netdev_priv(dev); int nfrags = skb_shinfo(skb)->nr_frags; u32 queue = skb_get_queue_mapping(skb); unsigned int first_entry, tx_packets; int tmp_pay_len = 0, first_tx; struct stmmac_tx_queue *tx_q; bool has_vlan, set_ic; u8 proto_hdr_len, hdr; u32 pay_len, mss; dma_addr_t des; int i; tx_q = &priv->dma_conf.tx_queue[queue]; first_tx = tx_q->cur_tx; /* Compute header lengths */ if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); hdr = sizeof(struct udphdr); } else { proto_hdr_len = skb_tcp_all_headers(skb); hdr = tcp_hdrlen(skb); } /* Desc availability based on threshold should be enough safe */ if (unlikely(stmmac_tx_avail(priv, queue) < (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); /* This is a hard error, log it. */ netdev_err(priv->dev, "%s: Tx Ring full when queue awake\n", __func__); } return NETDEV_TX_BUSY; } pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ mss = skb_shinfo(skb)->gso_size; /* set new MSS value if needed */ if (mss != tx_q->mss) { if (tx_q->tbs & STMMAC_TBS_AVAIL) mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; else mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; stmmac_set_mss(priv, mss_desc, mss); tx_q->mss = mss; tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); } if (netif_msg_tx_queued(priv)) { pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", __func__, hdr, proto_hdr_len, pay_len, mss); pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, skb->data_len); } /* Check if VLAN can be inserted by HW */ has_vlan = stmmac_vlan_insert(priv, skb, tx_q); first_entry = tx_q->cur_tx; WARN_ON(tx_q->tx_skbuff[first_entry]); if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[first_entry].basic; else desc = &tx_q->dma_tx[first_entry]; first = desc; if (has_vlan) stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); /* first descriptor: fill Headers on Buf1 */ des = dma_map_single(priv->device, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(priv->device, des)) goto dma_map_err; tx_q->tx_skbuff_dma[first_entry].buf = des; tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); tx_q->tx_skbuff_dma[first_entry].map_as_page = false; tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; if (priv->dma_cap.addr64 <= 32) { first->des0 = cpu_to_le32(des); /* Fill start of payload in buff2 of first descriptor */ if (pay_len) first->des1 = cpu_to_le32(des + proto_hdr_len); /* If needed take extra descriptors to fill the remaining payload */ tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; } else { stmmac_set_desc_addr(priv, first, des); tmp_pay_len = pay_len; des += proto_hdr_len; pay_len = 0; } stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); /* Prepare fragments */ for (i = 0; i < nfrags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; des = skb_frag_dma_map(priv->device, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (dma_mapping_error(priv->device, des)) goto dma_map_err; stmmac_tso_allocator(priv, des, skb_frag_size(frag), (i == nfrags - 1), queue); tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; } tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; /* Only the last descriptor gets to point to the skb. */ tx_q->tx_skbuff[tx_q->cur_tx] = skb; tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; /* Manage tx mitigation */ tx_packets = (tx_q->cur_tx + 1) - first_tx; tx_q->tx_count_frames += tx_packets; if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) set_ic = true; else if (!priv->tx_coal_frames[queue]) set_ic = false; else if (tx_packets > priv->tx_coal_frames[queue]) set_ic = true; else if ((tx_q->tx_count_frames % priv->tx_coal_frames[queue]) < tx_packets) set_ic = true; else set_ic = false; if (set_ic) { if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[tx_q->cur_tx].basic; else desc = &tx_q->dma_tx[tx_q->cur_tx]; tx_q->tx_count_frames = 0; stmmac_set_tx_ic(priv, desc); priv->xstats.tx_set_ic_bit++; } /* We've used all descriptors we need for this skb, however, * advance cur_tx so that it references a fresh descriptor. * ndo_start_xmit will fill this descriptor the next time it's * called and stmmac_tx_clean may clean up to this descriptor. */ tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", __func__); netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); } dev->stats.tx_bytes += skb->len; priv->xstats.tx_tso_frames++; priv->xstats.tx_tso_nfrags += nfrags; if (priv->sarc_type) stmmac_set_desc_sarc(priv, first, priv->sarc_type); skb_tx_timestamp(skb); if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)) { /* declare that device is doing timestamping */ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; stmmac_enable_tx_timestamp(priv, first); } /* Complete the first descriptor before granting the DMA */ stmmac_prepare_tso_tx_desc(priv, first, 1, proto_hdr_len, pay_len, 1, tx_q->tx_skbuff_dma[first_entry].last_segment, hdr / 4, (skb->len - proto_hdr_len)); /* If context desc is used to change MSS */ if (mss_desc) { /* Make sure that first descriptor has been completely * written, including its own bit. This is because MSS is * actually before first descriptor, so we need to make * sure that MSS's own bit is the last thing written. */ dma_wmb(); stmmac_set_tx_owner(priv, mss_desc); } if (netif_msg_pktdata(priv)) { pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, tx_q->cur_tx, first, nfrags); pr_info(">>> frame to be transmitted: "); print_pkt(skb->data, skb_headlen(skb)); } netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); stmmac_flush_tx_descriptors(priv, queue); stmmac_tx_timer_arm(priv, queue); return NETDEV_TX_OK; dma_map_err: dev_err(priv->device, "Tx dma map failed\n"); dev_kfree_skb(skb); priv->dev->stats.tx_dropped++; return NETDEV_TX_OK; } /** * stmmac_xmit - Tx entry point of the driver * @skb : the socket buffer * @dev : device pointer * Description : this is the tx entry point of the driver. * It programs the chain or the ring and supports oversized frames * and SG feature. */ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned int first_entry, tx_packets, enh_desc; struct stmmac_priv *priv = netdev_priv(dev); unsigned int nopaged_len = skb_headlen(skb); int i, csum_insertion = 0, is_jumbo = 0; u32 queue = skb_get_queue_mapping(skb); int nfrags = skb_shinfo(skb)->nr_frags; int gso = skb_shinfo(skb)->gso_type; struct dma_edesc *tbs_desc = NULL; struct dma_desc *desc, *first; struct stmmac_tx_queue *tx_q; bool has_vlan, set_ic; int entry, first_tx; dma_addr_t des; tx_q = &priv->dma_conf.tx_queue[queue]; first_tx = tx_q->cur_tx; if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) stmmac_disable_eee_mode(priv); /* Manage oversized TCP frames for GMAC4 device */ if (skb_is_gso(skb) && priv->tso) { if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) return stmmac_tso_xmit(skb, dev); if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) return stmmac_tso_xmit(skb, dev); } if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); /* This is a hard error, log it. */ netdev_err(priv->dev, "%s: Tx Ring full when queue awake\n", __func__); } return NETDEV_TX_BUSY; } /* Check if VLAN can be inserted by HW */ has_vlan = stmmac_vlan_insert(priv, skb, tx_q); entry = tx_q->cur_tx; first_entry = entry; WARN_ON(tx_q->tx_skbuff[first_entry]); csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); if (likely(priv->extend_desc)) desc = (struct dma_desc *)(tx_q->dma_etx + entry); else if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[entry].basic; else desc = tx_q->dma_tx + entry; first = desc; if (has_vlan) stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); enh_desc = priv->plat->enh_desc; /* To program the descriptors according to the size of the frame */ if (enh_desc) is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); if (unlikely(is_jumbo)) { entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); if (unlikely(entry < 0) && (entry != -EINVAL)) goto dma_map_err; } for (i = 0; i < nfrags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; int len = skb_frag_size(frag); bool last_segment = (i == (nfrags - 1)); entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); WARN_ON(tx_q->tx_skbuff[entry]); if (likely(priv->extend_desc)) desc = (struct dma_desc *)(tx_q->dma_etx + entry); else if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[entry].basic; else desc = tx_q->dma_tx + entry; des = skb_frag_dma_map(priv->device, frag, 0, len, DMA_TO_DEVICE); if (dma_mapping_error(priv->device, des)) goto dma_map_err; /* should reuse desc w/o issues */ tx_q->tx_skbuff_dma[entry].buf = des; stmmac_set_desc_addr(priv, desc, des); tx_q->tx_skbuff_dma[entry].map_as_page = true; tx_q->tx_skbuff_dma[entry].len = len; tx_q->tx_skbuff_dma[entry].last_segment = last_segment; tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; /* Prepare the descriptor and set the own bit too */ stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, priv->mode, 1, last_segment, skb->len); } /* Only the last descriptor gets to point to the skb. */ tx_q->tx_skbuff[entry] = skb; tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; /* According to the coalesce parameter the IC bit for the latest * segment is reset and the timer re-started to clean the tx status. * This approach takes care about the fragments: desc is the first * element in case of no SG. */ tx_packets = (entry + 1) - first_tx; tx_q->tx_count_frames += tx_packets; if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) set_ic = true; else if (!priv->tx_coal_frames[queue]) set_ic = false; else if (tx_packets > priv->tx_coal_frames[queue]) set_ic = true; else if ((tx_q->tx_count_frames % priv->tx_coal_frames[queue]) < tx_packets) set_ic = true; else set_ic = false; if (set_ic) { if (likely(priv->extend_desc)) desc = &tx_q->dma_etx[entry].basic; else if (tx_q->tbs & STMMAC_TBS_AVAIL) desc = &tx_q->dma_entx[entry].basic; else desc = &tx_q->dma_tx[entry]; tx_q->tx_count_frames = 0; stmmac_set_tx_ic(priv, desc); priv->xstats.tx_set_ic_bit++; } /* We've used all descriptors we need for this skb, however, * advance cur_tx so that it references a fresh descriptor. * ndo_start_xmit will fill this descriptor the next time it's * called and stmmac_tx_clean may clean up to this descriptor. */ entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); tx_q->cur_tx = entry; if (netif_msg_pktdata(priv)) { netdev_dbg(priv->dev, "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, entry, first, nfrags); netdev_dbg(priv->dev, ">>> frame to be transmitted: "); print_pkt(skb->data, skb->len); } if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", __func__); netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); } dev->stats.tx_bytes += skb->len; if (priv->sarc_type) stmmac_set_desc_sarc(priv, first, priv->sarc_type); skb_tx_timestamp(skb); /* Ready to fill the first descriptor and set the OWN bit w/o any * problems because all the descriptors are actually ready to be * passed to the DMA engine. */ if (likely(!is_jumbo)) { bool last_segment = (nfrags == 0); des = dma_map_single(priv->device, skb->data, nopaged_len, DMA_TO_DEVICE); if (dma_mapping_error(priv->device, des)) goto dma_map_err; tx_q->tx_skbuff_dma[first_entry].buf = des; tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; tx_q->tx_skbuff_dma[first_entry].map_as_page = false; stmmac_set_desc_addr(priv, first, des); tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)) { /* declare that device is doing timestamping */ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; stmmac_enable_tx_timestamp(priv, first); } /* Prepare the first descriptor setting the OWN bit too */ stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, csum_insertion, priv->mode, 0, last_segment, skb->len); } if (tx_q->tbs & STMMAC_TBS_EN) { struct timespec64 ts = ns_to_timespec64(skb->tstamp); tbs_desc = &tx_q->dma_entx[first_entry]; stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); } stmmac_set_tx_owner(priv, first); netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); stmmac_enable_dma_transmission(priv, priv->ioaddr); stmmac_flush_tx_descriptors(priv, queue); stmmac_tx_timer_arm(priv, queue); return NETDEV_TX_OK; dma_map_err: netdev_err(priv->dev, "Tx DMA map failed\n"); dev_kfree_skb(skb); priv->dev->stats.tx_dropped++; return NETDEV_TX_OK; } static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) { struct vlan_ethhdr *veth; __be16 vlan_proto; u16 vlanid; veth = (struct vlan_ethhdr *)skb->data; vlan_proto = veth->h_vlan_proto; if ((vlan_proto == htons(ETH_P_8021Q) && dev->features & NETIF_F_HW_VLAN_CTAG_RX) || (vlan_proto == htons(ETH_P_8021AD) && dev->features & NETIF_F_HW_VLAN_STAG_RX)) { /* pop the vlan tag */ vlanid = ntohs(veth->h_vlan_TCI); memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); skb_pull(skb, VLAN_HLEN); __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); } } /** * stmmac_rx_refill - refill used skb preallocated buffers * @priv: driver private structure * @queue: RX queue index * Description : this is to reallocate the skb for the reception process * that is based on zero-copy. */ static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; int dirty = stmmac_rx_dirty(priv, queue); unsigned int entry = rx_q->dirty_rx; gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); if (priv->dma_cap.addr64 <= 32) gfp |= GFP_DMA32; while (dirty-- > 0) { struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; struct dma_desc *p; bool use_rx_wd; if (priv->extend_desc) p = (struct dma_desc *)(rx_q->dma_erx + entry); else p = rx_q->dma_rx + entry; if (!buf->page) { buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); if (!buf->page) break; } if (priv->sph && !buf->sec_page) { buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); if (!buf->sec_page) break; buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); } buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; stmmac_set_desc_addr(priv, p, buf->addr); if (priv->sph) stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); else stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); stmmac_refill_desc3(priv, rx_q, p); rx_q->rx_count_frames++; rx_q->rx_count_frames += priv->rx_coal_frames[queue]; if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) rx_q->rx_count_frames = 0; use_rx_wd = !priv->rx_coal_frames[queue]; use_rx_wd |= rx_q->rx_count_frames > 0; if (!priv->use_riwt) use_rx_wd = false; dma_wmb(); stmmac_set_rx_owner(priv, p, use_rx_wd); entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); } rx_q->dirty_rx = entry; rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->dirty_rx * sizeof(struct dma_desc)); stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); } static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, struct dma_desc *p, int status, unsigned int len) { unsigned int plen = 0, hlen = 0; int coe = priv->hw->rx_csum; /* Not first descriptor, buffer is always zero */ if (priv->sph && len) return 0; /* First descriptor, get split header length */ stmmac_get_rx_header_len(priv, p, &hlen); if (priv->sph && hlen) { priv->xstats.rx_split_hdr_pkt_n++; return hlen; } /* First descriptor, not last descriptor and not split header */ if (status & rx_not_ls) return priv->dma_conf.dma_buf_sz; plen = stmmac_get_rx_frame_len(priv, p, coe); /* First descriptor and last descriptor and not split header */ return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen); } static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, struct dma_desc *p, int status, unsigned int len) { int coe = priv->hw->rx_csum; unsigned int plen = 0; /* Not split header, buffer is not available */ if (!priv->sph) return 0; /* Not last descriptor */ if (status & rx_not_ls) return priv->dma_conf.dma_buf_sz; plen = stmmac_get_rx_frame_len(priv, p, coe); /* Last descriptor */ return plen - len; } static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, struct xdp_frame *xdpf, bool dma_map) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; unsigned int entry = tx_q->cur_tx; struct dma_desc *tx_desc; dma_addr_t dma_addr; bool set_ic; if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) return STMMAC_XDP_CONSUMED; if (likely(priv->extend_desc)) tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); else if (tx_q->tbs & STMMAC_TBS_AVAIL) tx_desc = &tx_q->dma_entx[entry].basic; else tx_desc = tx_q->dma_tx + entry; if (dma_map) { dma_addr = dma_map_single(priv->device, xdpf->data, xdpf->len, DMA_TO_DEVICE); if (dma_mapping_error(priv->device, dma_addr)) return STMMAC_XDP_CONSUMED; tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; } else { struct page *page = virt_to_page(xdpf->data); dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + xdpf->headroom; dma_sync_single_for_device(priv->device, dma_addr, xdpf->len, DMA_BIDIRECTIONAL); tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; } tx_q->tx_skbuff_dma[entry].buf = dma_addr; tx_q->tx_skbuff_dma[entry].map_as_page = false; tx_q->tx_skbuff_dma[entry].len = xdpf->len; tx_q->tx_skbuff_dma[entry].last_segment = true; tx_q->tx_skbuff_dma[entry].is_jumbo = false; tx_q->xdpf[entry] = xdpf; stmmac_set_desc_addr(priv, tx_desc, dma_addr); stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, true, priv->mode, true, true, xdpf->len); tx_q->tx_count_frames++; if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) set_ic = true; else set_ic = false; if (set_ic) { tx_q->tx_count_frames = 0; stmmac_set_tx_ic(priv, tx_desc); priv->xstats.tx_set_ic_bit++; } stmmac_enable_dma_transmission(priv, priv->ioaddr); entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); tx_q->cur_tx = entry; return STMMAC_XDP_TX; } static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, int cpu) { int index = cpu; if (unlikely(index < 0)) index = 0; while (index >= priv->plat->tx_queues_to_use) index -= priv->plat->tx_queues_to_use; return index; } static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, struct xdp_buff *xdp) { struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); int cpu = smp_processor_id(); struct netdev_queue *nq; int queue; int res; if (unlikely(!xdpf)) return STMMAC_XDP_CONSUMED; queue = stmmac_xdp_get_tx_queue(priv, cpu); nq = netdev_get_tx_queue(priv->dev, queue); __netif_tx_lock(nq, cpu); /* Avoids TX time-out as we are sharing with slow path */ txq_trans_cond_update(nq); res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); if (res == STMMAC_XDP_TX) stmmac_flush_tx_descriptors(priv, queue); __netif_tx_unlock(nq); return res; } static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, struct bpf_prog *prog, struct xdp_buff *xdp) { u32 act; int res; act = bpf_prog_run_xdp(prog, xdp); switch (act) { case XDP_PASS: res = STMMAC_XDP_PASS; break; case XDP_TX: res = stmmac_xdp_xmit_back(priv, xdp); break; case XDP_REDIRECT: if (xdp_do_redirect(priv->dev, xdp, prog) < 0) res = STMMAC_XDP_CONSUMED; else res = STMMAC_XDP_REDIRECT; break; default: bpf_warn_invalid_xdp_action(priv->dev, prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(priv->dev, prog, act); fallthrough; case XDP_DROP: res = STMMAC_XDP_CONSUMED; break; } return res; } static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, struct xdp_buff *xdp) { struct bpf_prog *prog; int res; prog = READ_ONCE(priv->xdp_prog); if (!prog) { res = STMMAC_XDP_PASS; goto out; } res = __stmmac_xdp_run_prog(priv, prog, xdp); out: return ERR_PTR(-res); } static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, int xdp_status) { int cpu = smp_processor_id(); int queue; queue = stmmac_xdp_get_tx_queue(priv, cpu); if (xdp_status & STMMAC_XDP_TX) stmmac_tx_timer_arm(priv, queue); if (xdp_status & STMMAC_XDP_REDIRECT) xdp_do_flush(); } static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, struct xdp_buff *xdp) { unsigned int metasize = xdp->data - xdp->data_meta; unsigned int datasize = xdp->data_end - xdp->data; struct sk_buff *skb; skb = __napi_alloc_skb(&ch->rxtx_napi, xdp->data_end - xdp->data_hard_start, GFP_ATOMIC | __GFP_NOWARN); if (unlikely(!skb)) return NULL; skb_reserve(skb, xdp->data - xdp->data_hard_start); memcpy(__skb_put(skb, datasize), xdp->data, datasize); if (metasize) skb_metadata_set(skb, metasize); return skb; } static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, struct dma_desc *p, struct dma_desc *np, struct xdp_buff *xdp) { struct stmmac_channel *ch = &priv->channel[queue]; unsigned int len = xdp->data_end - xdp->data; enum pkt_hash_types hash_type; int coe = priv->hw->rx_csum; struct sk_buff *skb; u32 hash; skb = stmmac_construct_skb_zc(ch, xdp); if (!skb) { priv->dev->stats.rx_dropped++; return; } stmmac_get_rx_hwtstamp(priv, p, np, skb); stmmac_rx_vlan(priv->dev, skb); skb->protocol = eth_type_trans(skb, priv->dev); if (unlikely(!coe)) skb_checksum_none_assert(skb); else skb->ip_summed = CHECKSUM_UNNECESSARY; if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) skb_set_hash(skb, hash, hash_type); skb_record_rx_queue(skb, queue); napi_gro_receive(&ch->rxtx_napi, skb); priv->dev->stats.rx_packets++; priv->dev->stats.rx_bytes += len; } static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) { struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; unsigned int entry = rx_q->dirty_rx; struct dma_desc *rx_desc = NULL; bool ret = true; budget = min(budget, stmmac_rx_dirty(priv, queue)); while (budget-- > 0 && entry != rx_q->cur_rx) { struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; dma_addr_t dma_addr; bool use_rx_wd; if (!buf->xdp) { buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); if (!buf->xdp) { ret = false; break; } } if (priv->extend_desc) rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); else rx_desc = rx_q->dma_rx + entry; dma_addr = xsk_buff_xdp_get_dma(buf->xdp); stmmac_set_desc_addr(priv, rx_desc, dma_addr); stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); stmmac_refill_desc3(priv, rx_q, rx_desc); rx_q->rx_count_frames++; rx_q->rx_count_frames += priv->rx_coal_frames[queue]; if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) rx_q->rx_count_frames = 0; use_rx_wd = !priv->rx_coal_frames[queue]; use_rx_wd |= rx_q->rx_count_frames > 0; if (!priv->use_riwt) use_rx_wd = false; dma_wmb(); stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); } if (rx_desc) { rx_q->dirty_rx = entry; rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->dirty_rx * sizeof(struct dma_desc)); stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); } return ret; } static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; unsigned int count = 0, error = 0, len = 0; int dirty = stmmac_rx_dirty(priv, queue); unsigned int next_entry = rx_q->cur_rx; unsigned int desc_size; struct bpf_prog *prog; bool failure = false; int xdp_status = 0; int status = 0; if (netif_msg_rx_status(priv)) { void *rx_head; netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); if (priv->extend_desc) { rx_head = (void *)rx_q->dma_erx; desc_size = sizeof(struct dma_extended_desc); } else { rx_head = (void *)rx_q->dma_rx; desc_size = sizeof(struct dma_desc); } stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, rx_q->dma_rx_phy, desc_size); } while (count < limit) { struct stmmac_rx_buffer *buf; unsigned int buf1_len = 0; struct dma_desc *np, *p; int entry; int res; if (!count && rx_q->state_saved) { error = rx_q->state.error; len = rx_q->state.len; } else { rx_q->state_saved = false; error = 0; len = 0; } if (count >= limit) break; read_again: buf1_len = 0; entry = next_entry; buf = &rx_q->buf_pool[entry]; if (dirty >= STMMAC_RX_FILL_BATCH) { failure = failure || !stmmac_rx_refill_zc(priv, queue, dirty); dirty = 0; } if (priv->extend_desc) p = (struct dma_desc *)(rx_q->dma_erx + entry); else p = rx_q->dma_rx + entry; /* read the status of the incoming frame */ status = stmmac_rx_status(priv, &priv->dev->stats, &priv->xstats, p); /* check if managed by the DMA otherwise go ahead */ if (unlikely(status & dma_own)) break; /* Prefetch the next RX descriptor */ rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, priv->dma_conf.dma_rx_size); next_entry = rx_q->cur_rx; if (priv->extend_desc) np = (struct dma_desc *)(rx_q->dma_erx + next_entry); else np = rx_q->dma_rx + next_entry; prefetch(np); /* Ensure a valid XSK buffer before proceed */ if (!buf->xdp) break; if (priv->extend_desc) stmmac_rx_extended_status(priv, &priv->dev->stats, &priv->xstats, rx_q->dma_erx + entry); if (unlikely(status == discard_frame)) { xsk_buff_free(buf->xdp); buf->xdp = NULL; dirty++; error = 1; if (!priv->hwts_rx_en) priv->dev->stats.rx_errors++; } if (unlikely(error && (status & rx_not_ls))) goto read_again; if (unlikely(error)) { count++; continue; } /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ if (likely(status & rx_not_ls)) { xsk_buff_free(buf->xdp); buf->xdp = NULL; dirty++; count++; goto read_again; } /* XDP ZC Frame only support primary buffers for now */ buf1_len = stmmac_rx_buf1_len(priv, p, status, len); len += buf1_len; /* ACS is disabled; strip manually. */ if (likely(!(status & rx_not_ls))) { buf1_len -= ETH_FCS_LEN; len -= ETH_FCS_LEN; } /* RX buffer is good and fit into a XSK pool buffer */ buf->xdp->data_end = buf->xdp->data + buf1_len; xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); prog = READ_ONCE(priv->xdp_prog); res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); switch (res) { case STMMAC_XDP_PASS: stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); xsk_buff_free(buf->xdp); break; case STMMAC_XDP_CONSUMED: xsk_buff_free(buf->xdp); priv->dev->stats.rx_dropped++; break; case STMMAC_XDP_TX: case STMMAC_XDP_REDIRECT: xdp_status |= res; break; } buf->xdp = NULL; dirty++; count++; } if (status & rx_not_ls) { rx_q->state_saved = true; rx_q->state.error = error; rx_q->state.len = len; } stmmac_finalize_xdp_rx(priv, xdp_status); priv->xstats.rx_pkt_n += count; priv->xstats.rxq_stats[queue].rx_pkt_n += count; if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { if (failure || stmmac_rx_dirty(priv, queue) > 0) xsk_set_rx_need_wakeup(rx_q->xsk_pool); else xsk_clear_rx_need_wakeup(rx_q->xsk_pool); return (int)count; } return failure ? limit : (int)count; } /** * stmmac_rx - manage the receive process * @priv: driver private structure * @limit: napi bugget * @queue: RX queue index. * Description : this the function called by the napi poll method. * It gets all the frames inside the ring. */ static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; struct stmmac_channel *ch = &priv->channel[queue]; unsigned int count = 0, error = 0, len = 0; int status = 0, coe = priv->hw->rx_csum; unsigned int next_entry = rx_q->cur_rx; enum dma_data_direction dma_dir; unsigned int desc_size; struct sk_buff *skb = NULL; struct xdp_buff xdp; int xdp_status = 0; int buf_sz; dma_dir = page_pool_get_dma_dir(rx_q->page_pool); buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; if (netif_msg_rx_status(priv)) { void *rx_head; netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); if (priv->extend_desc) { rx_head = (void *)rx_q->dma_erx; desc_size = sizeof(struct dma_extended_desc); } else { rx_head = (void *)rx_q->dma_rx; desc_size = sizeof(struct dma_desc); } stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, rx_q->dma_rx_phy, desc_size); } while (count < limit) { unsigned int buf1_len = 0, buf2_len = 0; enum pkt_hash_types hash_type; struct stmmac_rx_buffer *buf; struct dma_desc *np, *p; int entry; u32 hash; if (!count && rx_q->state_saved) { skb = rx_q->state.skb; error = rx_q->state.error; len = rx_q->state.len; } else { rx_q->state_saved = false; skb = NULL; error = 0; len = 0; } if (count >= limit) break; read_again: buf1_len = 0; buf2_len = 0; entry = next_entry; buf = &rx_q->buf_pool[entry]; if (priv->extend_desc) p = (struct dma_desc *)(rx_q->dma_erx + entry); else p = rx_q->dma_rx + entry; /* read the status of the incoming frame */ status = stmmac_rx_status(priv, &priv->dev->stats, &priv->xstats, p); /* check if managed by the DMA otherwise go ahead */ if (unlikely(status & dma_own)) break; rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, priv->dma_conf.dma_rx_size); next_entry = rx_q->cur_rx; if (priv->extend_desc) np = (struct dma_desc *)(rx_q->dma_erx + next_entry); else np = rx_q->dma_rx + next_entry; prefetch(np); if (priv->extend_desc) stmmac_rx_extended_status(priv, &priv->dev->stats, &priv->xstats, rx_q->dma_erx + entry); if (unlikely(status == discard_frame)) { page_pool_recycle_direct(rx_q->page_pool, buf->page); buf->page = NULL; error = 1; if (!priv->hwts_rx_en) priv->dev->stats.rx_errors++; } if (unlikely(error && (status & rx_not_ls))) goto read_again; if (unlikely(error)) { dev_kfree_skb(skb); skb = NULL; count++; continue; } /* Buffer is good. Go on. */ prefetch(page_address(buf->page) + buf->page_offset); if (buf->sec_page) prefetch(page_address(buf->sec_page)); buf1_len = stmmac_rx_buf1_len(priv, p, status, len); len += buf1_len; buf2_len = stmmac_rx_buf2_len(priv, p, status, len); len += buf2_len; /* ACS is disabled; strip manually. */ if (likely(!(status & rx_not_ls))) { if (buf2_len) { buf2_len -= ETH_FCS_LEN; len -= ETH_FCS_LEN; } else if (buf1_len) { buf1_len -= ETH_FCS_LEN; len -= ETH_FCS_LEN; } } if (!skb) { unsigned int pre_len, sync_len; dma_sync_single_for_cpu(priv->device, buf->addr, buf1_len, dma_dir); xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); xdp_prepare_buff(&xdp, page_address(buf->page), buf->page_offset, buf1_len, false); pre_len = xdp.data_end - xdp.data_hard_start - buf->page_offset; skb = stmmac_xdp_run_prog(priv, &xdp); /* Due xdp_adjust_tail: DMA sync for_device * cover max len CPU touch */ sync_len = xdp.data_end - xdp.data_hard_start - buf->page_offset; sync_len = max(sync_len, pre_len); /* For Not XDP_PASS verdict */ if (IS_ERR(skb)) { unsigned int xdp_res = -PTR_ERR(skb); if (xdp_res & STMMAC_XDP_CONSUMED) { page_pool_put_page(rx_q->page_pool, virt_to_head_page(xdp.data), sync_len, true); buf->page = NULL; priv->dev->stats.rx_dropped++; /* Clear skb as it was set as * status by XDP program. */ skb = NULL; if (unlikely((status & rx_not_ls))) goto read_again; count++; continue; } else if (xdp_res & (STMMAC_XDP_TX | STMMAC_XDP_REDIRECT)) { xdp_status |= xdp_res; buf->page = NULL; skb = NULL; count++; continue; } } } if (!skb) { /* XDP program may expand or reduce tail */ buf1_len = xdp.data_end - xdp.data; skb = napi_alloc_skb(&ch->rx_napi, buf1_len); if (!skb) { priv->dev->stats.rx_dropped++; count++; goto drain_data; } /* XDP program may adjust header */ skb_copy_to_linear_data(skb, xdp.data, buf1_len); skb_put(skb, buf1_len); /* Data payload copied into SKB, page ready for recycle */ page_pool_recycle_direct(rx_q->page_pool, buf->page); buf->page = NULL; } else if (buf1_len) { dma_sync_single_for_cpu(priv->device, buf->addr, buf1_len, dma_dir); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, buf->page, buf->page_offset, buf1_len, priv->dma_conf.dma_buf_sz); /* Data payload appended into SKB */ page_pool_release_page(rx_q->page_pool, buf->page); buf->page = NULL; } if (buf2_len) { dma_sync_single_for_cpu(priv->device, buf->sec_addr, buf2_len, dma_dir); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, buf->sec_page, 0, buf2_len, priv->dma_conf.dma_buf_sz); /* Data payload appended into SKB */ page_pool_release_page(rx_q->page_pool, buf->sec_page); buf->sec_page = NULL; } drain_data: if (likely(status & rx_not_ls)) goto read_again; if (!skb) continue; /* Got entire packet into SKB. Finish it. */ stmmac_get_rx_hwtstamp(priv, p, np, skb); stmmac_rx_vlan(priv->dev, skb); skb->protocol = eth_type_trans(skb, priv->dev); if (unlikely(!coe)) skb_checksum_none_assert(skb); else skb->ip_summed = CHECKSUM_UNNECESSARY; if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) skb_set_hash(skb, hash, hash_type); skb_record_rx_queue(skb, queue); napi_gro_receive(&ch->rx_napi, skb); skb = NULL; priv->dev->stats.rx_packets++; priv->dev->stats.rx_bytes += len; count++; } if (status & rx_not_ls || skb) { rx_q->state_saved = true; rx_q->state.skb = skb; rx_q->state.error = error; rx_q->state.len = len; } stmmac_finalize_xdp_rx(priv, xdp_status); stmmac_rx_refill(priv, queue); priv->xstats.rx_pkt_n += count; priv->xstats.rxq_stats[queue].rx_pkt_n += count; return count; } static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) { struct stmmac_channel *ch = container_of(napi, struct stmmac_channel, rx_napi); struct stmmac_priv *priv = ch->priv_data; u32 chan = ch->index; int work_done; priv->xstats.napi_poll++; work_done = stmmac_rx(priv, budget, chan); if (work_done < budget && napi_complete_done(napi, work_done)) { unsigned long flags; spin_lock_irqsave(&ch->lock, flags); stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); spin_unlock_irqrestore(&ch->lock, flags); } return work_done; } static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) { struct stmmac_channel *ch = container_of(napi, struct stmmac_channel, tx_napi); struct stmmac_priv *priv = ch->priv_data; u32 chan = ch->index; int work_done; priv->xstats.napi_poll++; work_done = stmmac_tx_clean(priv, budget, chan); work_done = min(work_done, budget); if (work_done < budget && napi_complete_done(napi, work_done)) { unsigned long flags; spin_lock_irqsave(&ch->lock, flags); stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); spin_unlock_irqrestore(&ch->lock, flags); } return work_done; } static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) { struct stmmac_channel *ch = container_of(napi, struct stmmac_channel, rxtx_napi); struct stmmac_priv *priv = ch->priv_data; int rx_done, tx_done, rxtx_done; u32 chan = ch->index; priv->xstats.napi_poll++; tx_done = stmmac_tx_clean(priv, budget, chan); tx_done = min(tx_done, budget); rx_done = stmmac_rx_zc(priv, budget, chan); rxtx_done = max(tx_done, rx_done); /* If either TX or RX work is not complete, return budget * and keep pooling */ if (rxtx_done >= budget) return budget; /* all work done, exit the polling mode */ if (napi_complete_done(napi, rxtx_done)) { unsigned long flags; spin_lock_irqsave(&ch->lock, flags); /* Both RX and TX work done are compelte, * so enable both RX & TX IRQs. */ stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); spin_unlock_irqrestore(&ch->lock, flags); } return min(rxtx_done, budget - 1); } /** * stmmac_tx_timeout * @dev : Pointer to net device structure * @txqueue: the index of the hanging transmit queue * Description: this function is called when a packet transmission fails to * complete within a reasonable time. The driver will mark the error in the * netdev structure and arrange for the device to be reset to a sane state * in order to transmit a new packet. */ static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct stmmac_priv *priv = netdev_priv(dev); stmmac_global_err(priv); } /** * stmmac_set_rx_mode - entry point for multicast addressing * @dev : pointer to the device structure * Description: * This function is a driver entry point which gets called by the kernel * whenever multicast addresses must be enabled/disabled. * Return value: * void. */ static void stmmac_set_rx_mode(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); stmmac_set_filter(priv, priv->hw, dev); } /** * stmmac_change_mtu - entry point to change MTU size for the device. * @dev : device pointer. * @new_mtu : the new MTU size for the device. * Description: the Maximum Transfer Unit (MTU) is used by the network layer * to drive packet transmission. Ethernet has an MTU of 1500 octets * (ETH_DATA_LEN). This value can be changed with ifconfig. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int stmmac_change_mtu(struct net_device *dev, int new_mtu) { struct stmmac_priv *priv = netdev_priv(dev); int txfifosz = priv->plat->tx_fifo_size; struct stmmac_dma_conf *dma_conf; const int mtu = new_mtu; int ret; if (txfifosz == 0) txfifosz = priv->dma_cap.tx_fifo_size; txfifosz /= priv->plat->tx_queues_to_use; if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); return -EINVAL; } new_mtu = STMMAC_ALIGN(new_mtu); /* If condition true, FIFO is too small or MTU too large */ if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) return -EINVAL; if (netif_running(dev)) { netdev_dbg(priv->dev, "restarting interface to change its MTU\n"); /* Try to allocate the new DMA conf with the new mtu */ dma_conf = stmmac_setup_dma_desc(priv, mtu); if (IS_ERR(dma_conf)) { netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n", mtu); return PTR_ERR(dma_conf); } stmmac_release(dev); ret = __stmmac_open(dev, dma_conf); kfree(dma_conf); if (ret) { netdev_err(priv->dev, "failed reopening the interface after MTU change\n"); return ret; } stmmac_set_rx_mode(dev); } dev->mtu = mtu; netdev_update_features(dev); return 0; } static netdev_features_t stmmac_fix_features(struct net_device *dev, netdev_features_t features) { struct stmmac_priv *priv = netdev_priv(dev); if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) features &= ~NETIF_F_RXCSUM; if (!priv->plat->tx_coe) features &= ~NETIF_F_CSUM_MASK; /* Some GMAC devices have a bugged Jumbo frame support that * needs to have the Tx COE disabled for oversized frames * (due to limited buffer sizes). In this case we disable * the TX csum insertion in the TDES and not use SF. */ if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) features &= ~NETIF_F_CSUM_MASK; /* Disable tso if asked by ethtool */ if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { if (features & NETIF_F_TSO) priv->tso = true; else priv->tso = false; } return features; } static int stmmac_set_features(struct net_device *netdev, netdev_features_t features) { struct stmmac_priv *priv = netdev_priv(netdev); /* Keep the COE Type in case of csum is supporting */ if (features & NETIF_F_RXCSUM) priv->hw->rx_csum = priv->plat->rx_coe; else priv->hw->rx_csum = 0; /* No check needed because rx_coe has been set before and it will be * fixed in case of issue. */ stmmac_rx_ipc(priv, priv->hw); if (priv->sph_cap) { bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; u32 chan; for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); } return 0; } static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) { struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; bool *hs_enable = &fpe_cfg->hs_enable; if (status == FPE_EVENT_UNKNOWN || !*hs_enable) return; /* If LP has sent verify mPacket, LP is FPE capable */ if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { if (*lp_state < FPE_STATE_CAPABLE) *lp_state = FPE_STATE_CAPABLE; /* If user has requested FPE enable, quickly response */ if (*hs_enable) stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_RESPONSE); } /* If Local has sent verify mPacket, Local is FPE capable */ if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { if (*lo_state < FPE_STATE_CAPABLE) *lo_state = FPE_STATE_CAPABLE; } /* If LP has sent response mPacket, LP is entering FPE ON */ if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) *lp_state = FPE_STATE_ENTERING_ON; /* If Local has sent response mPacket, Local is entering FPE ON */ if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) *lo_state = FPE_STATE_ENTERING_ON; if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && priv->fpe_wq) { queue_work(priv->fpe_wq, &priv->fpe_task); } } static void stmmac_common_interrupt(struct stmmac_priv *priv) { u32 rx_cnt = priv->plat->rx_queues_to_use; u32 tx_cnt = priv->plat->tx_queues_to_use; u32 queues_count; u32 queue; bool xmac; xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; if (priv->irq_wake) pm_wakeup_event(priv->device, 0); if (priv->dma_cap.estsel) stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, &priv->xstats, tx_cnt); if (priv->dma_cap.fpesel) { int status = stmmac_fpe_irq_status(priv, priv->ioaddr, priv->dev); stmmac_fpe_event_status(priv, status); } /* To handle GMAC own interrupts */ if ((priv->plat->has_gmac) || xmac) { int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); if (unlikely(status)) { /* For LPI we need to save the tx status */ if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) priv->tx_path_in_lpi_mode = true; if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) priv->tx_path_in_lpi_mode = false; } for (queue = 0; queue < queues_count; queue++) { status = stmmac_host_mtl_irq_status(priv, priv->hw, queue); } /* PCS link status */ if (priv->hw->pcs) { if (priv->xstats.pcs_link) netif_carrier_on(priv->dev); else netif_carrier_off(priv->dev); } stmmac_timestamp_interrupt(priv, priv); } } /** * stmmac_interrupt - main ISR * @irq: interrupt number. * @dev_id: to pass the net device pointer. * Description: this is the main driver interrupt service routine. * It can call: * o DMA service routine (to manage incoming frame reception and transmission * status) * o Core interrupts to manage: remote wake-up, management counter, LPI * interrupts. */ static irqreturn_t stmmac_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct stmmac_priv *priv = netdev_priv(dev); /* Check if adapter is up */ if (test_bit(STMMAC_DOWN, &priv->state)) return IRQ_HANDLED; /* Check if a fatal error happened */ if (stmmac_safety_feat_interrupt(priv)) return IRQ_HANDLED; /* To handle Common interrupts */ stmmac_common_interrupt(priv); /* To handle DMA interrupts */ stmmac_dma_interrupt(priv); return IRQ_HANDLED; } static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct stmmac_priv *priv = netdev_priv(dev); if (unlikely(!dev)) { netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); return IRQ_NONE; } /* Check if adapter is up */ if (test_bit(STMMAC_DOWN, &priv->state)) return IRQ_HANDLED; /* To handle Common interrupts */ stmmac_common_interrupt(priv); return IRQ_HANDLED; } static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct stmmac_priv *priv = netdev_priv(dev); if (unlikely(!dev)) { netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); return IRQ_NONE; } /* Check if adapter is up */ if (test_bit(STMMAC_DOWN, &priv->state)) return IRQ_HANDLED; /* Check if a fatal error happened */ stmmac_safety_feat_interrupt(priv); return IRQ_HANDLED; } static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) { struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; struct stmmac_dma_conf *dma_conf; int chan = tx_q->queue_index; struct stmmac_priv *priv; int status; dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]); priv = container_of(dma_conf, struct stmmac_priv, dma_conf); if (unlikely(!data)) { netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); return IRQ_NONE; } /* Check if adapter is up */ if (test_bit(STMMAC_DOWN, &priv->state)) return IRQ_HANDLED; status = stmmac_napi_check(priv, chan, DMA_DIR_TX); if (unlikely(status & tx_hard_error_bump_tc)) { /* Try to bump up the dma threshold on this failure */ stmmac_bump_dma_threshold(priv, chan); } else if (unlikely(status == tx_hard_error)) { stmmac_tx_err(priv, chan); } return IRQ_HANDLED; } static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) { struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; struct stmmac_dma_conf *dma_conf; int chan = rx_q->queue_index; struct stmmac_priv *priv; dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]); priv = container_of(dma_conf, struct stmmac_priv, dma_conf); if (unlikely(!data)) { netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); return IRQ_NONE; } /* Check if adapter is up */ if (test_bit(STMMAC_DOWN, &priv->state)) return IRQ_HANDLED; stmmac_napi_check(priv, chan, DMA_DIR_RX); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /* Polling receive - used by NETCONSOLE and other diagnostic tools * to allow network I/O with interrupts disabled. */ static void stmmac_poll_controller(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); int i; /* If adapter is down, do nothing */ if (test_bit(STMMAC_DOWN, &priv->state)) return; if (priv->plat->multi_msi_en) { for (i = 0; i < priv->plat->rx_queues_to_use; i++) stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]); for (i = 0; i < priv->plat->tx_queues_to_use; i++) stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]); } else { disable_irq(dev->irq); stmmac_interrupt(dev->irq, dev); enable_irq(dev->irq); } } #endif /** * stmmac_ioctl - Entry point for the Ioctl * @dev: Device pointer. * @rq: An IOCTL specefic structure, that can contain a pointer to * a proprietary structure used to pass information to the driver. * @cmd: IOCTL command * Description: * Currently it supports the phy_mii_ioctl(...) and HW time stamping. */ static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct stmmac_priv *priv = netdev_priv (dev); int ret = -EOPNOTSUPP; if (!netif_running(dev)) return -EINVAL; switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: ret = phylink_mii_ioctl(priv->phylink, rq, cmd); break; case SIOCSHWTSTAMP: ret = stmmac_hwtstamp_set(dev, rq); break; case SIOCGHWTSTAMP: ret = stmmac_hwtstamp_get(dev, rq); break; default: break; } return ret; } static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct stmmac_priv *priv = cb_priv; int ret = -EOPNOTSUPP; if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) return ret; __stmmac_disable_all_queues(priv); switch (type) { case TC_SETUP_CLSU32: ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); break; case TC_SETUP_CLSFLOWER: ret = stmmac_tc_setup_cls(priv, priv, type_data); break; default: break; } stmmac_enable_all_queues(priv); return ret; } static LIST_HEAD(stmmac_block_cb_list); static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, void *type_data) { struct stmmac_priv *priv = netdev_priv(ndev); switch (type) { case TC_SETUP_BLOCK: return flow_block_cb_setup_simple(type_data, &stmmac_block_cb_list, stmmac_setup_tc_block_cb, priv, priv, true); case TC_SETUP_QDISC_CBS: return stmmac_tc_setup_cbs(priv, priv, type_data); case TC_SETUP_QDISC_TAPRIO: return stmmac_tc_setup_taprio(priv, priv, type_data); case TC_SETUP_QDISC_ETF: return stmmac_tc_setup_etf(priv, priv, type_data); default: return -EOPNOTSUPP; } } static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { int gso = skb_shinfo(skb)->gso_type; if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { /* * There is no way to determine the number of TSO/USO * capable Queues. Let's use always the Queue 0 * because if TSO/USO is supported then at least this * one will be capable. */ return 0; } return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; } static int stmmac_set_mac_address(struct net_device *ndev, void *addr) { struct stmmac_priv *priv = netdev_priv(ndev); int ret = 0; ret = pm_runtime_resume_and_get(priv->device); if (ret < 0) return ret; ret = eth_mac_addr(ndev, addr); if (ret) goto set_mac_error; stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); set_mac_error: pm_runtime_put(priv->device); return ret; } #ifdef CONFIG_DEBUG_FS static struct dentry *stmmac_fs_dir; static void sysfs_display_ring(void *head, int size, int extend_desc, struct seq_file *seq, dma_addr_t dma_phy_addr) { int i; struct dma_extended_desc *ep = (struct dma_extended_desc *)head; struct dma_desc *p = (struct dma_desc *)head; dma_addr_t dma_addr; for (i = 0; i < size; i++) { if (extend_desc) { dma_addr = dma_phy_addr + i * sizeof(*ep); seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", i, &dma_addr, le32_to_cpu(ep->basic.des0), le32_to_cpu(ep->basic.des1), le32_to_cpu(ep->basic.des2), le32_to_cpu(ep->basic.des3)); ep++; } else { dma_addr = dma_phy_addr + i * sizeof(*p); seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", i, &dma_addr, le32_to_cpu(p->des0), le32_to_cpu(p->des1), le32_to_cpu(p->des2), le32_to_cpu(p->des3)); p++; } seq_printf(seq, "\n"); } } static int stmmac_rings_status_show(struct seq_file *seq, void *v) { struct net_device *dev = seq->private; struct stmmac_priv *priv = netdev_priv(dev); u32 rx_count = priv->plat->rx_queues_to_use; u32 tx_count = priv->plat->tx_queues_to_use; u32 queue; if ((dev->flags & IFF_UP) == 0) return 0; for (queue = 0; queue < rx_count; queue++) { struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; seq_printf(seq, "RX Queue %d:\n", queue); if (priv->extend_desc) { seq_printf(seq, "Extended descriptor ring:\n"); sysfs_display_ring((void *)rx_q->dma_erx, priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy); } else { seq_printf(seq, "Descriptor ring:\n"); sysfs_display_ring((void *)rx_q->dma_rx, priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy); } } for (queue = 0; queue < tx_count; queue++) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; seq_printf(seq, "TX Queue %d:\n", queue); if (priv->extend_desc) { seq_printf(seq, "Extended descriptor ring:\n"); sysfs_display_ring((void *)tx_q->dma_etx, priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy); } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { seq_printf(seq, "Descriptor ring:\n"); sysfs_display_ring((void *)tx_q->dma_tx, priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy); } } return 0; } DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); static int stmmac_dma_cap_show(struct seq_file *seq, void *v) { struct net_device *dev = seq->private; struct stmmac_priv *priv = netdev_priv(dev); if (!priv->hw_cap_support) { seq_printf(seq, "DMA HW features not supported\n"); return 0; } seq_printf(seq, "==============================\n"); seq_printf(seq, "\tDMA HW features\n"); seq_printf(seq, "==============================\n"); seq_printf(seq, "\t10/100 Mbps: %s\n", (priv->dma_cap.mbps_10_100) ? "Y" : "N"); seq_printf(seq, "\t1000 Mbps: %s\n", (priv->dma_cap.mbps_1000) ? "Y" : "N"); seq_printf(seq, "\tHalf duplex: %s\n", (priv->dma_cap.half_duplex) ? "Y" : "N"); seq_printf(seq, "\tHash Filter: %s\n", (priv->dma_cap.hash_filter) ? "Y" : "N"); seq_printf(seq, "\tMultiple MAC address registers: %s\n", (priv->dma_cap.multi_addr) ? "Y" : "N"); seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", (priv->dma_cap.pcs) ? "Y" : "N"); seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", (priv->dma_cap.sma_mdio) ? "Y" : "N"); seq_printf(seq, "\tPMT Remote wake up: %s\n", (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); seq_printf(seq, "\tPMT Magic Frame: %s\n", (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); seq_printf(seq, "\tRMON module: %s\n", (priv->dma_cap.rmon) ? "Y" : "N"); seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", (priv->dma_cap.time_stamp) ? "Y" : "N"); seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", (priv->dma_cap.atime_stamp) ? "Y" : "N"); seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", (priv->dma_cap.eee) ? "Y" : "N"); seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); seq_printf(seq, "\tChecksum Offload in TX: %s\n", (priv->dma_cap.tx_coe) ? "Y" : "N"); if (priv->synopsys_id >= DWMAC_CORE_4_00) { seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", (priv->dma_cap.rx_coe) ? "Y" : "N"); } else { seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); } seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); seq_printf(seq, "\tNumber of Additional RX channel: %d\n", priv->dma_cap.number_rx_channel); seq_printf(seq, "\tNumber of Additional TX channel: %d\n", priv->dma_cap.number_tx_channel); seq_printf(seq, "\tNumber of Additional RX queues: %d\n", priv->dma_cap.number_rx_queues); seq_printf(seq, "\tNumber of Additional TX queues: %d\n", priv->dma_cap.number_tx_queues); seq_printf(seq, "\tEnhanced descriptors: %s\n", (priv->dma_cap.enh_desc) ? "Y" : "N"); seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); seq_printf(seq, "\tNumber of PPS Outputs: %d\n", priv->dma_cap.pps_out_num); seq_printf(seq, "\tSafety Features: %s\n", priv->dma_cap.asp ? "Y" : "N"); seq_printf(seq, "\tFlexible RX Parser: %s\n", priv->dma_cap.frpsel ? "Y" : "N"); seq_printf(seq, "\tEnhanced Addressing: %d\n", priv->dma_cap.addr64); seq_printf(seq, "\tReceive Side Scaling: %s\n", priv->dma_cap.rssen ? "Y" : "N"); seq_printf(seq, "\tVLAN Hash Filtering: %s\n", priv->dma_cap.vlhash ? "Y" : "N"); seq_printf(seq, "\tSplit Header: %s\n", priv->dma_cap.sphen ? "Y" : "N"); seq_printf(seq, "\tVLAN TX Insertion: %s\n", priv->dma_cap.vlins ? "Y" : "N"); seq_printf(seq, "\tDouble VLAN: %s\n", priv->dma_cap.dvlan ? "Y" : "N"); seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", priv->dma_cap.l3l4fnum); seq_printf(seq, "\tARP Offloading: %s\n", priv->dma_cap.arpoffsel ? "Y" : "N"); seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", priv->dma_cap.estsel ? "Y" : "N"); seq_printf(seq, "\tFrame Preemption (FPE): %s\n", priv->dma_cap.fpesel ? "Y" : "N"); seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", priv->dma_cap.tbssel ? "Y" : "N"); return 0; } DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); /* Use network device events to rename debugfs file entries. */ static int stmmac_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct stmmac_priv *priv = netdev_priv(dev); if (dev->netdev_ops != &stmmac_netdev_ops) goto done; switch (event) { case NETDEV_CHANGENAME: if (priv->dbgfs_dir) priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, priv->dbgfs_dir, stmmac_fs_dir, dev->name); break; } done: return NOTIFY_DONE; } static struct notifier_block stmmac_notifier = { .notifier_call = stmmac_device_event, }; static void stmmac_init_fs(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); rtnl_lock(); /* Create per netdev entries */ priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); /* Entry to report DMA RX/TX rings */ debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, &stmmac_rings_status_fops); /* Entry to report the DMA HW features */ debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, &stmmac_dma_cap_fops); rtnl_unlock(); } static void stmmac_exit_fs(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); debugfs_remove_recursive(priv->dbgfs_dir); } #endif /* CONFIG_DEBUG_FS */ static u32 stmmac_vid_crc32_le(__le16 vid_le) { unsigned char *data = (unsigned char *)&vid_le; unsigned char data_byte = 0; u32 crc = ~0x0; u32 temp = 0; int i, bits; bits = get_bitmask_order(VLAN_VID_MASK); for (i = 0; i < bits; i++) { if ((i % 8) == 0) data_byte = data[i / 8]; temp = ((crc & 1) ^ data_byte) & 1; crc >>= 1; data_byte >>= 1; if (temp) crc ^= 0xedb88320; } return crc; } static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) { u32 crc, hash = 0; __le16 pmatch = 0; int count = 0; u16 vid = 0; for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { __le16 vid_le = cpu_to_le16(vid); crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; hash |= (1 << crc); count++; } if (!priv->dma_cap.vlhash) { if (count > 2) /* VID = 0 always passes filter */ return -EOPNOTSUPP; pmatch = cpu_to_le16(vid); hash = 0; } return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); } static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct stmmac_priv *priv = netdev_priv(ndev); bool is_double = false; int ret; if (be16_to_cpu(proto) == ETH_P_8021AD) is_double = true; set_bit(vid, priv->active_vlans); ret = stmmac_vlan_update(priv, is_double); if (ret) { clear_bit(vid, priv->active_vlans); return ret; } if (priv->hw->num_vlan) { ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); if (ret) return ret; } return 0; } static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) { struct stmmac_priv *priv = netdev_priv(ndev); bool is_double = false; int ret; ret = pm_runtime_resume_and_get(priv->device); if (ret < 0) return ret; if (be16_to_cpu(proto) == ETH_P_8021AD) is_double = true; clear_bit(vid, priv->active_vlans); if (priv->hw->num_vlan) { ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); if (ret) goto del_vlan_error; } ret = stmmac_vlan_update(priv, is_double); del_vlan_error: pm_runtime_put(priv->device); return ret; } static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) { struct stmmac_priv *priv = netdev_priv(dev); switch (bpf->command) { case XDP_SETUP_PROG: return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); case XDP_SETUP_XSK_POOL: return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, bpf->xsk.queue_id); default: return -EOPNOTSUPP; } } static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, struct xdp_frame **frames, u32 flags) { struct stmmac_priv *priv = netdev_priv(dev); int cpu = smp_processor_id(); struct netdev_queue *nq; int i, nxmit = 0; int queue; if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) return -ENETDOWN; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; queue = stmmac_xdp_get_tx_queue(priv, cpu); nq = netdev_get_tx_queue(priv->dev, queue); __netif_tx_lock(nq, cpu); /* Avoids TX time-out as we are sharing with slow path */ txq_trans_cond_update(nq); for (i = 0; i < num_frames; i++) { int res; res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); if (res == STMMAC_XDP_CONSUMED) break; nxmit++; } if (flags & XDP_XMIT_FLUSH) { stmmac_flush_tx_descriptors(priv, queue); stmmac_tx_timer_arm(priv, queue); } __netif_tx_unlock(nq); return nxmit; } void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) { struct stmmac_channel *ch = &priv->channel[queue]; unsigned long flags; spin_lock_irqsave(&ch->lock, flags); stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); spin_unlock_irqrestore(&ch->lock, flags); stmmac_stop_rx_dma(priv, queue); __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); } void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; struct stmmac_channel *ch = &priv->channel[queue]; unsigned long flags; u32 buf_size; int ret; ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue); if (ret) { netdev_err(priv->dev, "Failed to alloc RX desc.\n"); return; } ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL); if (ret) { __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); netdev_err(priv->dev, "Failed to init RX desc.\n"); return; } stmmac_reset_rx_queue(priv, queue); stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue); stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, rx_q->dma_rx_phy, rx_q->queue_index); rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * sizeof(struct dma_desc)); stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, rx_q->queue_index); if (rx_q->xsk_pool && rx_q->buf_alloc_num) { buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); stmmac_set_dma_bfsize(priv, priv->ioaddr, buf_size, rx_q->queue_index); } else { stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_conf.dma_buf_sz, rx_q->queue_index); } stmmac_start_rx_dma(priv, queue); spin_lock_irqsave(&ch->lock, flags); stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); spin_unlock_irqrestore(&ch->lock, flags); } void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) { struct stmmac_channel *ch = &priv->channel[queue]; unsigned long flags; spin_lock_irqsave(&ch->lock, flags); stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); spin_unlock_irqrestore(&ch->lock, flags); stmmac_stop_tx_dma(priv, queue); __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); } void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; struct stmmac_channel *ch = &priv->channel[queue]; unsigned long flags; int ret; ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue); if (ret) { netdev_err(priv->dev, "Failed to alloc TX desc.\n"); return; } ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue); if (ret) { __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); netdev_err(priv->dev, "Failed to init TX desc.\n"); return; } stmmac_reset_tx_queue(priv, queue); stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue); stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, tx_q->dma_tx_phy, tx_q->queue_index); if (tx_q->tbs & STMMAC_TBS_AVAIL) stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); tx_q->tx_tail_addr = tx_q->dma_tx_phy; stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, tx_q->queue_index); stmmac_start_tx_dma(priv, queue); spin_lock_irqsave(&ch->lock, flags); stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); spin_unlock_irqrestore(&ch->lock, flags); } void stmmac_xdp_release(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); u32 chan; /* Ensure tx function is not running */ netif_tx_disable(dev); /* Disable NAPI process */ stmmac_disable_all_queues(priv); for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); /* Free the IRQ lines */ stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); /* Stop TX/RX DMA channels */ stmmac_stop_all_dma(priv); /* Release and free the Rx/Tx resources */ free_dma_desc_resources(priv, &priv->dma_conf); /* Disable the MAC Rx/Tx */ stmmac_mac_set(priv, priv->ioaddr, false); /* set trans_start so we don't get spurious * watchdogs during reset */ netif_trans_update(dev); netif_carrier_off(dev); } int stmmac_xdp_open(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); u32 rx_cnt = priv->plat->rx_queues_to_use; u32 tx_cnt = priv->plat->tx_queues_to_use; u32 dma_csr_ch = max(rx_cnt, tx_cnt); struct stmmac_rx_queue *rx_q; struct stmmac_tx_queue *tx_q; u32 buf_size; bool sph_en; u32 chan; int ret; ret = alloc_dma_desc_resources(priv, &priv->dma_conf); if (ret < 0) { netdev_err(dev, "%s: DMA descriptors allocation failed\n", __func__); goto dma_desc_error; } ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL); if (ret < 0) { netdev_err(dev, "%s: DMA descriptors initialization failed\n", __func__); goto init_error; } /* DMA CSR Channel configuration */ for (chan = 0; chan < dma_csr_ch; chan++) { stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); } /* Adjust Split header */ sph_en = (priv->hw->rx_csum > 0) && priv->sph; /* DMA RX Channel Configuration */ for (chan = 0; chan < rx_cnt; chan++) { rx_q = &priv->dma_conf.rx_queue[chan]; stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, rx_q->dma_rx_phy, chan); rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * sizeof(struct dma_desc)); stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, chan); if (rx_q->xsk_pool && rx_q->buf_alloc_num) { buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); stmmac_set_dma_bfsize(priv, priv->ioaddr, buf_size, rx_q->queue_index); } else { stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_conf.dma_buf_sz, rx_q->queue_index); } stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); } /* DMA TX Channel Configuration */ for (chan = 0; chan < tx_cnt; chan++) { tx_q = &priv->dma_conf.tx_queue[chan]; stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, tx_q->dma_tx_phy, chan); tx_q->tx_tail_addr = tx_q->dma_tx_phy; stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, chan); hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); tx_q->txtimer.function = stmmac_tx_timer; } /* Enable the MAC Rx/Tx */ stmmac_mac_set(priv, priv->ioaddr, true); /* Start Rx & Tx DMA Channels */ stmmac_start_all_dma(priv); ret = stmmac_request_irq(dev); if (ret) goto irq_error; /* Enable NAPI process*/ stmmac_enable_all_queues(priv); netif_carrier_on(dev); netif_tx_start_all_queues(dev); stmmac_enable_all_dma_irq(priv); return 0; irq_error: for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); stmmac_hw_teardown(dev); init_error: free_dma_desc_resources(priv, &priv->dma_conf); dma_desc_error: return ret; } int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) { struct stmmac_priv *priv = netdev_priv(dev); struct stmmac_rx_queue *rx_q; struct stmmac_tx_queue *tx_q; struct stmmac_channel *ch; if (test_bit(STMMAC_DOWN, &priv->state) || !netif_carrier_ok(priv->dev)) return -ENETDOWN; if (!stmmac_xdp_is_enabled(priv)) return -EINVAL; if (queue >= priv->plat->rx_queues_to_use || queue >= priv->plat->tx_queues_to_use) return -EINVAL; rx_q = &priv->dma_conf.rx_queue[queue]; tx_q = &priv->dma_conf.tx_queue[queue]; ch = &priv->channel[queue]; if (!rx_q->xsk_pool && !tx_q->xsk_pool) return -EINVAL; if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { /* EQoS does not have per-DMA channel SW interrupt, * so we schedule RX Napi straight-away. */ if (likely(napi_schedule_prep(&ch->rxtx_napi))) __napi_schedule(&ch->rxtx_napi); } return 0; } static const struct net_device_ops stmmac_netdev_ops = { .ndo_open = stmmac_open, .ndo_start_xmit = stmmac_xmit, .ndo_stop = stmmac_release, .ndo_change_mtu = stmmac_change_mtu, .ndo_fix_features = stmmac_fix_features, .ndo_set_features = stmmac_set_features, .ndo_set_rx_mode = stmmac_set_rx_mode, .ndo_tx_timeout = stmmac_tx_timeout, .ndo_eth_ioctl = stmmac_ioctl, .ndo_setup_tc = stmmac_setup_tc, .ndo_select_queue = stmmac_select_queue, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = stmmac_poll_controller, #endif .ndo_set_mac_address = stmmac_set_mac_address, .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, .ndo_bpf = stmmac_bpf, .ndo_xdp_xmit = stmmac_xdp_xmit, .ndo_xsk_wakeup = stmmac_xsk_wakeup, }; static void stmmac_reset_subtask(struct stmmac_priv *priv) { if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) return; if (test_bit(STMMAC_DOWN, &priv->state)) return; netdev_err(priv->dev, "Reset adapter.\n"); rtnl_lock(); netif_trans_update(priv->dev); while (test_and_set_bit(STMMAC_RESETING, &priv->state)) usleep_range(1000, 2000); set_bit(STMMAC_DOWN, &priv->state); dev_close(priv->dev); dev_open(priv->dev, NULL); clear_bit(STMMAC_DOWN, &priv->state); clear_bit(STMMAC_RESETING, &priv->state); rtnl_unlock(); } static void stmmac_service_task(struct work_struct *work) { struct stmmac_priv *priv = container_of(work, struct stmmac_priv, service_task); stmmac_reset_subtask(priv); clear_bit(STMMAC_SERVICE_SCHED, &priv->state); } /** * stmmac_hw_init - Init the MAC device * @priv: driver private structure * Description: this function is to configure the MAC device according to * some platform parameters or the HW capability register. It prepares the * driver to use either ring or chain modes and to setup either enhanced or * normal descriptors. */ static int stmmac_hw_init(struct stmmac_priv *priv) { int ret; /* dwmac-sun8i only work in chain mode */ if (priv->plat->has_sun8i) chain_mode = 1; priv->chain_mode = chain_mode; /* Initialize HW Interface */ ret = stmmac_hwif_init(priv); if (ret) return ret; /* Get the HW capability (new GMAC newer than 3.50a) */ priv->hw_cap_support = stmmac_get_hw_features(priv); if (priv->hw_cap_support) { dev_info(priv->device, "DMA HW capability register supported\n"); /* We can override some gmac/dma configuration fields: e.g. * enh_desc, tx_coe (e.g. that are passed through the * platform) with the values from the HW capability * register (if supported). */ priv->plat->enh_desc = priv->dma_cap.enh_desc; priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && !priv->plat->use_phy_wol; priv->hw->pmt = priv->plat->pmt; if (priv->dma_cap.hash_tb_sz) { priv->hw->multicast_filter_bins = (BIT(priv->dma_cap.hash_tb_sz) << 5); priv->hw->mcast_bits_log2 = ilog2(priv->hw->multicast_filter_bins); } /* TXCOE doesn't work in thresh DMA mode */ if (priv->plat->force_thresh_dma_mode) priv->plat->tx_coe = 0; else priv->plat->tx_coe = priv->dma_cap.tx_coe; /* In case of GMAC4 rx_coe is from HW cap register. */ priv->plat->rx_coe = priv->dma_cap.rx_coe; if (priv->dma_cap.rx_coe_type2) priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; else if (priv->dma_cap.rx_coe_type1) priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; } else { dev_info(priv->device, "No HW DMA feature register supported\n"); } if (priv->plat->rx_coe) { priv->hw->rx_csum = priv->plat->rx_coe; dev_info(priv->device, "RX Checksum Offload Engine supported\n"); if (priv->synopsys_id < DWMAC_CORE_4_00) dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); } if (priv->plat->tx_coe) dev_info(priv->device, "TX Checksum insertion supported\n"); if (priv->plat->pmt) { dev_info(priv->device, "Wake-Up On Lan supported\n"); device_set_wakeup_capable(priv->device, 1); } if (priv->dma_cap.tsoen) dev_info(priv->device, "TSO supported\n"); priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; /* Run HW quirks, if any */ if (priv->hwif_quirks) { ret = priv->hwif_quirks(priv); if (ret) return ret; } /* Rx Watchdog is available in the COREs newer than the 3.40. * In some case, for example on bugged HW this feature * has to be disable and this can be done by passing the * riwt_off field from the platform. */ if (((priv->synopsys_id >= DWMAC_CORE_3_50) || (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { priv->use_riwt = 1; dev_info(priv->device, "Enable RX Mitigation via HW Watchdog Timer\n"); } return 0; } static void stmmac_napi_add(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); u32 queue, maxq; maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); for (queue = 0; queue < maxq; queue++) { struct stmmac_channel *ch = &priv->channel[queue]; ch->priv_data = priv; ch->index = queue; spin_lock_init(&ch->lock); if (queue < priv->plat->rx_queues_to_use) { netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx); } if (queue < priv->plat->tx_queues_to_use) { netif_napi_add_tx(dev, &ch->tx_napi, stmmac_napi_poll_tx); } if (queue < priv->plat->rx_queues_to_use && queue < priv->plat->tx_queues_to_use) { netif_napi_add(dev, &ch->rxtx_napi, stmmac_napi_poll_rxtx); } } } static void stmmac_napi_del(struct net_device *dev) { struct stmmac_priv *priv = netdev_priv(dev); u32 queue, maxq; maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); for (queue = 0; queue < maxq; queue++) { struct stmmac_channel *ch = &priv->channel[queue]; if (queue < priv->plat->rx_queues_to_use) netif_napi_del(&ch->rx_napi); if (queue < priv->plat->tx_queues_to_use) netif_napi_del(&ch->tx_napi); if (queue < priv->plat->rx_queues_to_use && queue < priv->plat->tx_queues_to_use) { netif_napi_del(&ch->rxtx_napi); } } } int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) { struct stmmac_priv *priv = netdev_priv(dev); int ret = 0; if (netif_running(dev)) stmmac_release(dev); stmmac_napi_del(dev); priv->plat->rx_queues_to_use = rx_cnt; priv->plat->tx_queues_to_use = tx_cnt; stmmac_napi_add(dev); if (netif_running(dev)) ret = stmmac_open(dev); return ret; } int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) { struct stmmac_priv *priv = netdev_priv(dev); int ret = 0; if (netif_running(dev)) stmmac_release(dev); priv->dma_conf.dma_rx_size = rx_size; priv->dma_conf.dma_tx_size = tx_size; if (netif_running(dev)) ret = stmmac_open(dev); return ret; } #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" static void stmmac_fpe_lp_task(struct work_struct *work) { struct stmmac_priv *priv = container_of(work, struct stmmac_priv, fpe_task); struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; bool *hs_enable = &fpe_cfg->hs_enable; bool *enable = &fpe_cfg->enable; int retries = 20; while (retries-- > 0) { /* Bail out immediately if FPE handshake is OFF */ if (*lo_state == FPE_STATE_OFF || !*hs_enable) break; if (*lo_state == FPE_STATE_ENTERING_ON && *lp_state == FPE_STATE_ENTERING_ON) { stmmac_fpe_configure(priv, priv->ioaddr, priv->plat->tx_queues_to_use, priv->plat->rx_queues_to_use, *enable); netdev_info(priv->dev, "configured FPE\n"); *lo_state = FPE_STATE_ON; *lp_state = FPE_STATE_ON; netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); break; } if ((*lo_state == FPE_STATE_CAPABLE || *lo_state == FPE_STATE_ENTERING_ON) && *lp_state != FPE_STATE_ON) { netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, *lo_state, *lp_state); stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); } /* Sleep then retry */ msleep(500); } clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); } void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) { if (priv->plat->fpe_cfg->hs_enable != enable) { if (enable) { stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); } else { priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; } priv->plat->fpe_cfg->hs_enable = enable; } } /** * stmmac_dvr_probe * @device: device pointer * @plat_dat: platform data pointer * @res: stmmac resource pointer * Description: this is the main probe function used to * call the alloc_etherdev, allocate the priv structure. * Return: * returns 0 on success, otherwise errno. */ int stmmac_dvr_probe(struct device *device, struct plat_stmmacenet_data *plat_dat, struct stmmac_resources *res) { struct net_device *ndev = NULL; struct stmmac_priv *priv; u32 rxq; int i, ret = 0; ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); if (!ndev) return -ENOMEM; SET_NETDEV_DEV(ndev, device); priv = netdev_priv(ndev); priv->device = device; priv->dev = ndev; stmmac_set_ethtool_ops(ndev); priv->pause = pause; priv->plat = plat_dat; priv->ioaddr = res->addr; priv->dev->base_addr = (unsigned long)res->addr; priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; priv->dev->irq = res->irq; priv->wol_irq = res->wol_irq; priv->lpi_irq = res->lpi_irq; priv->sfty_ce_irq = res->sfty_ce_irq; priv->sfty_ue_irq = res->sfty_ue_irq; for (i = 0; i < MTL_MAX_RX_QUEUES; i++) priv->rx_irq[i] = res->rx_irq[i]; for (i = 0; i < MTL_MAX_TX_QUEUES; i++) priv->tx_irq[i] = res->tx_irq[i]; if (!is_zero_ether_addr(res->mac)) eth_hw_addr_set(priv->dev, res->mac); dev_set_drvdata(device, priv->dev); /* Verify driver arguments */ stmmac_verify_args(); priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); if (!priv->af_xdp_zc_qps) return -ENOMEM; /* Allocate workqueue */ priv->wq = create_singlethread_workqueue("stmmac_wq"); if (!priv->wq) { dev_err(priv->device, "failed to create workqueue\n"); return -ENOMEM; } INIT_WORK(&priv->service_task, stmmac_service_task); /* Initialize Link Partner FPE workqueue */ INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); /* Override with kernel parameters if supplied XXX CRS XXX * this needs to have multiple instances */ if ((phyaddr >= 0) && (phyaddr <= 31)) priv->plat->phy_addr = phyaddr; if (priv->plat->stmmac_rst) { ret = reset_control_assert(priv->plat->stmmac_rst); reset_control_deassert(priv->plat->stmmac_rst); /* Some reset controllers have only reset callback instead of * assert + deassert callbacks pair. */ if (ret == -ENOTSUPP) reset_control_reset(priv->plat->stmmac_rst); } ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); if (ret == -ENOTSUPP) dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", ERR_PTR(ret)); /* Init MAC and get the capabilities */ ret = stmmac_hw_init(priv); if (ret) goto error_hw_init; /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. */ if (priv->synopsys_id < DWMAC_CORE_5_20) priv->plat->dma_cfg->dche = false; stmmac_check_ether_addr(priv); ndev->netdev_ops = &stmmac_netdev_ops; ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; ret = stmmac_tc_init(priv, priv); if (!ret) { ndev->hw_features |= NETIF_F_HW_TC; } if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; if (priv->plat->has_gmac4) ndev->hw_features |= NETIF_F_GSO_UDP_L4; priv->tso = true; dev_info(priv->device, "TSO feature enabled\n"); } if (priv->dma_cap.sphen && !priv->plat->sph_disable) { ndev->hw_features |= NETIF_F_GRO; priv->sph_cap = true; priv->sph = priv->sph_cap; dev_info(priv->device, "SPH feature enabled\n"); } /* The current IP register MAC_HW_Feature1[ADDR64] only define * 32/40/64 bit width, but some SOC support others like i.MX8MP * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. * So overwrite dma_cap.addr64 according to HW real design. */ if (priv->plat->addr64) priv->dma_cap.addr64 = priv->plat->addr64; if (priv->dma_cap.addr64) { ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(priv->dma_cap.addr64)); if (!ret) { dev_info(priv->device, "Using %d bits DMA width\n", priv->dma_cap.addr64); /* * If more than 32 bits can be addressed, make sure to * enable enhanced addressing mode. */ if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) priv->plat->dma_cfg->eame = true; } else { ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); if (ret) { dev_err(priv->device, "Failed to set DMA Mask\n"); goto error_hw_init; } priv->dma_cap.addr64 = 32; } } ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; ndev->watchdog_timeo = msecs_to_jiffies(watchdog); #ifdef STMMAC_VLAN_TAG_USED /* Both mac100 and gmac support receive VLAN tag detection */ ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; if (priv->dma_cap.vlhash) { ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; } if (priv->dma_cap.vlins) { ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; if (priv->dma_cap.dvlan) ndev->features |= NETIF_F_HW_VLAN_STAG_TX; } #endif priv->msg_enable = netif_msg_init(debug, default_msg_level); /* Initialize RSS */ rxq = priv->plat->rx_queues_to_use; netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); if (priv->dma_cap.rssen && priv->plat->rss_en) ndev->features |= NETIF_F_RXHASH; /* MTU range: 46 - hw-specific max */ ndev->min_mtu = ETH_ZLEN - ETH_HLEN; if (priv->plat->has_xgmac) ndev->max_mtu = XGMAC_JUMBO_LEN; else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) ndev->max_mtu = JUMBO_LEN; else ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. */ if ((priv->plat->maxmtu < ndev->max_mtu) && (priv->plat->maxmtu >= ndev->min_mtu)) ndev->max_mtu = priv->plat->maxmtu; else if (priv->plat->maxmtu < ndev->min_mtu) dev_warn(priv->device, "%s: warning: maxmtu having invalid value (%d)\n", __func__, priv->plat->maxmtu); if (flow_ctrl) priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ /* Setup channels NAPI */ stmmac_napi_add(ndev); mutex_init(&priv->lock); /* If a specific clk_csr value is passed from the platform * this means that the CSR Clock Range selection cannot be * changed at run-time and it is fixed. Viceversa the driver'll try to * set the MDC clock dynamically according to the csr actual * clock input. */ if (priv->plat->clk_csr >= 0) priv->clk_csr = priv->plat->clk_csr; else stmmac_clk_csr_set(priv); stmmac_check_pcs_mode(priv); pm_runtime_get_noresume(device); pm_runtime_set_active(device); if (!pm_runtime_enabled(device)) pm_runtime_enable(device); if (priv->hw->pcs != STMMAC_PCS_TBI && priv->hw->pcs != STMMAC_PCS_RTBI) { /* MDIO bus Registration */ ret = stmmac_mdio_register(ndev); if (ret < 0) { dev_err_probe(priv->device, ret, "%s: MDIO bus (id: %d) registration failed\n", __func__, priv->plat->bus_id); goto error_mdio_register; } } if (priv->plat->speed_mode_2500) priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { ret = stmmac_xpcs_setup(priv->mii); if (ret) goto error_xpcs_setup; } ret = stmmac_phy_setup(priv); if (ret) { netdev_err(ndev, "failed to setup phy (%d)\n", ret); goto error_phy_setup; } ret = register_netdev(ndev); if (ret) { dev_err(priv->device, "%s: ERROR %i registering the device\n", __func__, ret); goto error_netdev_register; } #ifdef CONFIG_DEBUG_FS stmmac_init_fs(ndev); #endif if (priv->plat->dump_debug_regs) priv->plat->dump_debug_regs(priv->plat->bsp_priv); /* Let pm_runtime_put() disable the clocks. * If CONFIG_PM is not enabled, the clocks will stay powered. */ pm_runtime_put(device); return ret; error_netdev_register: phylink_destroy(priv->phylink); error_xpcs_setup: error_phy_setup: if (priv->hw->pcs != STMMAC_PCS_TBI && priv->hw->pcs != STMMAC_PCS_RTBI) stmmac_mdio_unregister(ndev); error_mdio_register: stmmac_napi_del(ndev); error_hw_init: destroy_workqueue(priv->wq); bitmap_free(priv->af_xdp_zc_qps); return ret; } EXPORT_SYMBOL_GPL(stmmac_dvr_probe); /** * stmmac_dvr_remove * @dev: device pointer * Description: this function resets the TX/RX processes, disables the MAC RX/TX * changes the link status, releases the DMA descriptor rings. */ int stmmac_dvr_remove(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct stmmac_priv *priv = netdev_priv(ndev); netdev_info(priv->dev, "%s: removing driver", __func__); pm_runtime_get_sync(dev); stmmac_stop_all_dma(priv); stmmac_mac_set(priv, priv->ioaddr, false); netif_carrier_off(ndev); unregister_netdev(ndev); /* Serdes power down needs to happen after VLAN filter * is deleted that is triggered by unregister_netdev(). */ if (priv->plat->serdes_powerdown) priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); #ifdef CONFIG_DEBUG_FS stmmac_exit_fs(ndev); #endif phylink_destroy(priv->phylink); if (priv->plat->stmmac_rst) reset_control_assert(priv->plat->stmmac_rst); reset_control_assert(priv->plat->stmmac_ahb_rst); if (priv->hw->pcs != STMMAC_PCS_TBI && priv->hw->pcs != STMMAC_PCS_RTBI) stmmac_mdio_unregister(ndev); destroy_workqueue(priv->wq); mutex_destroy(&priv->lock); bitmap_free(priv->af_xdp_zc_qps); pm_runtime_disable(dev); pm_runtime_put_noidle(dev); return 0; } EXPORT_SYMBOL_GPL(stmmac_dvr_remove); /** * stmmac_suspend - suspend callback * @dev: device pointer * Description: this is the function to suspend the device and it is called * by the platform driver to stop the network queue, release the resources, * program the PMT register (for WoL), clean and release driver resources. */ int stmmac_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct stmmac_priv *priv = netdev_priv(ndev); u32 chan; if (!ndev || !netif_running(ndev)) return 0; mutex_lock(&priv->lock); netif_device_detach(ndev); stmmac_disable_all_queues(priv); for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); if (priv->eee_enabled) { priv->tx_path_in_lpi_mode = false; del_timer_sync(&priv->eee_ctrl_timer); } /* Stop TX/RX DMA */ stmmac_stop_all_dma(priv); if (priv->plat->serdes_powerdown) priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); /* Enable Power down mode by programming the PMT regs */ if (device_may_wakeup(priv->device) && priv->plat->pmt) { stmmac_pmt(priv, priv->hw, priv->wolopts); priv->irq_wake = 1; } else { stmmac_mac_set(priv, priv->ioaddr, false); pinctrl_pm_select_sleep_state(priv->device); } mutex_unlock(&priv->lock); rtnl_lock(); if (device_may_wakeup(priv->device) && priv->plat->pmt) { phylink_suspend(priv->phylink, true); } else { if (device_may_wakeup(priv->device)) phylink_speed_down(priv->phylink, false); phylink_suspend(priv->phylink, false); } rtnl_unlock(); if (priv->dma_cap.fpesel) { /* Disable FPE */ stmmac_fpe_configure(priv, priv->ioaddr, priv->plat->tx_queues_to_use, priv->plat->rx_queues_to_use, false); stmmac_fpe_handshake(priv, false); stmmac_fpe_stop_wq(priv); } priv->speed = SPEED_UNKNOWN; return 0; } EXPORT_SYMBOL_GPL(stmmac_suspend); static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue) { struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; rx_q->cur_rx = 0; rx_q->dirty_rx = 0; } static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue) { struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; tx_q->cur_tx = 0; tx_q->dirty_tx = 0; tx_q->mss = 0; netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); } /** * stmmac_reset_queues_param - reset queue parameters * @priv: device pointer */ static void stmmac_reset_queues_param(struct stmmac_priv *priv) { u32 rx_cnt = priv->plat->rx_queues_to_use; u32 tx_cnt = priv->plat->tx_queues_to_use; u32 queue; for (queue = 0; queue < rx_cnt; queue++) stmmac_reset_rx_queue(priv, queue); for (queue = 0; queue < tx_cnt; queue++) stmmac_reset_tx_queue(priv, queue); } /** * stmmac_resume - resume callback * @dev: device pointer * Description: when resume this function is invoked to setup the DMA and CORE * in a usable state. */ int stmmac_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct stmmac_priv *priv = netdev_priv(ndev); int ret; if (!netif_running(ndev)) return 0; /* Power Down bit, into the PM register, is cleared * automatically as soon as a magic packet or a Wake-up frame * is received. Anyway, it's better to manually clear * this bit because it can generate problems while resuming * from another devices (e.g. serial console). */ if (device_may_wakeup(priv->device) && priv->plat->pmt) { mutex_lock(&priv->lock); stmmac_pmt(priv, priv->hw, 0); mutex_unlock(&priv->lock); priv->irq_wake = 0; } else { pinctrl_pm_select_default_state(priv->device); /* reset the phy so that it's ready */ if (priv->mii) stmmac_mdio_reset(priv->mii); } if (priv->plat->serdes_powerup) { ret = priv->plat->serdes_powerup(ndev, priv->plat->bsp_priv); if (ret < 0) return ret; } rtnl_lock(); if (device_may_wakeup(priv->device) && priv->plat->pmt) { phylink_resume(priv->phylink); } else { phylink_resume(priv->phylink); if (device_may_wakeup(priv->device)) phylink_speed_up(priv->phylink); } rtnl_unlock(); rtnl_lock(); mutex_lock(&priv->lock); stmmac_reset_queues_param(priv); stmmac_free_tx_skbufs(priv); stmmac_clear_descriptors(priv, &priv->dma_conf); stmmac_hw_setup(ndev, false); stmmac_init_coalesce(priv); stmmac_set_rx_mode(ndev); stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); stmmac_enable_all_queues(priv); stmmac_enable_all_dma_irq(priv); mutex_unlock(&priv->lock); rtnl_unlock(); netif_device_attach(ndev); return 0; } EXPORT_SYMBOL_GPL(stmmac_resume); #ifndef MODULE static int __init stmmac_cmdline_opt(char *str) { char *opt; if (!str || !*str) return 1; while ((opt = strsep(&str, ",")) != NULL) { if (!strncmp(opt, "debug:", 6)) { if (kstrtoint(opt + 6, 0, &debug)) goto err; } else if (!strncmp(opt, "phyaddr:", 8)) { if (kstrtoint(opt + 8, 0, &phyaddr)) goto err; } else if (!strncmp(opt, "buf_sz:", 7)) { if (kstrtoint(opt + 7, 0, &buf_sz)) goto err; } else if (!strncmp(opt, "tc:", 3)) { if (kstrtoint(opt + 3, 0, &tc)) goto err; } else if (!strncmp(opt, "watchdog:", 9)) { if (kstrtoint(opt + 9, 0, &watchdog)) goto err; } else if (!strncmp(opt, "flow_ctrl:", 10)) { if (kstrtoint(opt + 10, 0, &flow_ctrl)) goto err; } else if (!strncmp(opt, "pause:", 6)) { if (kstrtoint(opt + 6, 0, &pause)) goto err; } else if (!strncmp(opt, "eee_timer:", 10)) { if (kstrtoint(opt + 10, 0, &eee_timer)) goto err; } else if (!strncmp(opt, "chain_mode:", 11)) { if (kstrtoint(opt + 11, 0, &chain_mode)) goto err; } } return 1; err: pr_err("%s: ERROR broken module parameter conversion", __func__); return 1; } __setup("stmmaceth=", stmmac_cmdline_opt); #endif /* MODULE */ static int __init stmmac_init(void) { #ifdef CONFIG_DEBUG_FS /* Create debugfs main directory if it doesn't exist yet */ if (!stmmac_fs_dir) stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); register_netdevice_notifier(&stmmac_notifier); #endif return 0; } static void __exit stmmac_exit(void) { #ifdef CONFIG_DEBUG_FS unregister_netdevice_notifier(&stmmac_notifier); debugfs_remove_recursive(stmmac_fs_dir); #endif } module_init(stmmac_init) module_exit(stmmac_exit) MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1