Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ivo van Doorn | 2165 | 68.12% | 41 | 39.05% |
Johannes Berg | 305 | 9.60% | 20 | 19.05% |
Helmut Schaa | 254 | 7.99% | 12 | 11.43% |
Stanislaw Gruszka | 236 | 7.43% | 11 | 10.48% |
Igor Perminov | 60 | 1.89% | 2 | 1.90% |
Gertjan van Wingerde | 57 | 1.79% | 4 | 3.81% |
Daniel Wagner | 29 | 0.91% | 1 | 0.95% |
Stanislaw W. Gruszka | 14 | 0.44% | 1 | 0.95% |
Rickard Strandqvist | 12 | 0.38% | 1 | 0.95% |
Rui Salvaterra | 9 | 0.28% | 1 | 0.95% |
Joe Perches | 9 | 0.28% | 1 | 0.95% |
Emmanuel Grumbach | 5 | 0.16% | 1 | 0.95% |
Eliad Peller | 5 | 0.16% | 1 | 0.95% |
Thomas Huehn | 5 | 0.16% | 1 | 0.95% |
Fred Chou | 3 | 0.09% | 1 | 0.95% |
Gabor Juhos | 3 | 0.09% | 1 | 0.95% |
Thomas Gleixner | 2 | 0.06% | 1 | 0.95% |
Luis Correia | 2 | 0.06% | 1 | 0.95% |
Jilin Yuan | 1 | 0.03% | 1 | 0.95% |
Mattias Nissler | 1 | 0.03% | 1 | 0.95% |
Uwe Kleine-König | 1 | 0.03% | 1 | 0.95% |
Total | 3178 | 105 |
// SPDX-License-Identifier: GPL-2.0-or-later /* Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> <http://rt2x00.serialmonkey.com> */ /* Module: rt2x00mac Abstract: rt2x00 generic mac80211 routines. */ #include <linux/kernel.h> #include <linux/module.h> #include "rt2x00.h" #include "rt2x00lib.h" static int rt2x00mac_tx_rts_cts(struct rt2x00_dev *rt2x00dev, struct data_queue *queue, struct sk_buff *frag_skb) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(frag_skb); struct ieee80211_tx_info *rts_info; struct sk_buff *skb; unsigned int data_length; int retval = 0; if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) data_length = sizeof(struct ieee80211_cts); else data_length = sizeof(struct ieee80211_rts); skb = dev_alloc_skb(data_length + rt2x00dev->hw->extra_tx_headroom); if (unlikely(!skb)) { rt2x00_warn(rt2x00dev, "Failed to create RTS/CTS frame\n"); return -ENOMEM; } skb_reserve(skb, rt2x00dev->hw->extra_tx_headroom); skb_put(skb, data_length); /* * Copy TX information over from original frame to * RTS/CTS frame. Note that we set the no encryption flag * since we don't want this frame to be encrypted. * RTS frames should be acked, while CTS-to-self frames * should not. The ready for TX flag is cleared to prevent * it being automatically send when the descriptor is * written to the hardware. */ memcpy(skb->cb, frag_skb->cb, sizeof(skb->cb)); rts_info = IEEE80211_SKB_CB(skb); rts_info->control.rates[0].flags &= ~IEEE80211_TX_RC_USE_RTS_CTS; rts_info->control.rates[0].flags &= ~IEEE80211_TX_RC_USE_CTS_PROTECT; if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) rts_info->flags |= IEEE80211_TX_CTL_NO_ACK; else rts_info->flags &= ~IEEE80211_TX_CTL_NO_ACK; /* Disable hardware encryption */ rts_info->control.hw_key = NULL; /* * RTS/CTS frame should use the length of the frame plus any * encryption overhead that will be added by the hardware. */ data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb); if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) ieee80211_ctstoself_get(rt2x00dev->hw, tx_info->control.vif, frag_skb->data, data_length, tx_info, (struct ieee80211_cts *)(skb->data)); else ieee80211_rts_get(rt2x00dev->hw, tx_info->control.vif, frag_skb->data, data_length, tx_info, (struct ieee80211_rts *)(skb->data)); retval = rt2x00queue_write_tx_frame(queue, skb, NULL, true); if (retval) { dev_kfree_skb_any(skb); rt2x00_warn(rt2x00dev, "Failed to send RTS/CTS frame\n"); } return retval; } void rt2x00mac_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct rt2x00_dev *rt2x00dev = hw->priv; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); enum data_queue_qid qid = skb_get_queue_mapping(skb); struct data_queue *queue = NULL; /* * Mac80211 might be calling this function while we are trying * to remove the device or perhaps suspending it. * Note that we can only stop the TX queues inside the TX path * due to possible race conditions in mac80211. */ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) goto exit_free_skb; /* * Use the ATIM queue if appropriate and present. */ if (tx_info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM && rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) qid = QID_ATIM; queue = rt2x00queue_get_tx_queue(rt2x00dev, qid); if (unlikely(!queue)) { rt2x00_err(rt2x00dev, "Attempt to send packet over invalid queue %d\n" "Please file bug report to %s\n", qid, DRV_PROJECT); goto exit_free_skb; } /* * If CTS/RTS is required. create and queue that frame first. * Make sure we have at least enough entries available to send * this CTS/RTS frame as well as the data frame. * Note that when the driver has set the set_rts_threshold() * callback function it doesn't need software generation of * either RTS or CTS-to-self frame and handles everything * inside the hardware. */ if (!rt2x00dev->ops->hw->set_rts_threshold && (tx_info->control.rates[0].flags & (IEEE80211_TX_RC_USE_RTS_CTS | IEEE80211_TX_RC_USE_CTS_PROTECT))) { if (rt2x00queue_available(queue) <= 1) { /* * Recheck for full queue under lock to avoid race * conditions with rt2x00lib_txdone(). */ spin_lock(&queue->tx_lock); if (rt2x00queue_threshold(queue)) rt2x00queue_pause_queue(queue); spin_unlock(&queue->tx_lock); goto exit_free_skb; } if (rt2x00mac_tx_rts_cts(rt2x00dev, queue, skb)) goto exit_free_skb; } if (unlikely(rt2x00queue_write_tx_frame(queue, skb, control->sta, false))) goto exit_free_skb; return; exit_free_skb: ieee80211_free_txskb(hw, skb); } EXPORT_SYMBOL_GPL(rt2x00mac_tx); int rt2x00mac_start(struct ieee80211_hw *hw) { struct rt2x00_dev *rt2x00dev = hw->priv; if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return 0; if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) { /* * This is special case for ieee80211_restart_hw(), otherwise * mac80211 never call start() two times in row without stop(); */ set_bit(DEVICE_STATE_RESET, &rt2x00dev->flags); rt2x00dev->ops->lib->pre_reset_hw(rt2x00dev); rt2x00lib_stop(rt2x00dev); } return rt2x00lib_start(rt2x00dev); } EXPORT_SYMBOL_GPL(rt2x00mac_start); void rt2x00mac_stop(struct ieee80211_hw *hw) { struct rt2x00_dev *rt2x00dev = hw->priv; if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return; rt2x00lib_stop(rt2x00dev); } EXPORT_SYMBOL_GPL(rt2x00mac_stop); void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw, enum ieee80211_reconfig_type reconfig_type) { struct rt2x00_dev *rt2x00dev = hw->priv; if (reconfig_type == IEEE80211_RECONFIG_TYPE_RESTART) clear_bit(DEVICE_STATE_RESET, &rt2x00dev->flags); } EXPORT_SYMBOL_GPL(rt2x00mac_reconfig_complete); int rt2x00mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rt2x00_dev *rt2x00dev = hw->priv; struct rt2x00_intf *intf = vif_to_intf(vif); struct data_queue *queue = rt2x00dev->bcn; struct queue_entry *entry = NULL; unsigned int i; /* * Don't allow interfaces to be added * the device has disappeared. */ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || !test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) return -ENODEV; /* * Loop through all beacon queues to find a free * entry. Since there are as much beacon entries * as the maximum interfaces, this search shouldn't * fail. */ for (i = 0; i < queue->limit; i++) { entry = &queue->entries[i]; if (!test_and_set_bit(ENTRY_BCN_ASSIGNED, &entry->flags)) break; } if (unlikely(i == queue->limit)) return -ENOBUFS; /* * We are now absolutely sure the interface can be created, * increase interface count and start initialization. */ if (vif->type == NL80211_IFTYPE_AP) rt2x00dev->intf_ap_count++; else rt2x00dev->intf_sta_count++; mutex_init(&intf->beacon_skb_mutex); intf->beacon = entry; /* * The MAC address must be configured after the device * has been initialized. Otherwise the device can reset * the MAC registers. * The BSSID address must only be configured in AP mode, * however we should not send an empty BSSID address for * STA interfaces at this time, since this can cause * invalid behavior in the device. */ rt2x00lib_config_intf(rt2x00dev, intf, vif->type, vif->addr, NULL); /* * Some filters depend on the current working mode. We can force * an update during the next configure_filter() run by mac80211 by * resetting the current packet_filter state. */ rt2x00dev->packet_filter = 0; return 0; } EXPORT_SYMBOL_GPL(rt2x00mac_add_interface); void rt2x00mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rt2x00_dev *rt2x00dev = hw->priv; struct rt2x00_intf *intf = vif_to_intf(vif); /* * Don't allow interfaces to be remove while * either the device has disappeared or when * no interface is present. */ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || (vif->type == NL80211_IFTYPE_AP && !rt2x00dev->intf_ap_count) || (vif->type != NL80211_IFTYPE_AP && !rt2x00dev->intf_sta_count)) return; if (vif->type == NL80211_IFTYPE_AP) rt2x00dev->intf_ap_count--; else rt2x00dev->intf_sta_count--; /* * Release beacon entry so it is available for * new interfaces again. */ clear_bit(ENTRY_BCN_ASSIGNED, &intf->beacon->flags); /* * Make sure the bssid and mac address registers * are cleared to prevent false ACKing of frames. */ rt2x00lib_config_intf(rt2x00dev, intf, NL80211_IFTYPE_UNSPECIFIED, NULL, NULL); } EXPORT_SYMBOL_GPL(rt2x00mac_remove_interface); int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed) { struct rt2x00_dev *rt2x00dev = hw->priv; struct ieee80211_conf *conf = &hw->conf; /* * mac80211 might be calling this function while we are trying * to remove the device or perhaps suspending it. */ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return 0; /* * Some configuration parameters (e.g. channel and antenna values) can * only be set when the radio is enabled, but do require the RX to * be off. During this period we should keep link tuning enabled, * if for any reason the link tuner must be reset, this will be * handled by rt2x00lib_config(). */ rt2x00queue_stop_queue(rt2x00dev->rx); /* Do not race with link tuner. */ mutex_lock(&rt2x00dev->conf_mutex); /* * When we've just turned on the radio, we want to reprogram * everything to ensure a consistent state */ rt2x00lib_config(rt2x00dev, conf, changed); /* * After the radio has been enabled we need to configure * the antenna to the default settings. rt2x00lib_config_antenna() * should determine if any action should be taken based on * checking if diversity has been enabled or no antenna changes * have been made since the last configuration change. */ rt2x00lib_config_antenna(rt2x00dev, rt2x00dev->default_ant); mutex_unlock(&rt2x00dev->conf_mutex); /* Turn RX back on */ rt2x00queue_start_queue(rt2x00dev->rx); return 0; } EXPORT_SYMBOL_GPL(rt2x00mac_config); void rt2x00mac_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct rt2x00_dev *rt2x00dev = hw->priv; /* * Mask off any flags we are going to ignore * from the total_flags field. */ *total_flags &= FIF_ALLMULTI | FIF_FCSFAIL | FIF_PLCPFAIL | FIF_CONTROL | FIF_PSPOLL | FIF_OTHER_BSS; /* * Apply some rules to the filters: * - Some filters imply different filters to be set. * - Some things we can't filter out at all. * - Multicast filter seems to kill broadcast traffic so never use it. */ *total_flags |= FIF_ALLMULTI; /* * If the device has a single filter for all control frames, * FIF_CONTROL and FIF_PSPOLL flags imply each other. * And if the device has more than one filter for control frames * of different types, but has no a separate filter for PS Poll frames, * FIF_CONTROL flag implies FIF_PSPOLL. */ if (!rt2x00_has_cap_control_filters(rt2x00dev)) { if (*total_flags & FIF_CONTROL || *total_flags & FIF_PSPOLL) *total_flags |= FIF_CONTROL | FIF_PSPOLL; } if (!rt2x00_has_cap_control_filter_pspoll(rt2x00dev)) { if (*total_flags & FIF_CONTROL) *total_flags |= FIF_PSPOLL; } rt2x00dev->packet_filter = *total_flags; rt2x00dev->ops->lib->config_filter(rt2x00dev, *total_flags); } EXPORT_SYMBOL_GPL(rt2x00mac_configure_filter); static void rt2x00mac_set_tim_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rt2x00_intf *intf = vif_to_intf(vif); if (vif->type != NL80211_IFTYPE_AP && vif->type != NL80211_IFTYPE_ADHOC && vif->type != NL80211_IFTYPE_MESH_POINT) return; set_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags); } int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set) { struct rt2x00_dev *rt2x00dev = hw->priv; if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return 0; ieee80211_iterate_active_interfaces_atomic( rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, rt2x00mac_set_tim_iter, rt2x00dev); /* queue work to upodate the beacon template */ ieee80211_queue_work(rt2x00dev->hw, &rt2x00dev->intf_work); return 0; } EXPORT_SYMBOL_GPL(rt2x00mac_set_tim); #ifdef CONFIG_RT2X00_LIB_CRYPTO static void memcpy_tkip(struct rt2x00lib_crypto *crypto, u8 *key, u8 key_len) { if (key_len > NL80211_TKIP_DATA_OFFSET_ENCR_KEY) memcpy(crypto->key, &key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY], sizeof(crypto->key)); if (key_len > NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY) memcpy(crypto->tx_mic, &key[NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY], sizeof(crypto->tx_mic)); if (key_len > NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY) memcpy(crypto->rx_mic, &key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY], sizeof(crypto->rx_mic)); } int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct rt2x00_dev *rt2x00dev = hw->priv; int (*set_key) (struct rt2x00_dev *rt2x00dev, struct rt2x00lib_crypto *crypto, struct ieee80211_key_conf *key); struct rt2x00lib_crypto crypto; static const u8 bcast_addr[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; struct rt2x00_sta *sta_priv = NULL; if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return 0; /* The hardware can't do MFP */ if (!rt2x00_has_cap_hw_crypto(rt2x00dev) || (sta && sta->mfp)) return -EOPNOTSUPP; /* * To support IBSS RSN, don't program group keys in IBSS, the * hardware will then not attempt to decrypt the frames. */ if (vif->type == NL80211_IFTYPE_ADHOC && !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) return -EOPNOTSUPP; if (key->keylen > 32) return -ENOSPC; memset(&crypto, 0, sizeof(crypto)); crypto.bssidx = rt2x00lib_get_bssidx(rt2x00dev, vif); crypto.cipher = rt2x00crypto_key_to_cipher(key); if (crypto.cipher == CIPHER_NONE) return -EOPNOTSUPP; if (crypto.cipher == CIPHER_TKIP && rt2x00_is_usb(rt2x00dev)) return -EOPNOTSUPP; crypto.cmd = cmd; if (sta) { crypto.address = sta->addr; sta_priv = sta_to_rt2x00_sta(sta); crypto.wcid = sta_priv->wcid; } else crypto.address = bcast_addr; if (crypto.cipher == CIPHER_TKIP) memcpy_tkip(&crypto, &key->key[0], key->keylen); else memcpy(crypto.key, &key->key[0], key->keylen); /* * Each BSS has a maximum of 4 shared keys. * Shared key index values: * 0) BSS0 key0 * 1) BSS0 key1 * ... * 4) BSS1 key0 * ... * 8) BSS2 key0 * ... * Both pairwise as shared key indeces are determined by * driver. This is required because the hardware requires * keys to be assigned in correct order (When key 1 is * provided but key 0 is not, then the key is not found * by the hardware during RX). */ if (cmd == SET_KEY) key->hw_key_idx = 0; if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) set_key = rt2x00dev->ops->lib->config_pairwise_key; else set_key = rt2x00dev->ops->lib->config_shared_key; if (!set_key) return -EOPNOTSUPP; return set_key(rt2x00dev, &crypto, key); } EXPORT_SYMBOL_GPL(rt2x00mac_set_key); #endif /* CONFIG_RT2X00_LIB_CRYPTO */ void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const u8 *mac_addr) { struct rt2x00_dev *rt2x00dev = hw->priv; set_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags); rt2x00link_stop_tuner(rt2x00dev); } EXPORT_SYMBOL_GPL(rt2x00mac_sw_scan_start); void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct rt2x00_dev *rt2x00dev = hw->priv; clear_bit(DEVICE_STATE_SCANNING, &rt2x00dev->flags); rt2x00link_start_tuner(rt2x00dev); } EXPORT_SYMBOL_GPL(rt2x00mac_sw_scan_complete); int rt2x00mac_get_stats(struct ieee80211_hw *hw, struct ieee80211_low_level_stats *stats) { struct rt2x00_dev *rt2x00dev = hw->priv; /* * The dot11ACKFailureCount, dot11RTSFailureCount and * dot11RTSSuccessCount are updated in interrupt time. * dot11FCSErrorCount is updated in the link tuner. */ memcpy(stats, &rt2x00dev->low_level_stats, sizeof(*stats)); return 0; } EXPORT_SYMBOL_GPL(rt2x00mac_get_stats); void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u64 changes) { struct rt2x00_dev *rt2x00dev = hw->priv; struct rt2x00_intf *intf = vif_to_intf(vif); /* * mac80211 might be calling this function while we are trying * to remove the device or perhaps suspending it. */ if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return; /* * Update the BSSID. */ if (changes & BSS_CHANGED_BSSID) rt2x00lib_config_intf(rt2x00dev, intf, vif->type, NULL, bss_conf->bssid); /* * Start/stop beaconing. */ if (changes & BSS_CHANGED_BEACON_ENABLED) { mutex_lock(&intf->beacon_skb_mutex); if (!bss_conf->enable_beacon && intf->enable_beacon) { rt2x00dev->intf_beaconing--; intf->enable_beacon = false; if (rt2x00dev->intf_beaconing == 0) { /* * Last beaconing interface disabled * -> stop beacon queue. */ rt2x00queue_stop_queue(rt2x00dev->bcn); } /* * Clear beacon in the H/W for this vif. This is needed * to disable beaconing on this particular interface * and keep it running on other interfaces. */ rt2x00queue_clear_beacon(rt2x00dev, vif); } else if (bss_conf->enable_beacon && !intf->enable_beacon) { rt2x00dev->intf_beaconing++; intf->enable_beacon = true; /* * Upload beacon to the H/W. This is only required on * USB devices. PCI devices fetch beacons periodically. */ if (rt2x00_is_usb(rt2x00dev)) rt2x00queue_update_beacon(rt2x00dev, vif); if (rt2x00dev->intf_beaconing == 1) { /* * First beaconing interface enabled * -> start beacon queue. */ rt2x00queue_start_queue(rt2x00dev->bcn); } } mutex_unlock(&intf->beacon_skb_mutex); } /* * When the association status has changed we must reset the link * tuner counter. This is because some drivers determine if they * should perform link tuning based on the number of seconds * while associated or not associated. */ if (changes & BSS_CHANGED_ASSOC) { rt2x00dev->link.count = 0; if (vif->cfg.assoc) rt2x00dev->intf_associated++; else rt2x00dev->intf_associated--; rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated); } /* * When the erp information has changed, we should perform * additional configuration steps. For all other changes we are done. */ if (changes & (BSS_CHANGED_ERP_CTS_PROT | BSS_CHANGED_ERP_PREAMBLE | BSS_CHANGED_ERP_SLOT | BSS_CHANGED_BASIC_RATES | BSS_CHANGED_BEACON_INT | BSS_CHANGED_HT)) rt2x00lib_config_erp(rt2x00dev, intf, bss_conf, changes); } EXPORT_SYMBOL_GPL(rt2x00mac_bss_info_changed); int rt2x00mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id, u16 queue_idx, const struct ieee80211_tx_queue_params *params) { struct rt2x00_dev *rt2x00dev = hw->priv; struct data_queue *queue; queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); if (unlikely(!queue)) return -EINVAL; /* * The passed variables are stored as real value ((2^n)-1). * Ralink registers require to know the bit number 'n'. */ if (params->cw_min > 0) queue->cw_min = fls(params->cw_min); else queue->cw_min = 5; /* cw_min: 2^5 = 32. */ if (params->cw_max > 0) queue->cw_max = fls(params->cw_max); else queue->cw_max = 10; /* cw_min: 2^10 = 1024. */ queue->aifs = params->aifs; queue->txop = params->txop; rt2x00_dbg(rt2x00dev, "Configured TX queue %d - CWmin: %d, CWmax: %d, Aifs: %d, TXop: %d\n", queue_idx, queue->cw_min, queue->cw_max, queue->aifs, queue->txop); return 0; } EXPORT_SYMBOL_GPL(rt2x00mac_conf_tx); void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw) { struct rt2x00_dev *rt2x00dev = hw->priv; bool active = !!rt2x00dev->ops->lib->rfkill_poll(rt2x00dev); wiphy_rfkill_set_hw_state(hw->wiphy, !active); } EXPORT_SYMBOL_GPL(rt2x00mac_rfkill_poll); void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { struct rt2x00_dev *rt2x00dev = hw->priv; struct data_queue *queue; if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) return; set_bit(DEVICE_STATE_FLUSHING, &rt2x00dev->flags); tx_queue_for_each(rt2x00dev, queue) rt2x00queue_flush_queue(queue, drop); clear_bit(DEVICE_STATE_FLUSHING, &rt2x00dev->flags); } EXPORT_SYMBOL_GPL(rt2x00mac_flush); int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) { struct rt2x00_dev *rt2x00dev = hw->priv; struct link_ant *ant = &rt2x00dev->link.ant; struct antenna_setup *def = &rt2x00dev->default_ant; struct antenna_setup setup; // The antenna value is not supposed to be 0, // or exceed the maximum number of antenna's. if (!tx_ant || (tx_ant & ~3) || !rx_ant || (rx_ant & ~3)) return -EINVAL; // When the client tried to configure the antenna to or from // diversity mode, we must reset the default antenna as well // as that controls the diversity switch. if (ant->flags & ANTENNA_TX_DIVERSITY && tx_ant != 3) ant->flags &= ~ANTENNA_TX_DIVERSITY; if (ant->flags & ANTENNA_RX_DIVERSITY && rx_ant != 3) ant->flags &= ~ANTENNA_RX_DIVERSITY; // If diversity is being enabled, check if we need hardware // or software diversity. In the latter case, reset the value, // and make sure we update the antenna flags to have the // link tuner pick up the diversity tuning. if (tx_ant == 3 && def->tx == ANTENNA_SW_DIVERSITY) { tx_ant = ANTENNA_SW_DIVERSITY; ant->flags |= ANTENNA_TX_DIVERSITY; } if (rx_ant == 3 && def->rx == ANTENNA_SW_DIVERSITY) { rx_ant = ANTENNA_SW_DIVERSITY; ant->flags |= ANTENNA_RX_DIVERSITY; } setup.tx = tx_ant; setup.rx = rx_ant; setup.rx_chain_num = 0; setup.tx_chain_num = 0; rt2x00lib_config_antenna(rt2x00dev, setup); return 0; } EXPORT_SYMBOL_GPL(rt2x00mac_set_antenna); int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) { struct rt2x00_dev *rt2x00dev = hw->priv; struct link_ant *ant = &rt2x00dev->link.ant; struct antenna_setup *active = &rt2x00dev->link.ant.active; // When software diversity is active, we must report this to the // client and not the current active antenna state. if (ant->flags & ANTENNA_TX_DIVERSITY) *tx_ant = ANTENNA_HW_DIVERSITY; else *tx_ant = active->tx; if (ant->flags & ANTENNA_RX_DIVERSITY) *rx_ant = ANTENNA_HW_DIVERSITY; else *rx_ant = active->rx; return 0; } EXPORT_SYMBOL_GPL(rt2x00mac_get_antenna); void rt2x00mac_get_ringparam(struct ieee80211_hw *hw, u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max) { struct rt2x00_dev *rt2x00dev = hw->priv; struct data_queue *queue; tx_queue_for_each(rt2x00dev, queue) { *tx += queue->length; *tx_max += queue->limit; } *rx = rt2x00dev->rx->length; *rx_max = rt2x00dev->rx->limit; } EXPORT_SYMBOL_GPL(rt2x00mac_get_ringparam); bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw) { struct rt2x00_dev *rt2x00dev = hw->priv; struct data_queue *queue; tx_queue_for_each(rt2x00dev, queue) { if (!rt2x00queue_empty(queue)) return true; } return false; } EXPORT_SYMBOL_GPL(rt2x00mac_tx_frames_pending);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1