Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Larry Finger | 14096 | 94.46% | 10 | 40.00% |
Troy Tan | 525 | 3.52% | 1 | 4.00% |
Ping-Ke Shih | 274 | 1.84% | 8 | 32.00% |
Sriram R | 12 | 0.08% | 1 | 4.00% |
Joe Perches | 8 | 0.05% | 1 | 4.00% |
Shao Fu | 4 | 0.03% | 1 | 4.00% |
Colin Ian King | 1 | 0.01% | 1 | 4.00% |
zhengbin | 1 | 0.01% | 1 | 4.00% |
Jes Sorensen | 1 | 0.01% | 1 | 4.00% |
Total | 14922 | 25 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2009-2014 Realtek Corporation.*/ #include "../wifi.h" #include "../efuse.h" #include "../base.h" #include "../regd.h" #include "../cam.h" #include "../ps.h" #include "../pci.h" #include "reg.h" #include "def.h" #include "phy.h" #include "dm.h" #include "fw.h" #include "led.h" #include "hw.h" #include "../pwrseqcmd.h" #include "pwrseq.h" #define LLT_CONFIG 5 static void _rtl92ee_set_bcn_ctrl_reg(struct ieee80211_hw *hw, u8 set_bits, u8 clear_bits) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpci->reg_bcn_ctrl_val |= set_bits; rtlpci->reg_bcn_ctrl_val &= ~clear_bits; rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val); } static void _rtl92ee_stop_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp; tmp = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp & (~BIT(6))); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); tmp = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp &= ~(BIT(0)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp); } static void _rtl92ee_resume_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp; tmp = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp | BIT(6)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); tmp = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp |= BIT(0); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp); } static void _rtl92ee_enable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl92ee_set_bcn_ctrl_reg(hw, 0, BIT(1)); } static void _rtl92ee_disable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl92ee_set_bcn_ctrl_reg(hw, BIT(1), 0); } static void _rtl92ee_set_fw_clock_on(struct ieee80211_hw *hw, u8 rpwm_val, bool b_need_turn_off_ckk) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool b_support_remote_wake_up; u32 count = 0, isr_regaddr, content; bool b_schedule_timer = b_need_turn_off_ckk; rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN, (u8 *)(&b_support_remote_wake_up)); if (!rtlhal->fw_ready) return; if (!rtlpriv->psc.fw_current_inpsmode) return; while (1) { spin_lock_bh(&rtlpriv->locks.fw_ps_lock); if (rtlhal->fw_clk_change_in_progress) { while (rtlhal->fw_clk_change_in_progress) { spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); count++; udelay(100); if (count > 1000) return; spin_lock_bh(&rtlpriv->locks.fw_ps_lock); } spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); } else { rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); break; } } if (IS_IN_LOW_POWER_STATE_92E(rtlhal->fw_ps_state)) { rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM, (u8 *)(&rpwm_val)); if (FW_PS_IS_ACK(rpwm_val)) { isr_regaddr = REG_HISR; content = rtl_read_dword(rtlpriv, isr_regaddr); while (!(content & IMR_CPWM) && (count < 500)) { udelay(50); count++; content = rtl_read_dword(rtlpriv, isr_regaddr); } if (content & IMR_CPWM) { rtl_write_word(rtlpriv, isr_regaddr, 0x0100); rtlhal->fw_ps_state = FW_PS_STATE_RF_ON_92E; rtl_dbg(rtlpriv, COMP_POWER, DBG_LOUD, "Receive CPWM INT!!! PSState = %X\n", rtlhal->fw_ps_state); } } spin_lock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); if (b_schedule_timer) { mod_timer(&rtlpriv->works.fw_clockoff_timer, jiffies + MSECS(10)); } } else { spin_lock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); } } static void _rtl92ee_set_fw_clock_off(struct ieee80211_hw *hw, u8 rpwm_val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring; enum rf_pwrstate rtstate; bool b_schedule_timer = false; u8 queue; if (!rtlhal->fw_ready) return; if (!rtlpriv->psc.fw_current_inpsmode) return; if (!rtlhal->allow_sw_to_change_hwclc) return; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate)); if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF) return; for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) { ring = &rtlpci->tx_ring[queue]; if (skb_queue_len(&ring->queue)) { b_schedule_timer = true; break; } } if (b_schedule_timer) { mod_timer(&rtlpriv->works.fw_clockoff_timer, jiffies + MSECS(10)); return; } if (FW_PS_STATE(rtlhal->fw_ps_state) != FW_PS_STATE_RF_OFF_LOW_PWR) { spin_lock_bh(&rtlpriv->locks.fw_ps_lock); if (!rtlhal->fw_clk_change_in_progress) { rtlhal->fw_clk_change_in_progress = true; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val); rtl_write_word(rtlpriv, REG_HISR, 0x0100); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, (u8 *)(&rpwm_val)); spin_lock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); } else { spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); mod_timer(&rtlpriv->works.fw_clockoff_timer, jiffies + MSECS(10)); } } } static void _rtl92ee_set_fw_ps_rf_on(struct ieee80211_hw *hw) { u8 rpwm_val = 0; rpwm_val |= (FW_PS_STATE_RF_OFF_92E | FW_PS_ACK); _rtl92ee_set_fw_clock_on(hw, rpwm_val, true); } static void _rtl92ee_set_fw_ps_rf_off_low_power(struct ieee80211_hw *hw) { u8 rpwm_val = 0; rpwm_val |= FW_PS_STATE_RF_OFF_LOW_PWR; _rtl92ee_set_fw_clock_off(hw, rpwm_val); } void rtl92ee_fw_clk_off_timer_callback(unsigned long data) { struct ieee80211_hw *hw = (struct ieee80211_hw *)data; _rtl92ee_set_fw_ps_rf_off_low_power(hw); } static void _rtl92ee_fwlps_leave(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool fw_current_inps = false; u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE; if (ppsc->low_power_enable) { rpwm_val = (FW_PS_STATE_ALL_ON_92E | FW_PS_ACK);/* RF on */ _rtl92ee_set_fw_clock_on(hw, rpwm_val, false); rtlhal->allow_sw_to_change_hwclc = false; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, (u8 *)(&fw_pwrmode)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); } else { rpwm_val = FW_PS_STATE_ALL_ON_92E; /* RF on */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, (u8 *)(&rpwm_val)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, (u8 *)(&fw_pwrmode)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); } } static void _rtl92ee_fwlps_enter(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool fw_current_inps = true; u8 rpwm_val; if (ppsc->low_power_enable) { rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR; /* RF off */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, (u8 *)(&ppsc->fwctrl_psmode)); rtlhal->allow_sw_to_change_hwclc = true; _rtl92ee_set_fw_clock_off(hw, rpwm_val); } else { rpwm_val = FW_PS_STATE_RF_OFF_92E; /* RF off */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, (u8 *)(&ppsc->fwctrl_psmode)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, (u8 *)(&rpwm_val)); } } void rtl92ee_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); switch (variable) { case HW_VAR_RCR: *((u32 *)(val)) = rtlpci->receive_config; break; case HW_VAR_RF_STATE: *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; break; case HW_VAR_FWLPS_RF_ON:{ enum rf_pwrstate rfstate; u32 val_rcr; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rfstate)); if (rfstate == ERFOFF) { *((bool *)(val)) = true; } else { val_rcr = rtl_read_dword(rtlpriv, REG_RCR); val_rcr &= 0x00070000; if (val_rcr) *((bool *)(val)) = false; else *((bool *)(val)) = true; } } break; case HW_VAR_FW_PSMODE_STATUS: *((bool *)(val)) = ppsc->fw_current_inpsmode; break; case HW_VAR_CORRECT_TSF:{ u64 tsf; u32 *ptsf_low = (u32 *)&tsf; u32 *ptsf_high = ((u32 *)&tsf) + 1; *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); *((u64 *)(val)) = tsf; } break; case HAL_DEF_WOWLAN: break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_DMESG, "switch case %#x not processed\n", variable); break; } } static void _rtl92ee_download_rsvd_page(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp_regcr, tmp_reg422; u8 bcnvalid_reg, txbc_reg; u8 count = 0, dlbcn_count = 0; bool b_recover = false; /*Set REG_CR bit 8. DMA beacon by SW.*/ tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); rtl_write_byte(rtlpriv, REG_CR + 1, tmp_regcr | BIT(0)); /* Disable Hw protection for a time which revserd for Hw sending beacon. * Fix download reserved page packet fail * that access collision with the protection time. * 2010.05.11. Added by tynli. */ _rtl92ee_set_bcn_ctrl_reg(hw, 0, BIT(3)); _rtl92ee_set_bcn_ctrl_reg(hw, BIT(4), 0); /* Set FWHW_TXQ_CTRL 0x422[6]=0 to * tell Hw the packet is not a real beacon frame. */ tmp_reg422 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 & (~BIT(6))); if (tmp_reg422 & BIT(6)) b_recover = true; do { /* Clear beacon valid check bit */ bcnvalid_reg = rtl_read_byte(rtlpriv, REG_DWBCN0_CTRL + 2); rtl_write_byte(rtlpriv, REG_DWBCN0_CTRL + 2, bcnvalid_reg | BIT(0)); /* download rsvd page */ rtl92ee_set_fw_rsvdpagepkt(hw, false); txbc_reg = rtl_read_byte(rtlpriv, REG_MGQ_TXBD_NUM + 3); count = 0; while ((txbc_reg & BIT(4)) && count < 20) { count++; udelay(10); txbc_reg = rtl_read_byte(rtlpriv, REG_MGQ_TXBD_NUM + 3); } rtl_write_byte(rtlpriv, REG_MGQ_TXBD_NUM + 3, txbc_reg | BIT(4)); /* check rsvd page download OK. */ bcnvalid_reg = rtl_read_byte(rtlpriv, REG_DWBCN0_CTRL + 2); count = 0; while (!(bcnvalid_reg & BIT(0)) && count < 20) { count++; udelay(50); bcnvalid_reg = rtl_read_byte(rtlpriv, REG_DWBCN0_CTRL + 2); } if (bcnvalid_reg & BIT(0)) rtl_write_byte(rtlpriv, REG_DWBCN0_CTRL + 2, BIT(0)); dlbcn_count++; } while (!(bcnvalid_reg & BIT(0)) && dlbcn_count < 5); if (!(bcnvalid_reg & BIT(0))) rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Download RSVD page failed!\n"); /* Enable Bcn */ _rtl92ee_set_bcn_ctrl_reg(hw, BIT(3), 0); _rtl92ee_set_bcn_ctrl_reg(hw, 0, BIT(4)); if (b_recover) rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422); tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); rtl_write_byte(rtlpriv, REG_CR + 1, tmp_regcr & (~BIT(0))); } void rtl92ee_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *efuse = rtl_efuse(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u8 idx; switch (variable) { case HW_VAR_ETHER_ADDR: for (idx = 0; idx < ETH_ALEN; idx++) rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]); break; case HW_VAR_BASIC_RATE:{ u16 b_rate_cfg = ((u16 *)val)[0]; b_rate_cfg = b_rate_cfg & 0x15f; b_rate_cfg |= 0x01; b_rate_cfg = (b_rate_cfg | 0xd) & (~BIT(1)); rtl_write_byte(rtlpriv, REG_RRSR, b_rate_cfg & 0xff); rtl_write_byte(rtlpriv, REG_RRSR + 1, (b_rate_cfg >> 8) & 0xff); break; } case HW_VAR_BSSID: for (idx = 0; idx < ETH_ALEN; idx++) rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]); break; case HW_VAR_SIFS: rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); if (!mac->ht_enable) rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e); else rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, *((u16 *)val)); break; case HW_VAR_SLOT_TIME:{ u8 e_aci; rtl_dbg(rtlpriv, COMP_MLME, DBG_TRACE, "HW_VAR_SLOT_TIME %x\n", val[0]); rtl_write_byte(rtlpriv, REG_SLOT, val[0]); for (e_aci = 0; e_aci < AC_MAX; e_aci++) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, (u8 *)(&e_aci)); } break; } case HW_VAR_ACK_PREAMBLE:{ u8 reg_tmp; u8 short_preamble = (bool)(*(u8 *)val); reg_tmp = (rtlpriv->mac80211.cur_40_prime_sc) << 5; if (short_preamble) reg_tmp |= 0x80; rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp); rtlpriv->mac80211.short_preamble = short_preamble; } break; case HW_VAR_WPA_CONFIG: rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *)val)); break; case HW_VAR_AMPDU_FACTOR:{ u8 regtoset_normal[4] = { 0x41, 0xa8, 0x72, 0xb9 }; u8 fac; u8 *reg = NULL; u8 i = 0; reg = regtoset_normal; fac = *((u8 *)val); if (fac <= 3) { fac = (1 << (fac + 2)); if (fac > 0xf) fac = 0xf; for (i = 0; i < 4; i++) { if ((reg[i] & 0xf0) > (fac << 4)) reg[i] = (reg[i] & 0x0f) | (fac << 4); if ((reg[i] & 0x0f) > fac) reg[i] = (reg[i] & 0xf0) | fac; rtl_write_byte(rtlpriv, (REG_AGGLEN_LMT + i), reg[i]); } rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_FACTOR:%#x\n", fac); } } break; case HW_VAR_AC_PARAM:{ u8 e_aci = *((u8 *)val); if (rtlpci->acm_method != EACMWAY2_SW) rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, (u8 *)(&e_aci)); } break; case HW_VAR_ACM_CTRL:{ u8 e_aci = *((u8 *)val); union aci_aifsn *aifs = (union aci_aifsn *)(&mac->ac[0].aifs); u8 acm = aifs->f.acm; u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); if (acm) { switch (e_aci) { case AC0_BE: acm_ctrl |= ACMHW_BEQEN; break; case AC2_VI: acm_ctrl |= ACMHW_VIQEN; break; case AC3_VO: acm_ctrl |= ACMHW_VOQEN; break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", acm); break; } } else { switch (e_aci) { case AC0_BE: acm_ctrl &= (~ACMHW_BEQEN); break; case AC2_VI: acm_ctrl &= (~ACMHW_VIQEN); break; case AC3_VO: acm_ctrl &= (~ACMHW_VOQEN); break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_DMESG, "switch case %#x not processed\n", e_aci); break; } } rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE, "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", acm_ctrl); rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); } break; case HW_VAR_RCR:{ rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]); rtlpci->receive_config = ((u32 *)(val))[0]; } break; case HW_VAR_RETRY_LIMIT:{ u8 retry_limit = ((u8 *)(val))[0]; rtl_write_word(rtlpriv, REG_RETRY_LIMIT, retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT); } break; case HW_VAR_DUAL_TSF_RST: rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); break; case HW_VAR_EFUSE_BYTES: efuse->efuse_usedbytes = *((u16 *)val); break; case HW_VAR_EFUSE_USAGE: efuse->efuse_usedpercentage = *((u8 *)val); break; case HW_VAR_IO_CMD: rtl92ee_phy_set_io_cmd(hw, (*(enum io_type *)val)); break; case HW_VAR_SET_RPWM:{ u8 rpwm_val; rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM); udelay(1); if (rpwm_val & BIT(7)) { rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, (*(u8 *)val)); } else { rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, ((*(u8 *)val) | BIT(7))); } } break; case HW_VAR_H2C_FW_PWRMODE: rtl92ee_set_fw_pwrmode_cmd(hw, (*(u8 *)val)); break; case HW_VAR_FW_PSMODE_STATUS: ppsc->fw_current_inpsmode = *((bool *)val); break; case HW_VAR_RESUME_CLK_ON: _rtl92ee_set_fw_ps_rf_on(hw); break; case HW_VAR_FW_LPS_ACTION:{ bool b_enter_fwlps = *((bool *)val); if (b_enter_fwlps) _rtl92ee_fwlps_enter(hw); else _rtl92ee_fwlps_leave(hw); } break; case HW_VAR_H2C_FW_JOINBSSRPT:{ u8 mstatus = (*(u8 *)val); if (mstatus == RT_MEDIA_CONNECT) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL); _rtl92ee_download_rsvd_page(hw); } rtl92ee_set_fw_media_status_rpt_cmd(hw, mstatus); } break; case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: rtl92ee_set_p2p_ps_offload_cmd(hw, (*(u8 *)val)); break; case HW_VAR_AID:{ u16 u2btmp; u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); u2btmp &= 0xC000; rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | mac->assoc_id)); } break; case HW_VAR_CORRECT_TSF:{ u8 btype_ibss = ((u8 *)(val))[0]; if (btype_ibss) _rtl92ee_stop_tx_beacon(hw); _rtl92ee_set_bcn_ctrl_reg(hw, 0, BIT(3)); rtl_write_dword(rtlpriv, REG_TSFTR, (u32)(mac->tsf & 0xffffffff)); rtl_write_dword(rtlpriv, REG_TSFTR + 4, (u32)((mac->tsf >> 32) & 0xffffffff)); _rtl92ee_set_bcn_ctrl_reg(hw, BIT(3), 0); if (btype_ibss) _rtl92ee_resume_tx_beacon(hw); } break; case HW_VAR_KEEP_ALIVE: { u8 array[2]; array[0] = 0xff; array[1] = *((u8 *)val); rtl92ee_fill_h2c_cmd(hw, H2C_92E_KEEP_ALIVE_CTRL, 2, array); } break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_DMESG, "switch case %#x not processed\n", variable); break; } } static bool _rtl92ee_llt_table_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 txpktbuf_bndy; u8 u8tmp, testcnt = 0; txpktbuf_bndy = 0xF7; rtl_write_dword(rtlpriv, REG_RQPN, 0x80E60808); rtl_write_byte(rtlpriv, REG_TRXFF_BNDY, txpktbuf_bndy); rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x3d00 - 1); rtl_write_byte(rtlpriv, REG_DWBCN0_CTRL + 1, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_DWBCN1_CTRL + 1, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_BCNQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_BCNQ1_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_MGQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_PBP, 0x31); rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); u8tmp = rtl_read_byte(rtlpriv, REG_AUTO_LLT + 2); rtl_write_byte(rtlpriv, REG_AUTO_LLT + 2, u8tmp | BIT(0)); while (u8tmp & BIT(0)) { u8tmp = rtl_read_byte(rtlpriv, REG_AUTO_LLT + 2); udelay(10); testcnt++; if (testcnt > 10) break; } return true; } static void _rtl92ee_gen_refresh_led_state(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_led *pled0 = &rtlpriv->ledctl.sw_led0; if (rtlpriv->rtlhal.up_first_time) return; if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) rtl92ee_sw_led_on(hw, pled0); else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) rtl92ee_sw_led_on(hw, pled0); else rtl92ee_sw_led_off(hw, pled0); } static bool _rtl92ee_init_mac(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 bytetmp; u16 wordtmp; u32 dwordtmp; rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0); dwordtmp = rtl_read_dword(rtlpriv, REG_SYS_CFG1); if (dwordtmp & BIT(24)) { rtl_write_byte(rtlpriv, 0x7c, 0xc3); } else { bytetmp = rtl_read_byte(rtlpriv, 0x16); rtl_write_byte(rtlpriv, 0x16, bytetmp | BIT(4) | BIT(6)); rtl_write_byte(rtlpriv, 0x7c, 0x83); } /* 1. 40Mhz crystal source*/ bytetmp = rtl_read_byte(rtlpriv, REG_AFE_CTRL2); bytetmp &= 0xfb; rtl_write_byte(rtlpriv, REG_AFE_CTRL2, bytetmp); dwordtmp = rtl_read_dword(rtlpriv, REG_AFE_CTRL4); dwordtmp &= 0xfffffc7f; rtl_write_dword(rtlpriv, REG_AFE_CTRL4, dwordtmp); /* 2. 92E AFE parameter * MP chip then check version */ bytetmp = rtl_read_byte(rtlpriv, REG_AFE_CTRL2); bytetmp &= 0xbf; rtl_write_byte(rtlpriv, REG_AFE_CTRL2, bytetmp); dwordtmp = rtl_read_dword(rtlpriv, REG_AFE_CTRL4); dwordtmp &= 0xffdfffff; rtl_write_dword(rtlpriv, REG_AFE_CTRL4, dwordtmp); /* HW Power on sequence */ if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8192E_NIC_ENABLE_FLOW)) { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "init MAC Fail as rtl_hal_pwrseqcmdparsing\n"); return false; } /* Release MAC IO register reset */ bytetmp = rtl_read_byte(rtlpriv, REG_CR); bytetmp = 0xff; rtl_write_byte(rtlpriv, REG_CR, bytetmp); mdelay(2); bytetmp = 0x7f; rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, bytetmp); mdelay(2); /* Add for wakeup online */ bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR); rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp | BIT(3)); bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG + 1); rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG + 1, bytetmp & (~BIT(4))); /* Release MAC IO register reset */ rtl_write_word(rtlpriv, REG_CR, 0x2ff); if (!rtlhal->mac_func_enable) { if (!_rtl92ee_llt_table_init(hw)) { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "LLT table init fail\n"); return false; } } rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff); wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); wordtmp &= 0xf; wordtmp |= 0xF5B1; rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); /* Reported Tx status from HW for rate adaptive.*/ rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F); /* Set RCR register */ rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xffff); /* Set TCR register */ rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); /* Set TX/RX descriptor physical address -- HI part */ if (!rtlpriv->cfg->mod_params->dma64) goto dma64_end; rtl_write_dword(rtlpriv, REG_BCNQ_DESA + 4, ((u64)rtlpci->tx_ring[BEACON_QUEUE].buffer_desc_dma) >> 32); rtl_write_dword(rtlpriv, REG_MGQ_DESA + 4, (u64)rtlpci->tx_ring[MGNT_QUEUE].buffer_desc_dma >> 32); rtl_write_dword(rtlpriv, REG_VOQ_DESA + 4, (u64)rtlpci->tx_ring[VO_QUEUE].buffer_desc_dma >> 32); rtl_write_dword(rtlpriv, REG_VIQ_DESA + 4, (u64)rtlpci->tx_ring[VI_QUEUE].buffer_desc_dma >> 32); rtl_write_dword(rtlpriv, REG_BEQ_DESA + 4, (u64)rtlpci->tx_ring[BE_QUEUE].buffer_desc_dma >> 32); rtl_write_dword(rtlpriv, REG_BKQ_DESA + 4, (u64)rtlpci->tx_ring[BK_QUEUE].buffer_desc_dma >> 32); rtl_write_dword(rtlpriv, REG_HQ0_DESA + 4, (u64)rtlpci->tx_ring[HIGH_QUEUE].buffer_desc_dma >> 32); rtl_write_dword(rtlpriv, REG_RX_DESA + 4, (u64)rtlpci->rx_ring[RX_MPDU_QUEUE].dma >> 32); dma64_end: /* Set TX/RX descriptor physical address(from OS API). */ rtl_write_dword(rtlpriv, REG_BCNQ_DESA, ((u64)rtlpci->tx_ring[BEACON_QUEUE].buffer_desc_dma) & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_MGQ_DESA, (u64)rtlpci->tx_ring[MGNT_QUEUE].buffer_desc_dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_VOQ_DESA, (u64)rtlpci->tx_ring[VO_QUEUE].buffer_desc_dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_VIQ_DESA, (u64)rtlpci->tx_ring[VI_QUEUE].buffer_desc_dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_BEQ_DESA, (u64)rtlpci->tx_ring[BE_QUEUE].buffer_desc_dma & DMA_BIT_MASK(32)); dwordtmp = rtl_read_dword(rtlpriv, REG_BEQ_DESA); rtl_write_dword(rtlpriv, REG_BKQ_DESA, (u64)rtlpci->tx_ring[BK_QUEUE].buffer_desc_dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_HQ0_DESA, (u64)rtlpci->tx_ring[HIGH_QUEUE].buffer_desc_dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_RX_DESA, (u64)rtlpci->rx_ring[RX_MPDU_QUEUE].dma & DMA_BIT_MASK(32)); /* if we want to support 64 bit DMA, we should set it here, * but now we do not support 64 bit DMA */ rtl_write_dword(rtlpriv, REG_TSFTIMER_HCI, 0x3fffffff); bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 3); rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, bytetmp | 0xF7); rtl_write_dword(rtlpriv, REG_INT_MIG, 0); rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); rtl_write_word(rtlpriv, REG_MGQ_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_VOQ_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_VIQ_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_BEQ_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_VOQ_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_BKQ_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_HI0Q_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_HI1Q_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_HI2Q_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_HI3Q_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_HI4Q_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_HI5Q_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_HI6Q_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); rtl_write_word(rtlpriv, REG_HI7Q_TXBD_NUM, TX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 12) & 0x3000)); /*Rx*/ rtl_write_word(rtlpriv, REG_RX_RXBD_NUM, RX_DESC_NUM_92E | ((RTL8192EE_SEG_NUM << 13) & 0x6000) | 0x8000); rtl_write_dword(rtlpriv, REG_TSFTIMER_HCI, 0XFFFFFFFF); _rtl92ee_gen_refresh_led_state(hw); return true; } static void _rtl92ee_hw_configure(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u32 reg_rrsr; reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; /* Init value for RRSR. */ rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr); /* ARFB table 9 for 11ac 5G 2SS */ rtl_write_dword(rtlpriv, REG_ARFR0, 0x00000010); rtl_write_dword(rtlpriv, REG_ARFR0 + 4, 0x3e0ff000); /* ARFB table 10 for 11ac 5G 1SS */ rtl_write_dword(rtlpriv, REG_ARFR1, 0x00000010); rtl_write_dword(rtlpriv, REG_ARFR1 + 4, 0x000ff000); /* Set SLOT time */ rtl_write_byte(rtlpriv, REG_SLOT, 0x09); /* CF-End setting. */ rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80); /* Set retry limit */ rtl_write_word(rtlpriv, REG_RETRY_LIMIT, 0x0707); /* BAR settings */ rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x0201ffff); /* Set Data / Response auto rate fallack retry count */ rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000); rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504); rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000); rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504); /* Beacon related, for rate adaptive */ rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2); rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff); rtlpci->reg_bcn_ctrl_val = 0x1d; rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val); /* Marked out by Bruce, 2010-09-09. * This register is configured for the 2nd Beacon (multiple BSSID). * We shall disable this register if we only support 1 BSSID. * vivi guess 92d also need this, also 92d now doesnot set this reg */ rtl_write_byte(rtlpriv, REG_BCN_CTRL_1, 0); /* TBTT prohibit hold time. Suggested by designer TimChen. */ rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); /* 8 ms */ rtl_write_byte(rtlpriv, REG_PIFS, 0); rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16); rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0040); rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x08ff); /* For Rx TP. Suggested by SD1 Richard. Added by tynli. 2010.04.12.*/ rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666); /* ACKTO for IOT issue. */ rtl_write_byte(rtlpriv, REG_ACKTO, 0x40); /* Set Spec SIFS (used in NAV) */ rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x100a); rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x100a); /* Set SIFS for CCK */ rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x100a); /* Set SIFS for OFDM */ rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x100a); /* Note Data sheet don't define */ rtl_write_byte(rtlpriv, 0x4C7, 0x80); rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x20); rtl_write_word(rtlpriv, REG_MAX_AGGR_NUM, 0x1717); /* Set Multicast Address. 2009.01.07. by tynli. */ rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff); rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff); } static void _rtl92ee_enable_aspm_back_door(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u32 tmp32 = 0, count = 0; u8 tmp8 = 0; rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0x78); rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x2); tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count = 0; while (tmp8 && count < 20) { udelay(10); tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count++; } if (0 == tmp8) { tmp32 = rtl_read_dword(rtlpriv, REG_BACKDOOR_DBI_RDATA); if ((tmp32 & 0xff00) != 0x2000) { tmp32 &= 0xffff00ff; rtl_write_dword(rtlpriv, REG_BACKDOOR_DBI_WDATA, tmp32 | BIT(13)); rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0xf078); rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x1); tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count = 0; while (tmp8 && count < 20) { udelay(10); tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count++; } } } rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0x70c); rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x2); tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count = 0; while (tmp8 && count < 20) { udelay(10); tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count++; } if (0 == tmp8) { tmp32 = rtl_read_dword(rtlpriv, REG_BACKDOOR_DBI_RDATA); rtl_write_dword(rtlpriv, REG_BACKDOOR_DBI_WDATA, tmp32 | BIT(31)); rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0xf70c); rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x1); } tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count = 0; while (tmp8 && count < 20) { udelay(10); tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count++; } rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0x718); rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x2); tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count = 0; while (tmp8 && count < 20) { udelay(10); tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count++; } if (ppsc->support_backdoor || (0 == tmp8)) { tmp32 = rtl_read_dword(rtlpriv, REG_BACKDOOR_DBI_RDATA); rtl_write_dword(rtlpriv, REG_BACKDOOR_DBI_WDATA, tmp32 | BIT(11) | BIT(12)); rtl_write_word(rtlpriv, REG_BACKDOOR_DBI_DATA, 0xf718); rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2, 0x1); } tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count = 0; while (tmp8 && count < 20) { udelay(10); tmp8 = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 2); count++; } } void rtl92ee_enable_hw_security_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 sec_reg_value; u8 tmp; rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", rtlpriv->sec.pairwise_enc_algorithm, rtlpriv->sec.group_enc_algorithm); if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "not open hw encryption\n"); return; } sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE; if (rtlpriv->sec.use_defaultkey) { sec_reg_value |= SCR_TXUSEDK; sec_reg_value |= SCR_RXUSEDK; } sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); tmp = rtl_read_byte(rtlpriv, REG_CR + 1); rtl_write_byte(rtlpriv, REG_CR + 1, tmp | BIT(1)); rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "The SECR-value %x\n", sec_reg_value); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); } static bool _rtl8192ee_check_pcie_dma_hang(struct rtl_priv *rtlpriv) { u8 tmp; /* write reg 0x350 Bit[26]=1. Enable debug port. */ tmp = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 3); if (!(tmp & BIT(2))) { rtl_write_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 3, tmp | BIT(2)); mdelay(100); /* Suggested by DD Justin_tsai. */ } /* read reg 0x350 Bit[25] if 1 : RX hang * read reg 0x350 Bit[24] if 1 : TX hang */ tmp = rtl_read_byte(rtlpriv, REG_BACKDOOR_DBI_DATA + 3); if ((tmp & BIT(0)) || (tmp & BIT(1))) { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "CheckPcieDMAHang8192EE(): true!!\n"); return true; } return false; } static void _rtl8192ee_reset_pcie_interface_dma(struct rtl_priv *rtlpriv, bool mac_power_on) { u8 tmp; bool release_mac_rx_pause; u8 backup_pcie_dma_pause; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "ResetPcieInterfaceDMA8192EE()\n"); /* Revise Note: Follow the document "PCIe RX DMA Hang Reset Flow_v03" * released by SD1 Alan. */ /* 1. disable register write lock * write 0x1C bit[1:0] = 2'h0 * write 0xCC bit[2] = 1'b1 */ tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL); tmp &= ~(BIT(1) | BIT(0)); rtl_write_byte(rtlpriv, REG_RSV_CTRL, tmp); tmp = rtl_read_byte(rtlpriv, REG_PMC_DBG_CTRL2); tmp |= BIT(2); rtl_write_byte(rtlpriv, REG_PMC_DBG_CTRL2, tmp); /* 2. Check and pause TRX DMA * write 0x284 bit[18] = 1'b1 * write 0x301 = 0xFF */ tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); if (tmp & BIT(2)) { /* Already pause before the function for another reason. */ release_mac_rx_pause = false; } else { rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, (tmp | BIT(2))); release_mac_rx_pause = true; } backup_pcie_dma_pause = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 1); if (backup_pcie_dma_pause != 0xFF) rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFF); if (mac_power_on) { /* 3. reset TRX function * write 0x100 = 0x00 */ rtl_write_byte(rtlpriv, REG_CR, 0); } /* 4. Reset PCIe DMA * write 0x003 bit[0] = 0 */ tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); tmp &= ~(BIT(0)); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmp); /* 5. Enable PCIe DMA * write 0x003 bit[0] = 1 */ tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); tmp |= BIT(0); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmp); if (mac_power_on) { /* 6. enable TRX function * write 0x100 = 0xFF */ rtl_write_byte(rtlpriv, REG_CR, 0xFF); /* We should init LLT & RQPN and * prepare Tx/Rx descrptor address later * because MAC function is reset. */ } /* 7. Restore PCIe autoload down bit * write 0xF8 bit[17] = 1'b1 */ tmp = rtl_read_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL + 2); tmp |= BIT(1); rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL + 2, tmp); /* In MAC power on state, BB and RF maybe in ON state, * if we release TRx DMA here * it will cause packets to be started to Tx/Rx, * so we release Tx/Rx DMA later. */ if (!mac_power_on) { /* 8. release TRX DMA * write 0x284 bit[18] = 1'b0 * write 0x301 = 0x00 */ if (release_mac_rx_pause) { tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, (tmp & (~BIT(2)))); } rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, backup_pcie_dma_pause); } /* 9. lock system register * write 0xCC bit[2] = 1'b0 */ tmp = rtl_read_byte(rtlpriv, REG_PMC_DBG_CTRL2); tmp &= ~(BIT(2)); rtl_write_byte(rtlpriv, REG_PMC_DBG_CTRL2, tmp); } int rtl92ee_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_phy *rtlphy = &rtlpriv->phy; struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); bool rtstatus = true; int err = 0; u8 tmp_u1b, u1byte; u32 tmp_u4b; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, " Rtl8192EE hw init\n"); rtlpriv->rtlhal.being_init_adapter = true; rtlpriv->intf_ops->disable_aspm(hw); tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CLKR+1); u1byte = rtl_read_byte(rtlpriv, REG_CR); if ((tmp_u1b & BIT(3)) && (u1byte != 0 && u1byte != 0xEA)) { rtlhal->mac_func_enable = true; } else { rtlhal->mac_func_enable = false; rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_92E; } if (_rtl8192ee_check_pcie_dma_hang(rtlpriv)) { rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "92ee dma hang!\n"); _rtl8192ee_reset_pcie_interface_dma(rtlpriv, rtlhal->mac_func_enable); rtlhal->mac_func_enable = false; } rtstatus = _rtl92ee_init_mac(hw); rtl_write_byte(rtlpriv, 0x577, 0x03); /*for Crystal 40 Mhz setting */ rtl_write_byte(rtlpriv, REG_AFE_CTRL4, 0x2A); rtl_write_byte(rtlpriv, REG_AFE_CTRL4 + 1, 0x00); rtl_write_byte(rtlpriv, REG_AFE_CTRL2, 0x83); /*Forced the antenna b to wifi */ if (rtlpriv->btcoexist.btc_info.btcoexist == 1) { rtl_write_byte(rtlpriv, 0x64, 0); rtl_write_byte(rtlpriv, 0x65, 1); } if (!rtstatus) { pr_err("Init MAC failed\n"); err = 1; return err; } rtlhal->rx_tag = 0; rtl_write_word(rtlpriv, REG_PCIE_CTRL_REG, 0x8000); err = rtl92ee_download_fw(hw, false); if (err) { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "Failed to download FW. Init HW without FW now..\n"); err = 1; rtlhal->fw_ready = false; return err; } rtlhal->fw_ready = true; /*fw related variable initialize */ ppsc->fw_current_inpsmode = false; rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_92E; rtlhal->fw_clk_change_in_progress = false; rtlhal->allow_sw_to_change_hwclc = false; rtlhal->last_hmeboxnum = 0; rtl92ee_phy_mac_config(hw); rtl92ee_phy_bb_config(hw); rtl92ee_phy_rf_config(hw); rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, RF90_PATH_A, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, RF90_PATH_B, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->backup_rf_0x1a = (u32)rtl_get_rfreg(hw, RF90_PATH_A, RF_RX_G1, RFREG_OFFSET_MASK); rtlphy->rfreg_chnlval[0] = (rtlphy->rfreg_chnlval[0] & 0xfffff3ff) | BIT(10) | BIT(11); rtl_set_rfreg(hw, RF90_PATH_A, RF_CHNLBW, RFREG_OFFSET_MASK, rtlphy->rfreg_chnlval[0]); rtl_set_rfreg(hw, RF90_PATH_B, RF_CHNLBW, RFREG_OFFSET_MASK, rtlphy->rfreg_chnlval[0]); /*---- Set CCK and OFDM Block "ON"----*/ rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); /* Must set this, * otherwise the rx sensitivity will be very pool. Maddest */ rtl_set_rfreg(hw, RF90_PATH_A, 0xB1, RFREG_OFFSET_MASK, 0x54418); /*Set Hardware(MAC default setting.)*/ _rtl92ee_hw_configure(hw); rtlhal->mac_func_enable = true; rtl_cam_reset_all_entry(hw); rtl92ee_enable_hw_security_config(hw); ppsc->rfpwr_state = ERFON; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); _rtl92ee_enable_aspm_back_door(hw); rtlpriv->intf_ops->enable_aspm(hw); rtl92ee_bt_hw_init(hw); rtlpriv->rtlhal.being_init_adapter = false; if (ppsc->rfpwr_state == ERFON) { if (rtlphy->iqk_initialized) { rtl92ee_phy_iq_calibrate(hw, true); } else { rtl92ee_phy_iq_calibrate(hw, false); rtlphy->iqk_initialized = true; } } rtlphy->rfpath_rx_enable[0] = true; if (rtlphy->rf_type == RF_2T2R) rtlphy->rfpath_rx_enable[1] = true; efuse_one_byte_read(hw, 0x1FA, &tmp_u1b); if (!(tmp_u1b & BIT(0))) { rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "PA BIAS path A\n"); } if ((!(tmp_u1b & BIT(1))) && (rtlphy->rf_type == RF_2T2R)) { rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0F, 0x05); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "PA BIAS path B\n"); } rtl_write_byte(rtlpriv, REG_NAV_UPPER, ((30000 + 127) / 128)); /*Fixed LDPC rx hang issue. */ tmp_u4b = rtl_read_dword(rtlpriv, REG_SYS_SWR_CTRL1); rtl_write_byte(rtlpriv, REG_SYS_SWR_CTRL2, 0x75); tmp_u4b = (tmp_u4b & 0xfff00fff) | (0x7E << 12); rtl_write_dword(rtlpriv, REG_SYS_SWR_CTRL1, tmp_u4b); rtl92ee_dm_init(hw); rtl_write_dword(rtlpriv, 0x4fc, 0); rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "end of Rtl8192EE hw init %x\n", err); return 0; } static enum version_8192e _rtl92ee_read_chip_version(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &rtlpriv->phy; enum version_8192e version; u32 value32; rtlphy->rf_type = RF_2T2R; value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG1); if (value32 & TRP_VAUX_EN) version = (enum version_8192e)VERSION_TEST_CHIP_2T2R_8192E; else version = (enum version_8192e)VERSION_NORMAL_CHIP_2T2R_8192E; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ? "RF_2T2R" : "RF_1T1R"); return version; } static int _rtl92ee_set_media_status(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 bt_msr = rtl_read_byte(rtlpriv, MSR) & 0xfc; enum led_ctl_mode ledaction = LED_CTL_NO_LINK; u8 mode = MSR_NOLINK; switch (type) { case NL80211_IFTYPE_UNSPECIFIED: mode = MSR_NOLINK; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to NO LINK!\n"); break; case NL80211_IFTYPE_ADHOC: case NL80211_IFTYPE_MESH_POINT: mode = MSR_ADHOC; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to Ad Hoc!\n"); break; case NL80211_IFTYPE_STATION: mode = MSR_INFRA; ledaction = LED_CTL_LINK; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to STA!\n"); break; case NL80211_IFTYPE_AP: mode = MSR_AP; ledaction = LED_CTL_LINK; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to AP!\n"); break; default: pr_err("Network type %d not support!\n", type); return 1; } /* MSR_INFRA == Link in infrastructure network; * MSR_ADHOC == Link in ad hoc network; * Therefore, check link state is necessary. * * MSR_AP == AP mode; link state is not cared here. */ if (mode != MSR_AP && rtlpriv->mac80211.link_state < MAC80211_LINKED) { mode = MSR_NOLINK; ledaction = LED_CTL_NO_LINK; } if (mode == MSR_NOLINK || mode == MSR_INFRA) { _rtl92ee_stop_tx_beacon(hw); _rtl92ee_enable_bcn_sub_func(hw); } else if (mode == MSR_ADHOC || mode == MSR_AP) { _rtl92ee_resume_tx_beacon(hw); _rtl92ee_disable_bcn_sub_func(hw); } else { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n", mode); } rtl_write_byte(rtlpriv, MSR, bt_msr | mode); rtlpriv->cfg->ops->led_control(hw, ledaction); if (mode == MSR_AP) rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); else rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); return 0; } void rtl92ee_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u32 reg_rcr = rtlpci->receive_config; if (rtlpriv->psc.rfpwr_state != ERFON) return; if (check_bssid) { reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); _rtl92ee_set_bcn_ctrl_reg(hw, 0, BIT(4)); } else { reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); _rtl92ee_set_bcn_ctrl_reg(hw, BIT(4), 0); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); } } int rtl92ee_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (_rtl92ee_set_media_status(hw, type)) return -EOPNOTSUPP; if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { if (type != NL80211_IFTYPE_AP && type != NL80211_IFTYPE_MESH_POINT) rtl92ee_set_check_bssid(hw, true); } else { rtl92ee_set_check_bssid(hw, false); } return 0; } /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */ void rtl92ee_set_qos(struct ieee80211_hw *hw, int aci) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl92ee_dm_init_edca_turbo(hw); switch (aci) { case AC1_BK: rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f); break; case AC0_BE: /* rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, u4b_ac_param); */ break; case AC2_VI: rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322); break; case AC3_VO: rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222); break; default: WARN_ONCE(true, "rtl8192ee: invalid aci: %d !\n", aci); break; } } void rtl92ee_enable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); rtlpci->irq_enabled = true; } void rtl92ee_disable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED); rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED); rtlpci->irq_enabled = false; /*synchronize_irq(rtlpci->pdev->irq);*/ } static void _rtl92ee_poweroff_adapter(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 u1b_tmp; rtlhal->mac_func_enable = false; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "POWER OFF adapter\n"); /* Run LPS WL RFOFF flow */ rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8192E_NIC_LPS_ENTER_FLOW); /* turn off RF */ rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); /* ==== Reset digital sequence ====== */ if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && rtlhal->fw_ready) rtl92ee_firmware_selfreset(hw); /* Reset MCU */ u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2)))); /* reset MCU ready status */ rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); /* HW card disable configuration. */ rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8192E_NIC_DISABLE_FLOW); /* Reset MCU IO Wrapper */ u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1); rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp & (~BIT(0)))); u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1); rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp | BIT(0))); /* lock ISO/CLK/Power control register */ rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E); } void rtl92ee_card_disable(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); enum nl80211_iftype opmode; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "RTL8192ee card disable\n"); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); mac->link_state = MAC80211_NOLINK; opmode = NL80211_IFTYPE_UNSPECIFIED; _rtl92ee_set_media_status(hw, opmode); if (rtlpriv->rtlhal.driver_is_goingto_unload || ppsc->rfoff_reason > RF_CHANGE_BY_PS) rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); _rtl92ee_poweroff_adapter(hw); /* after power off we should do iqk again */ if (!rtlpriv->cfg->ops->get_btc_status()) rtlpriv->phy.iqk_initialized = false; } void rtl92ee_interrupt_recognized(struct ieee80211_hw *hw, struct rtl_int *intvec) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); intvec->inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, ISR, intvec->inta); intvec->intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1]; rtl_write_dword(rtlpriv, REG_HISRE, intvec->intb); } void rtl92ee_set_beacon_related_registers(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u16 bcn_interval, atim_window; bcn_interval = mac->beacon_interval; atim_window = 2; /*FIX MERGE */ rtl92ee_disable_interrupt(hw); rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18); rtl_write_byte(rtlpriv, 0x606, 0x30); rtlpci->reg_bcn_ctrl_val |= BIT(3); rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlpci->reg_bcn_ctrl_val); } void rtl92ee_set_beacon_interval(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval = mac->beacon_interval; rtl_dbg(rtlpriv, COMP_BEACON, DBG_DMESG, "beacon_interval:%d\n", bcn_interval); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); } void rtl92ee_update_interrupt_mask(struct ieee80211_hw *hw, u32 add_msr, u32 rm_msr) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr); if (add_msr) rtlpci->irq_mask[0] |= add_msr; if (rm_msr) rtlpci->irq_mask[0] &= (~rm_msr); rtl92ee_disable_interrupt(hw); rtl92ee_enable_interrupt(hw); } static u8 _rtl92ee_get_chnl_group(u8 chnl) { u8 group = 0; if (chnl <= 14) { if (1 <= chnl && chnl <= 2) group = 0; else if (3 <= chnl && chnl <= 5) group = 1; else if (6 <= chnl && chnl <= 8) group = 2; else if (9 <= chnl && chnl <= 11) group = 3; else if (12 <= chnl && chnl <= 14) group = 4; } else { if (36 <= chnl && chnl <= 42) group = 0; else if (44 <= chnl && chnl <= 48) group = 1; else if (50 <= chnl && chnl <= 58) group = 2; else if (60 <= chnl && chnl <= 64) group = 3; else if (100 <= chnl && chnl <= 106) group = 4; else if (108 <= chnl && chnl <= 114) group = 5; else if (116 <= chnl && chnl <= 122) group = 6; else if (124 <= chnl && chnl <= 130) group = 7; else if (132 <= chnl && chnl <= 138) group = 8; else if (140 <= chnl && chnl <= 144) group = 9; else if (149 <= chnl && chnl <= 155) group = 10; else if (157 <= chnl && chnl <= 161) group = 11; else if (165 <= chnl && chnl <= 171) group = 12; else if (173 <= chnl && chnl <= 177) group = 13; } return group; } static void _rtl8192ee_read_power_value_fromprom(struct ieee80211_hw *hw, struct txpower_info_2g *pwr2g, struct txpower_info_5g *pwr5g, bool autoload_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 rf, addr = EEPROM_TX_PWR_INX, group, i = 0; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "hal_ReadPowerValueFromPROM92E(): PROMContent[0x%x]=0x%x\n", (addr + 1), hwinfo[addr + 1]); if (0xFF == hwinfo[addr+1]) /*YJ,add,120316*/ autoload_fail = true; if (autoload_fail) { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "auto load fail : Use Default value!\n"); for (rf = 0 ; rf < MAX_RF_PATH ; rf++) { /* 2.4G default value */ for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) { pwr2g->index_cck_base[rf][group] = 0x2D; pwr2g->index_bw40_base[rf][group] = 0x2D; } for (i = 0; i < MAX_TX_COUNT; i++) { if (i == 0) { pwr2g->bw20_diff[rf][0] = 0x02; pwr2g->ofdm_diff[rf][0] = 0x04; } else { pwr2g->bw20_diff[rf][i] = 0xFE; pwr2g->bw40_diff[rf][i] = 0xFE; pwr2g->cck_diff[rf][i] = 0xFE; pwr2g->ofdm_diff[rf][i] = 0xFE; } } /*5G default value*/ for (group = 0 ; group < MAX_CHNL_GROUP_5G; group++) pwr5g->index_bw40_base[rf][group] = 0x2A; for (i = 0; i < MAX_TX_COUNT; i++) { if (i == 0) { pwr5g->ofdm_diff[rf][0] = 0x04; pwr5g->bw20_diff[rf][0] = 0x00; pwr5g->bw80_diff[rf][0] = 0xFE; pwr5g->bw160_diff[rf][0] = 0xFE; } else { pwr5g->ofdm_diff[rf][0] = 0xFE; pwr5g->bw20_diff[rf][0] = 0xFE; pwr5g->bw40_diff[rf][0] = 0xFE; pwr5g->bw80_diff[rf][0] = 0xFE; pwr5g->bw160_diff[rf][0] = 0xFE; } } } return; } rtl_priv(hw)->efuse.txpwr_fromeprom = true; for (rf = 0 ; rf < MAX_RF_PATH ; rf++) { /*2.4G default value*/ for (group = 0 ; group < MAX_CHNL_GROUP_24G; group++) { pwr2g->index_cck_base[rf][group] = hwinfo[addr++]; if (pwr2g->index_cck_base[rf][group] == 0xFF) pwr2g->index_cck_base[rf][group] = 0x2D; } for (group = 0 ; group < MAX_CHNL_GROUP_24G - 1; group++) { pwr2g->index_bw40_base[rf][group] = hwinfo[addr++]; if (pwr2g->index_bw40_base[rf][group] == 0xFF) pwr2g->index_bw40_base[rf][group] = 0x2D; } for (i = 0; i < MAX_TX_COUNT; i++) { if (i == 0) { pwr2g->bw40_diff[rf][i] = 0; if (hwinfo[addr] == 0xFF) { pwr2g->bw20_diff[rf][i] = 0x02; } else { pwr2g->bw20_diff[rf][i] = (hwinfo[addr] & 0xf0) >> 4; if (pwr2g->bw20_diff[rf][i] & BIT(3)) pwr2g->bw20_diff[rf][i] |= 0xF0; } if (hwinfo[addr] == 0xFF) { pwr2g->ofdm_diff[rf][i] = 0x04; } else { pwr2g->ofdm_diff[rf][i] = (hwinfo[addr] & 0x0f); if (pwr2g->ofdm_diff[rf][i] & BIT(3)) pwr2g->ofdm_diff[rf][i] |= 0xF0; } pwr2g->cck_diff[rf][i] = 0; addr++; } else { if (hwinfo[addr] == 0xFF) { pwr2g->bw40_diff[rf][i] = 0xFE; } else { pwr2g->bw40_diff[rf][i] = (hwinfo[addr] & 0xf0) >> 4; if (pwr2g->bw40_diff[rf][i] & BIT(3)) pwr2g->bw40_diff[rf][i] |= 0xF0; } if (hwinfo[addr] == 0xFF) { pwr2g->bw20_diff[rf][i] = 0xFE; } else { pwr2g->bw20_diff[rf][i] = (hwinfo[addr] & 0x0f); if (pwr2g->bw20_diff[rf][i] & BIT(3)) pwr2g->bw20_diff[rf][i] |= 0xF0; } addr++; if (hwinfo[addr] == 0xFF) { pwr2g->ofdm_diff[rf][i] = 0xFE; } else { pwr2g->ofdm_diff[rf][i] = (hwinfo[addr] & 0xf0) >> 4; if (pwr2g->ofdm_diff[rf][i] & BIT(3)) pwr2g->ofdm_diff[rf][i] |= 0xF0; } if (hwinfo[addr] == 0xFF) { pwr2g->cck_diff[rf][i] = 0xFE; } else { pwr2g->cck_diff[rf][i] = (hwinfo[addr] & 0x0f); if (pwr2g->cck_diff[rf][i] & BIT(3)) pwr2g->cck_diff[rf][i] |= 0xF0; } addr++; } } /*5G default value*/ for (group = 0 ; group < MAX_CHNL_GROUP_5G; group++) { pwr5g->index_bw40_base[rf][group] = hwinfo[addr++]; if (pwr5g->index_bw40_base[rf][group] == 0xFF) pwr5g->index_bw40_base[rf][group] = 0xFE; } for (i = 0; i < MAX_TX_COUNT; i++) { if (i == 0) { pwr5g->bw40_diff[rf][i] = 0; if (hwinfo[addr] == 0xFF) { pwr5g->bw20_diff[rf][i] = 0; } else { pwr5g->bw20_diff[rf][0] = (hwinfo[addr] & 0xf0) >> 4; if (pwr5g->bw20_diff[rf][i] & BIT(3)) pwr5g->bw20_diff[rf][i] |= 0xF0; } if (hwinfo[addr] == 0xFF) { pwr5g->ofdm_diff[rf][i] = 0x04; } else { pwr5g->ofdm_diff[rf][0] = (hwinfo[addr] & 0x0f); if (pwr5g->ofdm_diff[rf][i] & BIT(3)) pwr5g->ofdm_diff[rf][i] |= 0xF0; } addr++; } else { if (hwinfo[addr] == 0xFF) { pwr5g->bw40_diff[rf][i] = 0xFE; } else { pwr5g->bw40_diff[rf][i] = (hwinfo[addr] & 0xf0) >> 4; if (pwr5g->bw40_diff[rf][i] & BIT(3)) pwr5g->bw40_diff[rf][i] |= 0xF0; } if (hwinfo[addr] == 0xFF) { pwr5g->bw20_diff[rf][i] = 0xFE; } else { pwr5g->bw20_diff[rf][i] = (hwinfo[addr] & 0x0f); if (pwr5g->bw20_diff[rf][i] & BIT(3)) pwr5g->bw20_diff[rf][i] |= 0xF0; } addr++; } } if (hwinfo[addr] == 0xFF) { pwr5g->ofdm_diff[rf][1] = 0xFE; pwr5g->ofdm_diff[rf][2] = 0xFE; } else { pwr5g->ofdm_diff[rf][1] = (hwinfo[addr] & 0xf0) >> 4; pwr5g->ofdm_diff[rf][2] = (hwinfo[addr] & 0x0f); } addr++; if (hwinfo[addr] == 0xFF) pwr5g->ofdm_diff[rf][3] = 0xFE; else pwr5g->ofdm_diff[rf][3] = (hwinfo[addr] & 0x0f); addr++; for (i = 1; i < MAX_TX_COUNT; i++) { if (pwr5g->ofdm_diff[rf][i] == 0xFF) pwr5g->ofdm_diff[rf][i] = 0xFE; else if (pwr5g->ofdm_diff[rf][i] & BIT(3)) pwr5g->ofdm_diff[rf][i] |= 0xF0; } for (i = 0; i < MAX_TX_COUNT; i++) { if (hwinfo[addr] == 0xFF) { pwr5g->bw80_diff[rf][i] = 0xFE; } else { pwr5g->bw80_diff[rf][i] = (hwinfo[addr] & 0xf0) >> 4; if (pwr5g->bw80_diff[rf][i] & BIT(3)) pwr5g->bw80_diff[rf][i] |= 0xF0; } if (hwinfo[addr] == 0xFF) { pwr5g->bw160_diff[rf][i] = 0xFE; } else { pwr5g->bw160_diff[rf][i] = (hwinfo[addr] & 0x0f); if (pwr5g->bw160_diff[rf][i] & BIT(3)) pwr5g->bw160_diff[rf][i] |= 0xF0; } addr++; } } } static void _rtl92ee_read_txpower_info_from_hwpg(struct ieee80211_hw *hw, bool autoload_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *efu = rtl_efuse(rtl_priv(hw)); struct txpower_info_2g pwr2g; struct txpower_info_5g pwr5g; u8 rf, idx; u8 i; _rtl8192ee_read_power_value_fromprom(hw, &pwr2g, &pwr5g, autoload_fail, hwinfo); for (rf = 0; rf < MAX_RF_PATH; rf++) { for (i = 0; i < 14; i++) { idx = _rtl92ee_get_chnl_group(i + 1); if (i == CHANNEL_MAX_NUMBER_2G - 1) { efu->txpwrlevel_cck[rf][i] = pwr2g.index_cck_base[rf][5]; efu->txpwrlevel_ht40_1s[rf][i] = pwr2g.index_bw40_base[rf][idx]; } else { efu->txpwrlevel_cck[rf][i] = pwr2g.index_cck_base[rf][idx]; efu->txpwrlevel_ht40_1s[rf][i] = pwr2g.index_bw40_base[rf][idx]; } } for (i = 0; i < CHANNEL_MAX_NUMBER_5G; i++) { idx = _rtl92ee_get_chnl_group(channel5g[i]); efu->txpwr_5g_bw40base[rf][i] = pwr5g.index_bw40_base[rf][idx]; } for (i = 0; i < CHANNEL_MAX_NUMBER_5G_80M; i++) { u8 upper, lower; idx = _rtl92ee_get_chnl_group(channel5g_80m[i]); upper = pwr5g.index_bw40_base[rf][idx]; lower = pwr5g.index_bw40_base[rf][idx + 1]; efu->txpwr_5g_bw80base[rf][i] = (upper + lower) / 2; } for (i = 0; i < MAX_TX_COUNT; i++) { efu->txpwr_cckdiff[rf][i] = pwr2g.cck_diff[rf][i]; efu->txpwr_legacyhtdiff[rf][i] = pwr2g.ofdm_diff[rf][i]; efu->txpwr_ht20diff[rf][i] = pwr2g.bw20_diff[rf][i]; efu->txpwr_ht40diff[rf][i] = pwr2g.bw40_diff[rf][i]; efu->txpwr_5g_ofdmdiff[rf][i] = pwr5g.ofdm_diff[rf][i]; efu->txpwr_5g_bw20diff[rf][i] = pwr5g.bw20_diff[rf][i]; efu->txpwr_5g_bw40diff[rf][i] = pwr5g.bw40_diff[rf][i]; efu->txpwr_5g_bw80diff[rf][i] = pwr5g.bw80_diff[rf][i]; } } if (!autoload_fail) efu->eeprom_thermalmeter = hwinfo[EEPROM_THERMAL_METER_92E]; else efu->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; if (efu->eeprom_thermalmeter == 0xff || autoload_fail) { efu->apk_thermalmeterignore = true; efu->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; } efu->thermalmeter[0] = efu->eeprom_thermalmeter; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "thermalmeter = 0x%x\n", efu->eeprom_thermalmeter); if (!autoload_fail) { efu->eeprom_regulatory = hwinfo[EEPROM_RF_BOARD_OPTION_92E] & 0x07; if (hwinfo[EEPROM_RF_BOARD_OPTION_92E] == 0xFF) efu->eeprom_regulatory = 0; } else { efu->eeprom_regulatory = 0; } RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "eeprom_regulatory = 0x%x\n", efu->eeprom_regulatory); } static void _rtl92ee_read_adapter_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); int params[] = {RTL8192E_EEPROM_ID, EEPROM_VID, EEPROM_DID, EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR, EEPROM_CHANNELPLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID, COUNTRY_CODE_WORLD_WIDE_13}; u8 *hwinfo; hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL); if (!hwinfo) return; if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params)) goto exit; if (rtlefuse->eeprom_oemid == 0xFF) rtlefuse->eeprom_oemid = 0; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid); /* set channel plan from efuse */ rtlefuse->channel_plan = rtlefuse->eeprom_channelplan; /*tx power*/ _rtl92ee_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); rtl92ee_read_bt_coexist_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); /*board type*/ rtlefuse->board_type = (((*(u8 *)&hwinfo[EEPROM_RF_BOARD_OPTION_92E]) & 0xE0) >> 5); if ((*(u8 *)&hwinfo[EEPROM_RF_BOARD_OPTION_92E]) == 0xFF) rtlefuse->board_type = 0; if (rtlpriv->btcoexist.btc_info.btcoexist == 1) rtlefuse->board_type |= BIT(2); /* ODM_BOARD_BT */ rtlhal->board_type = rtlefuse->board_type; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "board_type = 0x%x\n", rtlefuse->board_type); /*parse xtal*/ rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_92E]; if (hwinfo[EEPROM_XTAL_92E] == 0xFF) rtlefuse->crystalcap = 0x20; /*antenna diversity*/ rtlefuse->antenna_div_type = NO_ANTDIV; rtlefuse->antenna_div_cfg = 0; if (rtlhal->oem_id == RT_CID_DEFAULT) { switch (rtlefuse->eeprom_oemid) { case EEPROM_CID_DEFAULT: if (rtlefuse->eeprom_did == 0x818B) { if ((rtlefuse->eeprom_svid == 0x10EC) && (rtlefuse->eeprom_smid == 0x001B)) rtlhal->oem_id = RT_CID_819X_LENOVO; } else { rtlhal->oem_id = RT_CID_DEFAULT; } break; default: rtlhal->oem_id = RT_CID_DEFAULT; break; } } exit: kfree(hwinfo); } static void _rtl92ee_hal_customized_behavior(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); rtlpriv->ledctl.led_opendrain = true; rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "RT Customized ID: 0x%02X\n", rtlhal->oem_id); } void rtl92ee_read_eeprom_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_phy *rtlphy = &rtlpriv->phy; struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 tmp_u1b; rtlhal->version = _rtl92ee_read_chip_version(hw); if (get_rf_type(rtlphy) == RF_1T1R) { rtlpriv->dm.rfpath_rxenable[0] = true; } else { rtlpriv->dm.rfpath_rxenable[0] = true; rtlpriv->dm.rfpath_rxenable[1] = true; } rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n", rtlhal->version); tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); if (tmp_u1b & BIT(4)) { rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); rtlefuse->epromtype = EEPROM_93C46; } else { rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); rtlefuse->epromtype = EEPROM_BOOT_EFUSE; } if (tmp_u1b & BIT(5)) { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; _rtl92ee_read_adapter_info(hw); } else { pr_err("Autoload ERR!!\n"); } _rtl92ee_hal_customized_behavior(hw); rtlphy->rfpath_rx_enable[0] = true; if (rtlphy->rf_type == RF_2T2R) rtlphy->rfpath_rx_enable[1] = true; } static u8 _rtl92ee_mrate_idx_to_arfr_id(struct ieee80211_hw *hw, u8 rate_index) { u8 ret = 0; switch (rate_index) { case RATR_INX_WIRELESS_NGB: ret = 0; break; case RATR_INX_WIRELESS_N: case RATR_INX_WIRELESS_NG: ret = 4; break; case RATR_INX_WIRELESS_NB: ret = 2; break; case RATR_INX_WIRELESS_GB: ret = 6; break; case RATR_INX_WIRELESS_G: ret = 7; break; case RATR_INX_WIRELESS_B: ret = 8; break; default: ret = 0; break; } return ret; } static void rtl92ee_update_hal_rate_mask(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &rtlpriv->phy; struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_sta_info *sta_entry = NULL; u32 ratr_bitmap; u8 ratr_index; u8 curtxbw_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0; u8 b_curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 b_curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = 0; bool b_shortgi = false; u8 rate_mask[7] = {0}; u8 macid = 0; /*u8 mimo_ps = IEEE80211_SMPS_OFF;*/ sta_entry = (struct rtl_sta_info *)sta->drv_priv; wirelessmode = sta_entry->wireless_mode; if (mac->opmode == NL80211_IFTYPE_STATION || mac->opmode == NL80211_IFTYPE_MESH_POINT) curtxbw_40mhz = mac->bw_40; else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC) macid = sta->aid + 1; ratr_bitmap = sta->deflink.supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_bitmap = 0xfff; ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 | sta->deflink.ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: ratr_index = RATR_INX_WIRELESS_B; if (ratr_bitmap & 0x0000000c) ratr_bitmap &= 0x0000000d; else ratr_bitmap &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_index = RATR_INX_WIRELESS_GB; if (rssi_level == 1) ratr_bitmap &= 0x00000f00; else if (rssi_level == 2) ratr_bitmap &= 0x00000ff0; else ratr_bitmap &= 0x00000ff5; break; case WIRELESS_MODE_N_24G: if (curtxbw_40mhz) ratr_index = RATR_INX_WIRELESS_NGB; else ratr_index = RATR_INX_WIRELESS_NB; if (rtlphy->rf_type == RF_1T1R) { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff005; } } else { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x0f8f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0ffff000; else ratr_bitmap &= 0x0ffff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x0f8f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0ffff000; else ratr_bitmap &= 0x0ffff005; } } if ((curtxbw_40mhz && b_curshortgi_40mhz) || (!curtxbw_40mhz && b_curshortgi_20mhz)) { if (macid == 0) b_shortgi = true; else if (macid == 1) b_shortgi = false; } break; default: ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T1R) ratr_bitmap &= 0x000ff0ff; else ratr_bitmap &= 0x0f8ff0ff; break; } ratr_index = _rtl92ee_mrate_idx_to_arfr_id(hw, ratr_index); sta_entry->ratr_index = ratr_index; rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "ratr_bitmap :%x\n", ratr_bitmap); *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28); rate_mask[0] = macid; rate_mask[1] = ratr_index | (b_shortgi ? 0x80 : 0x00); rate_mask[2] = curtxbw_40mhz | ((!update_bw) << 3); rate_mask[3] = (u8)(ratr_bitmap & 0x000000ff); rate_mask[4] = (u8)((ratr_bitmap & 0x0000ff00) >> 8); rate_mask[5] = (u8)((ratr_bitmap & 0x00ff0000) >> 16); rate_mask[6] = (u8)((ratr_bitmap & 0xff000000) >> 24); rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x:%x:%x\n", ratr_index, ratr_bitmap, rate_mask[0], rate_mask[1], rate_mask[2], rate_mask[3], rate_mask[4], rate_mask[5], rate_mask[6]); rtl92ee_fill_h2c_cmd(hw, H2C_92E_RA_MASK, 7, rate_mask); _rtl92ee_set_bcn_ctrl_reg(hw, BIT(3), 0); } void rtl92ee_update_hal_rate_tbl(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->dm.useramask) rtl92ee_update_hal_rate_mask(hw, sta, rssi_level, update_bw); } void rtl92ee_update_channel_access_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 sifs_timer; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, (u8 *)&mac->slot_time); if (!mac->ht_enable) sifs_timer = 0x0a0a; else sifs_timer = 0x0e0e; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); } bool rtl92ee_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) { *valid = 1; return true; } void rtl92ee_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 *macaddr = p_macaddr; u32 entry_id = 0; bool is_pairwise = false; static u8 cam_const_addr[4][6] = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} }; static u8 cam_const_broad[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (clear_all) { u8 idx = 0; u8 cam_offset = 0; u8 clear_number = 5; rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); for (idx = 0; idx < clear_number; idx++) { rtl_cam_mark_invalid(hw, cam_offset + idx); rtl_cam_empty_entry(hw, cam_offset + idx); if (idx < 5) { memset(rtlpriv->sec.key_buf[idx], 0, MAX_KEY_LEN); rtlpriv->sec.key_len[idx] = 0; } } } else { switch (enc_algo) { case WEP40_ENCRYPTION: enc_algo = CAM_WEP40; break; case WEP104_ENCRYPTION: enc_algo = CAM_WEP104; break; case TKIP_ENCRYPTION: enc_algo = CAM_TKIP; break; case AESCCMP_ENCRYPTION: enc_algo = CAM_AES; break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_DMESG, "switch case %#x not processed\n", enc_algo); enc_algo = CAM_TKIP; break; } if (is_wepkey || rtlpriv->sec.use_defaultkey) { macaddr = cam_const_addr[key_index]; entry_id = key_index; } else { if (is_group) { macaddr = cam_const_broad; entry_id = key_index; } else { if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_MESH_POINT) { entry_id = rtl_cam_get_free_entry(hw, p_macaddr); if (entry_id >= TOTAL_CAM_ENTRY) { pr_err("Can not find free hw security cam entry\n"); return; } } else { entry_id = CAM_PAIRWISE_KEY_POSITION; } key_index = PAIRWISE_KEYIDX; is_pairwise = true; } } if (rtlpriv->sec.key_len[key_index] == 0) { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "delete one entry, entry_id is %d\n", entry_id); if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_MESH_POINT) rtl_cam_del_entry(hw, p_macaddr); rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); } else { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n"); if (is_pairwise) { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n"); rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[key_index]); } else { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n"); if (mac->opmode == NL80211_IFTYPE_ADHOC) { rtl_cam_add_one_entry(hw, rtlefuse->dev_addr, PAIRWISE_KEYIDX, CAM_PAIRWISE_KEY_POSITION, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[entry_id]); } rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[entry_id]); } } } } void rtl92ee_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw, bool auto_load_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 value; if (!auto_load_fail) { value = hwinfo[EEPROM_RF_BOARD_OPTION_92E]; if (((value & 0xe0) >> 5) == 0x1) rtlpriv->btcoexist.btc_info.btcoexist = 1; else rtlpriv->btcoexist.btc_info.btcoexist = 0; rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8192E; rtlpriv->btcoexist.btc_info.ant_num = ANT_X2; } else { rtlpriv->btcoexist.btc_info.btcoexist = 1; rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8192E; rtlpriv->btcoexist.btc_info.ant_num = ANT_X1; } } void rtl92ee_bt_reg_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /* 0:Low, 1:High, 2:From Efuse. */ rtlpriv->btcoexist.reg_bt_iso = 2; /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */ rtlpriv->btcoexist.reg_bt_sco = 3; /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */ rtlpriv->btcoexist.reg_bt_sco = 0; } void rtl92ee_bt_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->cfg->ops->get_btc_status()) rtlpriv->btcoexist.btc_ops->btc_init_hw_config(rtlpriv); } void rtl92ee_suspend(struct ieee80211_hw *hw) { } void rtl92ee_resume(struct ieee80211_hw *hw) { } /* Turn on AAP (RCR:bit 0) for promicuous mode. */ void rtl92ee_allow_all_destaddr(struct ieee80211_hw *hw, bool allow_all_da, bool write_into_reg) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); if (allow_all_da) /* Set BIT0 */ rtlpci->receive_config |= RCR_AAP; else /* Clear BIT0 */ rtlpci->receive_config &= ~RCR_AAP; if (write_into_reg) rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); rtl_dbg(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD, "receive_config=0x%08X, write_into_reg=%d\n", rtlpci->receive_config, write_into_reg); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1