Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Srinivas Kandagatla | 6947 | 82.90% | 4 | 7.02% |
Lee Jones | 329 | 3.93% | 5 | 8.77% |
Giuseppe Cavallaro | 328 | 3.91% | 2 | 3.51% |
Linus Walleij | 190 | 2.27% | 6 | 10.53% |
Dmitry Torokhov | 132 | 1.58% | 1 | 1.75% |
Andy Shevchenko | 127 | 1.52% | 5 | 8.77% |
Patrice Chotard | 90 | 1.07% | 3 | 5.26% |
Matti Vaittinen | 35 | 0.42% | 1 | 1.75% |
Sherman Yin | 32 | 0.38% | 1 | 1.75% |
Wen Yang | 21 | 0.25% | 1 | 1.75% |
Kees Cook | 20 | 0.24% | 1 | 1.75% |
Nishka Dasgupta | 19 | 0.23% | 1 | 1.75% |
Maxime Coquelin | 16 | 0.19% | 3 | 5.26% |
Francesco Virlinzi | 16 | 0.19% | 1 | 1.75% |
Peter Griffin | 13 | 0.16% | 1 | 1.75% |
Masahiro Yamada | 9 | 0.11% | 1 | 1.75% |
Wei Yongjun | 9 | 0.11% | 1 | 1.75% |
Pramod Gurav | 7 | 0.08% | 1 | 1.75% |
Jiang Liu | 6 | 0.07% | 1 | 1.75% |
Sachin Kamat | 5 | 0.06% | 2 | 3.51% |
David PARIS | 5 | 0.06% | 1 | 1.75% |
Laxman Dewangan | 3 | 0.04% | 1 | 1.75% |
Thierry Reding | 3 | 0.04% | 1 | 1.75% |
Julia Lawall | 3 | 0.04% | 1 | 1.75% |
Thomas Gleixner | 3 | 0.04% | 2 | 3.51% |
Rob Herring | 2 | 0.02% | 1 | 1.75% |
Sergei Shtylyov | 2 | 0.02% | 1 | 1.75% |
Jonas Gorski | 2 | 0.02% | 1 | 1.75% |
Marc Zyngier | 1 | 0.01% | 1 | 1.75% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.75% |
Heinrich Schuchardt | 1 | 0.01% | 1 | 1.75% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 1.75% |
Rickard Strandqvist | 1 | 0.01% | 1 | 1.75% |
Fabian Frederick | 1 | 0.01% | 1 | 1.75% |
Total | 8380 | 57 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 STMicroelectronics (R&D) Limited. * Authors: * Srinivas Kandagatla <srinivas.kandagatla@st.com> */ #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/err.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/gpio/driver.h> #include <linux/regmap.h> #include <linux/mfd/syscon.h> #include <linux/pinctrl/pinctrl.h> #include <linux/pinctrl/pinmux.h> #include <linux/pinctrl/pinconf.h> #include <linux/platform_device.h> #include "core.h" /* PIO Block registers */ /* PIO output */ #define REG_PIO_POUT 0x00 /* Set bits of POUT */ #define REG_PIO_SET_POUT 0x04 /* Clear bits of POUT */ #define REG_PIO_CLR_POUT 0x08 /* PIO input */ #define REG_PIO_PIN 0x10 /* PIO configuration */ #define REG_PIO_PC(n) (0x20 + (n) * 0x10) /* Set bits of PC[2:0] */ #define REG_PIO_SET_PC(n) (0x24 + (n) * 0x10) /* Clear bits of PC[2:0] */ #define REG_PIO_CLR_PC(n) (0x28 + (n) * 0x10) /* PIO input comparison */ #define REG_PIO_PCOMP 0x50 /* Set bits of PCOMP */ #define REG_PIO_SET_PCOMP 0x54 /* Clear bits of PCOMP */ #define REG_PIO_CLR_PCOMP 0x58 /* PIO input comparison mask */ #define REG_PIO_PMASK 0x60 /* Set bits of PMASK */ #define REG_PIO_SET_PMASK 0x64 /* Clear bits of PMASK */ #define REG_PIO_CLR_PMASK 0x68 #define ST_GPIO_DIRECTION_BIDIR 0x1 #define ST_GPIO_DIRECTION_OUT 0x2 #define ST_GPIO_DIRECTION_IN 0x4 /* * Packed style retime configuration. * There are two registers cfg0 and cfg1 in this style for each bank. * Each field in this register is 8 bit corresponding to 8 pins in the bank. */ #define RT_P_CFGS_PER_BANK 2 #define RT_P_CFG0_CLK1NOTCLK0_FIELD(reg) REG_FIELD(reg, 0, 7) #define RT_P_CFG0_DELAY_0_FIELD(reg) REG_FIELD(reg, 16, 23) #define RT_P_CFG0_DELAY_1_FIELD(reg) REG_FIELD(reg, 24, 31) #define RT_P_CFG1_INVERTCLK_FIELD(reg) REG_FIELD(reg, 0, 7) #define RT_P_CFG1_RETIME_FIELD(reg) REG_FIELD(reg, 8, 15) #define RT_P_CFG1_CLKNOTDATA_FIELD(reg) REG_FIELD(reg, 16, 23) #define RT_P_CFG1_DOUBLE_EDGE_FIELD(reg) REG_FIELD(reg, 24, 31) /* * Dedicated style retime Configuration register * each register is dedicated per pin. */ #define RT_D_CFGS_PER_BANK 8 #define RT_D_CFG_CLK_SHIFT 0 #define RT_D_CFG_CLK_MASK (0x3 << 0) #define RT_D_CFG_CLKNOTDATA_SHIFT 2 #define RT_D_CFG_CLKNOTDATA_MASK BIT(2) #define RT_D_CFG_DELAY_SHIFT 3 #define RT_D_CFG_DELAY_MASK (0xf << 3) #define RT_D_CFG_DELAY_INNOTOUT_SHIFT 7 #define RT_D_CFG_DELAY_INNOTOUT_MASK BIT(7) #define RT_D_CFG_DOUBLE_EDGE_SHIFT 8 #define RT_D_CFG_DOUBLE_EDGE_MASK BIT(8) #define RT_D_CFG_INVERTCLK_SHIFT 9 #define RT_D_CFG_INVERTCLK_MASK BIT(9) #define RT_D_CFG_RETIME_SHIFT 10 #define RT_D_CFG_RETIME_MASK BIT(10) /* * Pinconf is represented in an opaque unsigned long variable. * Below is the bit allocation details for each possible configuration. * All the bit fields can be encapsulated into four variables * (direction, retime-type, retime-clk, retime-delay) * * +----------------+ *[31:28]| reserved-3 | * +----------------+------------- *[27] | oe | | * +----------------+ v *[26] | pu | [Direction ] * +----------------+ ^ *[25] | od | | * +----------------+------------- *[24] | reserved-2 | * +----------------+------------- *[23] | retime | | * +----------------+ | *[22] | retime-invclk | | * +----------------+ v *[21] |retime-clknotdat| [Retime-type ] * +----------------+ ^ *[20] | retime-de | | * +----------------+------------- *[19:18]| retime-clk |------>[Retime-Clk ] * +----------------+ *[17:16]| reserved-1 | * +----------------+ *[15..0]| retime-delay |------>[Retime Delay] * +----------------+ */ #define ST_PINCONF_UNPACK(conf, param)\ ((conf >> ST_PINCONF_ ##param ##_SHIFT) \ & ST_PINCONF_ ##param ##_MASK) #define ST_PINCONF_PACK(conf, val, param) (conf |=\ ((val & ST_PINCONF_ ##param ##_MASK) << \ ST_PINCONF_ ##param ##_SHIFT)) /* Output enable */ #define ST_PINCONF_OE_MASK 0x1 #define ST_PINCONF_OE_SHIFT 27 #define ST_PINCONF_OE BIT(27) #define ST_PINCONF_UNPACK_OE(conf) ST_PINCONF_UNPACK(conf, OE) #define ST_PINCONF_PACK_OE(conf) ST_PINCONF_PACK(conf, 1, OE) /* Pull Up */ #define ST_PINCONF_PU_MASK 0x1 #define ST_PINCONF_PU_SHIFT 26 #define ST_PINCONF_PU BIT(26) #define ST_PINCONF_UNPACK_PU(conf) ST_PINCONF_UNPACK(conf, PU) #define ST_PINCONF_PACK_PU(conf) ST_PINCONF_PACK(conf, 1, PU) /* Open Drain */ #define ST_PINCONF_OD_MASK 0x1 #define ST_PINCONF_OD_SHIFT 25 #define ST_PINCONF_OD BIT(25) #define ST_PINCONF_UNPACK_OD(conf) ST_PINCONF_UNPACK(conf, OD) #define ST_PINCONF_PACK_OD(conf) ST_PINCONF_PACK(conf, 1, OD) #define ST_PINCONF_RT_MASK 0x1 #define ST_PINCONF_RT_SHIFT 23 #define ST_PINCONF_RT BIT(23) #define ST_PINCONF_UNPACK_RT(conf) ST_PINCONF_UNPACK(conf, RT) #define ST_PINCONF_PACK_RT(conf) ST_PINCONF_PACK(conf, 1, RT) #define ST_PINCONF_RT_INVERTCLK_MASK 0x1 #define ST_PINCONF_RT_INVERTCLK_SHIFT 22 #define ST_PINCONF_RT_INVERTCLK BIT(22) #define ST_PINCONF_UNPACK_RT_INVERTCLK(conf) \ ST_PINCONF_UNPACK(conf, RT_INVERTCLK) #define ST_PINCONF_PACK_RT_INVERTCLK(conf) \ ST_PINCONF_PACK(conf, 1, RT_INVERTCLK) #define ST_PINCONF_RT_CLKNOTDATA_MASK 0x1 #define ST_PINCONF_RT_CLKNOTDATA_SHIFT 21 #define ST_PINCONF_RT_CLKNOTDATA BIT(21) #define ST_PINCONF_UNPACK_RT_CLKNOTDATA(conf) \ ST_PINCONF_UNPACK(conf, RT_CLKNOTDATA) #define ST_PINCONF_PACK_RT_CLKNOTDATA(conf) \ ST_PINCONF_PACK(conf, 1, RT_CLKNOTDATA) #define ST_PINCONF_RT_DOUBLE_EDGE_MASK 0x1 #define ST_PINCONF_RT_DOUBLE_EDGE_SHIFT 20 #define ST_PINCONF_RT_DOUBLE_EDGE BIT(20) #define ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(conf) \ ST_PINCONF_UNPACK(conf, RT_DOUBLE_EDGE) #define ST_PINCONF_PACK_RT_DOUBLE_EDGE(conf) \ ST_PINCONF_PACK(conf, 1, RT_DOUBLE_EDGE) #define ST_PINCONF_RT_CLK_MASK 0x3 #define ST_PINCONF_RT_CLK_SHIFT 18 #define ST_PINCONF_RT_CLK BIT(18) #define ST_PINCONF_UNPACK_RT_CLK(conf) ST_PINCONF_UNPACK(conf, RT_CLK) #define ST_PINCONF_PACK_RT_CLK(conf, val) ST_PINCONF_PACK(conf, val, RT_CLK) /* RETIME_DELAY in Pico Secs */ #define ST_PINCONF_RT_DELAY_MASK 0xffff #define ST_PINCONF_RT_DELAY_SHIFT 0 #define ST_PINCONF_UNPACK_RT_DELAY(conf) ST_PINCONF_UNPACK(conf, RT_DELAY) #define ST_PINCONF_PACK_RT_DELAY(conf, val) \ ST_PINCONF_PACK(conf, val, RT_DELAY) #define ST_GPIO_PINS_PER_BANK (8) #define OF_GPIO_ARGS_MIN (4) #define OF_RT_ARGS_MIN (2) #define gpio_range_to_bank(chip) \ container_of(chip, struct st_gpio_bank, range) #define pc_to_bank(pc) \ container_of(pc, struct st_gpio_bank, pc) enum st_retime_style { st_retime_style_none, st_retime_style_packed, st_retime_style_dedicated, }; struct st_retime_dedicated { struct regmap_field *rt[ST_GPIO_PINS_PER_BANK]; }; struct st_retime_packed { struct regmap_field *clk1notclk0; struct regmap_field *delay_0; struct regmap_field *delay_1; struct regmap_field *invertclk; struct regmap_field *retime; struct regmap_field *clknotdata; struct regmap_field *double_edge; }; struct st_pio_control { u32 rt_pin_mask; struct regmap_field *alt, *oe, *pu, *od; /* retiming */ union { struct st_retime_packed rt_p; struct st_retime_dedicated rt_d; } rt; }; struct st_pctl_data { const enum st_retime_style rt_style; const unsigned int *input_delays; const int ninput_delays; const unsigned int *output_delays; const int noutput_delays; /* register offset information */ const int alt, oe, pu, od, rt; }; struct st_pinconf { int pin; const char *name; unsigned long config; int altfunc; }; struct st_pmx_func { const char *name; const char **groups; unsigned ngroups; }; struct st_pctl_group { const char *name; unsigned int *pins; unsigned npins; struct st_pinconf *pin_conf; }; /* * Edge triggers are not supported at hardware level, it is supported by * software by exploiting the level trigger support in hardware. * Software uses a virtual register (EDGE_CONF) for edge trigger configuration * of each gpio pin in a GPIO bank. * * Each bank has a 32 bit EDGE_CONF register which is divided in to 8 parts of * 4-bits. Each 4-bit space is allocated for each pin in a gpio bank. * * bit allocation per pin is: * Bits: [0 - 3] | [4 - 7] [8 - 11] ... ... ... ... [ 28 - 31] * -------------------------------------------------------- * | pin-0 | pin-2 | pin-3 | ... ... ... ... | pin -7 | * -------------------------------------------------------- * * A pin can have one of following the values in its edge configuration field. * * ------- ---------------------------- * [0-3] - Description * ------- ---------------------------- * 0000 - No edge IRQ. * 0001 - Falling edge IRQ. * 0010 - Rising edge IRQ. * 0011 - Rising and Falling edge IRQ. * ------- ---------------------------- */ #define ST_IRQ_EDGE_CONF_BITS_PER_PIN 4 #define ST_IRQ_EDGE_MASK 0xf #define ST_IRQ_EDGE_FALLING BIT(0) #define ST_IRQ_EDGE_RISING BIT(1) #define ST_IRQ_EDGE_BOTH (BIT(0) | BIT(1)) #define ST_IRQ_RISING_EDGE_CONF(pin) \ (ST_IRQ_EDGE_RISING << (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN)) #define ST_IRQ_FALLING_EDGE_CONF(pin) \ (ST_IRQ_EDGE_FALLING << (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN)) #define ST_IRQ_BOTH_EDGE_CONF(pin) \ (ST_IRQ_EDGE_BOTH << (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN)) #define ST_IRQ_EDGE_CONF(conf, pin) \ (conf >> (pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN) & ST_IRQ_EDGE_MASK) struct st_gpio_bank { struct gpio_chip gpio_chip; struct pinctrl_gpio_range range; void __iomem *base; struct st_pio_control pc; unsigned long irq_edge_conf; spinlock_t lock; }; struct st_pinctrl { struct device *dev; struct pinctrl_dev *pctl; struct st_gpio_bank *banks; int nbanks; struct st_pmx_func *functions; int nfunctions; struct st_pctl_group *groups; int ngroups; struct regmap *regmap; const struct st_pctl_data *data; void __iomem *irqmux_base; }; /* SOC specific data */ static const unsigned int stih407_delays[] = {0, 300, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250 }; static const struct st_pctl_data stih407_data = { .rt_style = st_retime_style_dedicated, .input_delays = stih407_delays, .ninput_delays = ARRAY_SIZE(stih407_delays), .output_delays = stih407_delays, .noutput_delays = ARRAY_SIZE(stih407_delays), .alt = 0, .oe = 40, .pu = 50, .od = 60, .rt = 100, }; static const struct st_pctl_data stih407_flashdata = { .rt_style = st_retime_style_none, .input_delays = stih407_delays, .ninput_delays = ARRAY_SIZE(stih407_delays), .output_delays = stih407_delays, .noutput_delays = ARRAY_SIZE(stih407_delays), .alt = 0, .oe = -1, /* Not Available */ .pu = -1, /* Not Available */ .od = 60, .rt = 100, }; static struct st_pio_control *st_get_pio_control( struct pinctrl_dev *pctldev, int pin) { struct pinctrl_gpio_range *range = pinctrl_find_gpio_range_from_pin(pctldev, pin); struct st_gpio_bank *bank = gpio_range_to_bank(range); return &bank->pc; } /* Low level functions.. */ static inline int st_gpio_bank(int gpio) { return gpio/ST_GPIO_PINS_PER_BANK; } static inline int st_gpio_pin(int gpio) { return gpio%ST_GPIO_PINS_PER_BANK; } static void st_pinconf_set_config(struct st_pio_control *pc, int pin, unsigned long config) { struct regmap_field *output_enable = pc->oe; struct regmap_field *pull_up = pc->pu; struct regmap_field *open_drain = pc->od; unsigned int oe_value, pu_value, od_value; unsigned long mask = BIT(pin); if (output_enable) { regmap_field_read(output_enable, &oe_value); oe_value &= ~mask; if (config & ST_PINCONF_OE) oe_value |= mask; regmap_field_write(output_enable, oe_value); } if (pull_up) { regmap_field_read(pull_up, &pu_value); pu_value &= ~mask; if (config & ST_PINCONF_PU) pu_value |= mask; regmap_field_write(pull_up, pu_value); } if (open_drain) { regmap_field_read(open_drain, &od_value); od_value &= ~mask; if (config & ST_PINCONF_OD) od_value |= mask; regmap_field_write(open_drain, od_value); } } static void st_pctl_set_function(struct st_pio_control *pc, int pin_id, int function) { struct regmap_field *alt = pc->alt; unsigned int val; int pin = st_gpio_pin(pin_id); int offset = pin * 4; if (!alt) return; regmap_field_read(alt, &val); val &= ~(0xf << offset); val |= function << offset; regmap_field_write(alt, val); } static unsigned int st_pctl_get_pin_function(struct st_pio_control *pc, int pin) { struct regmap_field *alt = pc->alt; unsigned int val; int offset = pin * 4; if (!alt) return 0; regmap_field_read(alt, &val); return (val >> offset) & 0xf; } static unsigned long st_pinconf_delay_to_bit(unsigned int delay, const struct st_pctl_data *data, unsigned long config) { const unsigned int *delay_times; int num_delay_times, i, closest_index = -1; unsigned int closest_divergence = UINT_MAX; if (ST_PINCONF_UNPACK_OE(config)) { delay_times = data->output_delays; num_delay_times = data->noutput_delays; } else { delay_times = data->input_delays; num_delay_times = data->ninput_delays; } for (i = 0; i < num_delay_times; i++) { unsigned int divergence = abs(delay - delay_times[i]); if (divergence == 0) return i; if (divergence < closest_divergence) { closest_divergence = divergence; closest_index = i; } } pr_warn("Attempt to set delay %d, closest available %d\n", delay, delay_times[closest_index]); return closest_index; } static unsigned long st_pinconf_bit_to_delay(unsigned int index, const struct st_pctl_data *data, unsigned long output) { const unsigned int *delay_times; int num_delay_times; if (output) { delay_times = data->output_delays; num_delay_times = data->noutput_delays; } else { delay_times = data->input_delays; num_delay_times = data->ninput_delays; } if (index < num_delay_times) { return delay_times[index]; } else { pr_warn("Delay not found in/out delay list\n"); return 0; } } static void st_regmap_field_bit_set_clear_pin(struct regmap_field *field, int enable, int pin) { unsigned int val = 0; regmap_field_read(field, &val); if (enable) val |= BIT(pin); else val &= ~BIT(pin); regmap_field_write(field, val); } static void st_pinconf_set_retime_packed(struct st_pinctrl *info, struct st_pio_control *pc, unsigned long config, int pin) { const struct st_pctl_data *data = info->data; struct st_retime_packed *rt_p = &pc->rt.rt_p; unsigned int delay; st_regmap_field_bit_set_clear_pin(rt_p->clk1notclk0, ST_PINCONF_UNPACK_RT_CLK(config), pin); st_regmap_field_bit_set_clear_pin(rt_p->clknotdata, ST_PINCONF_UNPACK_RT_CLKNOTDATA(config), pin); st_regmap_field_bit_set_clear_pin(rt_p->double_edge, ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(config), pin); st_regmap_field_bit_set_clear_pin(rt_p->invertclk, ST_PINCONF_UNPACK_RT_INVERTCLK(config), pin); st_regmap_field_bit_set_clear_pin(rt_p->retime, ST_PINCONF_UNPACK_RT(config), pin); delay = st_pinconf_delay_to_bit(ST_PINCONF_UNPACK_RT_DELAY(config), data, config); /* 2 bit delay, lsb */ st_regmap_field_bit_set_clear_pin(rt_p->delay_0, delay & 0x1, pin); /* 2 bit delay, msb */ st_regmap_field_bit_set_clear_pin(rt_p->delay_1, delay & 0x2, pin); } static void st_pinconf_set_retime_dedicated(struct st_pinctrl *info, struct st_pio_control *pc, unsigned long config, int pin) { int input = ST_PINCONF_UNPACK_OE(config) ? 0 : 1; int clk = ST_PINCONF_UNPACK_RT_CLK(config); int clknotdata = ST_PINCONF_UNPACK_RT_CLKNOTDATA(config); int double_edge = ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(config); int invertclk = ST_PINCONF_UNPACK_RT_INVERTCLK(config); int retime = ST_PINCONF_UNPACK_RT(config); unsigned long delay = st_pinconf_delay_to_bit( ST_PINCONF_UNPACK_RT_DELAY(config), info->data, config); struct st_retime_dedicated *rt_d = &pc->rt.rt_d; unsigned long retime_config = ((clk) << RT_D_CFG_CLK_SHIFT) | ((delay) << RT_D_CFG_DELAY_SHIFT) | ((input) << RT_D_CFG_DELAY_INNOTOUT_SHIFT) | ((retime) << RT_D_CFG_RETIME_SHIFT) | ((clknotdata) << RT_D_CFG_CLKNOTDATA_SHIFT) | ((invertclk) << RT_D_CFG_INVERTCLK_SHIFT) | ((double_edge) << RT_D_CFG_DOUBLE_EDGE_SHIFT); regmap_field_write(rt_d->rt[pin], retime_config); } static void st_pinconf_get_direction(struct st_pio_control *pc, int pin, unsigned long *config) { unsigned int oe_value, pu_value, od_value; if (pc->oe) { regmap_field_read(pc->oe, &oe_value); if (oe_value & BIT(pin)) ST_PINCONF_PACK_OE(*config); } if (pc->pu) { regmap_field_read(pc->pu, &pu_value); if (pu_value & BIT(pin)) ST_PINCONF_PACK_PU(*config); } if (pc->od) { regmap_field_read(pc->od, &od_value); if (od_value & BIT(pin)) ST_PINCONF_PACK_OD(*config); } } static int st_pinconf_get_retime_packed(struct st_pinctrl *info, struct st_pio_control *pc, int pin, unsigned long *config) { const struct st_pctl_data *data = info->data; struct st_retime_packed *rt_p = &pc->rt.rt_p; unsigned int delay_bits, delay, delay0, delay1, val; int output = ST_PINCONF_UNPACK_OE(*config); if (!regmap_field_read(rt_p->retime, &val) && (val & BIT(pin))) ST_PINCONF_PACK_RT(*config); if (!regmap_field_read(rt_p->clk1notclk0, &val) && (val & BIT(pin))) ST_PINCONF_PACK_RT_CLK(*config, 1); if (!regmap_field_read(rt_p->clknotdata, &val) && (val & BIT(pin))) ST_PINCONF_PACK_RT_CLKNOTDATA(*config); if (!regmap_field_read(rt_p->double_edge, &val) && (val & BIT(pin))) ST_PINCONF_PACK_RT_DOUBLE_EDGE(*config); if (!regmap_field_read(rt_p->invertclk, &val) && (val & BIT(pin))) ST_PINCONF_PACK_RT_INVERTCLK(*config); regmap_field_read(rt_p->delay_0, &delay0); regmap_field_read(rt_p->delay_1, &delay1); delay_bits = (((delay1 & BIT(pin)) ? 1 : 0) << 1) | (((delay0 & BIT(pin)) ? 1 : 0)); delay = st_pinconf_bit_to_delay(delay_bits, data, output); ST_PINCONF_PACK_RT_DELAY(*config, delay); return 0; } static int st_pinconf_get_retime_dedicated(struct st_pinctrl *info, struct st_pio_control *pc, int pin, unsigned long *config) { unsigned int value; unsigned long delay_bits, delay, rt_clk; int output = ST_PINCONF_UNPACK_OE(*config); struct st_retime_dedicated *rt_d = &pc->rt.rt_d; regmap_field_read(rt_d->rt[pin], &value); rt_clk = (value & RT_D_CFG_CLK_MASK) >> RT_D_CFG_CLK_SHIFT; ST_PINCONF_PACK_RT_CLK(*config, rt_clk); delay_bits = (value & RT_D_CFG_DELAY_MASK) >> RT_D_CFG_DELAY_SHIFT; delay = st_pinconf_bit_to_delay(delay_bits, info->data, output); ST_PINCONF_PACK_RT_DELAY(*config, delay); if (value & RT_D_CFG_CLKNOTDATA_MASK) ST_PINCONF_PACK_RT_CLKNOTDATA(*config); if (value & RT_D_CFG_DOUBLE_EDGE_MASK) ST_PINCONF_PACK_RT_DOUBLE_EDGE(*config); if (value & RT_D_CFG_INVERTCLK_MASK) ST_PINCONF_PACK_RT_INVERTCLK(*config); if (value & RT_D_CFG_RETIME_MASK) ST_PINCONF_PACK_RT(*config); return 0; } /* GPIO related functions */ static inline void __st_gpio_set(struct st_gpio_bank *bank, unsigned offset, int value) { if (value) writel(BIT(offset), bank->base + REG_PIO_SET_POUT); else writel(BIT(offset), bank->base + REG_PIO_CLR_POUT); } static void st_gpio_direction(struct st_gpio_bank *bank, unsigned int gpio, unsigned int direction) { int offset = st_gpio_pin(gpio); int i = 0; /** * There are three configuration registers (PIOn_PC0, PIOn_PC1 * and PIOn_PC2) for each port. These are used to configure the * PIO port pins. Each pin can be configured as an input, output, * bidirectional, or alternative function pin. Three bits, one bit * from each of the three registers, configure the corresponding bit of * the port. Valid bit settings is: * * PC2 PC1 PC0 Direction. * 0 0 0 [Input Weak pull-up] * 0 0 or 1 1 [Bidirection] * 0 1 0 [Output] * 1 0 0 [Input] * * PIOn_SET_PC and PIOn_CLR_PC registers are used to set and clear bits * individually. */ for (i = 0; i <= 2; i++) { if (direction & BIT(i)) writel(BIT(offset), bank->base + REG_PIO_SET_PC(i)); else writel(BIT(offset), bank->base + REG_PIO_CLR_PC(i)); } } static int st_gpio_get(struct gpio_chip *chip, unsigned offset) { struct st_gpio_bank *bank = gpiochip_get_data(chip); return !!(readl(bank->base + REG_PIO_PIN) & BIT(offset)); } static void st_gpio_set(struct gpio_chip *chip, unsigned offset, int value) { struct st_gpio_bank *bank = gpiochip_get_data(chip); __st_gpio_set(bank, offset, value); } static int st_gpio_direction_input(struct gpio_chip *chip, unsigned offset) { pinctrl_gpio_direction_input(chip->base + offset); return 0; } static int st_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) { struct st_gpio_bank *bank = gpiochip_get_data(chip); __st_gpio_set(bank, offset, value); pinctrl_gpio_direction_output(chip->base + offset); return 0; } static int st_gpio_get_direction(struct gpio_chip *chip, unsigned offset) { struct st_gpio_bank *bank = gpiochip_get_data(chip); struct st_pio_control pc = bank->pc; unsigned long config; unsigned int direction = 0; unsigned int function; unsigned int value; int i = 0; /* Alternate function direction is handled by Pinctrl */ function = st_pctl_get_pin_function(&pc, offset); if (function) { st_pinconf_get_direction(&pc, offset, &config); if (ST_PINCONF_UNPACK_OE(config)) return GPIO_LINE_DIRECTION_OUT; return GPIO_LINE_DIRECTION_IN; } /* * GPIO direction is handled differently * - See st_gpio_direction() above for an explanation */ for (i = 0; i <= 2; i++) { value = readl(bank->base + REG_PIO_PC(i)); direction |= ((value >> offset) & 0x1) << i; } if (direction == ST_GPIO_DIRECTION_IN) return GPIO_LINE_DIRECTION_IN; return GPIO_LINE_DIRECTION_OUT; } /* Pinctrl Groups */ static int st_pctl_get_groups_count(struct pinctrl_dev *pctldev) { struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev); return info->ngroups; } static const char *st_pctl_get_group_name(struct pinctrl_dev *pctldev, unsigned selector) { struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev); return info->groups[selector].name; } static int st_pctl_get_group_pins(struct pinctrl_dev *pctldev, unsigned selector, const unsigned **pins, unsigned *npins) { struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev); if (selector >= info->ngroups) return -EINVAL; *pins = info->groups[selector].pins; *npins = info->groups[selector].npins; return 0; } static inline const struct st_pctl_group *st_pctl_find_group_by_name( const struct st_pinctrl *info, const char *name) { int i; for (i = 0; i < info->ngroups; i++) { if (!strcmp(info->groups[i].name, name)) return &info->groups[i]; } return NULL; } static int st_pctl_dt_node_to_map(struct pinctrl_dev *pctldev, struct device_node *np, struct pinctrl_map **map, unsigned *num_maps) { struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev); const struct st_pctl_group *grp; struct device *dev = info->dev; struct pinctrl_map *new_map; struct device_node *parent; int map_num, i; grp = st_pctl_find_group_by_name(info, np->name); if (!grp) { dev_err(dev, "unable to find group for node %pOFn\n", np); return -EINVAL; } map_num = grp->npins + 1; new_map = devm_kcalloc(dev, map_num, sizeof(*new_map), GFP_KERNEL); if (!new_map) return -ENOMEM; parent = of_get_parent(np); if (!parent) { devm_kfree(dev, new_map); return -EINVAL; } *map = new_map; *num_maps = map_num; new_map[0].type = PIN_MAP_TYPE_MUX_GROUP; new_map[0].data.mux.function = parent->name; new_map[0].data.mux.group = np->name; of_node_put(parent); /* create config map per pin */ new_map++; for (i = 0; i < grp->npins; i++) { new_map[i].type = PIN_MAP_TYPE_CONFIGS_PIN; new_map[i].data.configs.group_or_pin = pin_get_name(pctldev, grp->pins[i]); new_map[i].data.configs.configs = &grp->pin_conf[i].config; new_map[i].data.configs.num_configs = 1; } dev_info(dev, "maps: function %s group %s num %d\n", (*map)->data.mux.function, grp->name, map_num); return 0; } static void st_pctl_dt_free_map(struct pinctrl_dev *pctldev, struct pinctrl_map *map, unsigned num_maps) { } static const struct pinctrl_ops st_pctlops = { .get_groups_count = st_pctl_get_groups_count, .get_group_pins = st_pctl_get_group_pins, .get_group_name = st_pctl_get_group_name, .dt_node_to_map = st_pctl_dt_node_to_map, .dt_free_map = st_pctl_dt_free_map, }; /* Pinmux */ static int st_pmx_get_funcs_count(struct pinctrl_dev *pctldev) { struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev); return info->nfunctions; } static const char *st_pmx_get_fname(struct pinctrl_dev *pctldev, unsigned selector) { struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev); return info->functions[selector].name; } static int st_pmx_get_groups(struct pinctrl_dev *pctldev, unsigned selector, const char * const **grps, unsigned * const ngrps) { struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev); *grps = info->functions[selector].groups; *ngrps = info->functions[selector].ngroups; return 0; } static int st_pmx_set_mux(struct pinctrl_dev *pctldev, unsigned fselector, unsigned group) { struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev); struct st_pinconf *conf = info->groups[group].pin_conf; struct st_pio_control *pc; int i; for (i = 0; i < info->groups[group].npins; i++) { pc = st_get_pio_control(pctldev, conf[i].pin); st_pctl_set_function(pc, conf[i].pin, conf[i].altfunc); } return 0; } static int st_pmx_set_gpio_direction(struct pinctrl_dev *pctldev, struct pinctrl_gpio_range *range, unsigned gpio, bool input) { struct st_gpio_bank *bank = gpio_range_to_bank(range); /* * When a PIO bank is used in its primary function mode (altfunc = 0) * Output Enable (OE), Open Drain(OD), and Pull Up (PU) * for the primary PIO functions are driven by the related PIO block */ st_pctl_set_function(&bank->pc, gpio, 0); st_gpio_direction(bank, gpio, input ? ST_GPIO_DIRECTION_IN : ST_GPIO_DIRECTION_OUT); return 0; } static const struct pinmux_ops st_pmxops = { .get_functions_count = st_pmx_get_funcs_count, .get_function_name = st_pmx_get_fname, .get_function_groups = st_pmx_get_groups, .set_mux = st_pmx_set_mux, .gpio_set_direction = st_pmx_set_gpio_direction, .strict = true, }; /* Pinconf */ static void st_pinconf_get_retime(struct st_pinctrl *info, struct st_pio_control *pc, int pin, unsigned long *config) { if (info->data->rt_style == st_retime_style_packed) st_pinconf_get_retime_packed(info, pc, pin, config); else if (info->data->rt_style == st_retime_style_dedicated) if ((BIT(pin) & pc->rt_pin_mask)) st_pinconf_get_retime_dedicated(info, pc, pin, config); } static void st_pinconf_set_retime(struct st_pinctrl *info, struct st_pio_control *pc, int pin, unsigned long config) { if (info->data->rt_style == st_retime_style_packed) st_pinconf_set_retime_packed(info, pc, config, pin); else if (info->data->rt_style == st_retime_style_dedicated) if ((BIT(pin) & pc->rt_pin_mask)) st_pinconf_set_retime_dedicated(info, pc, config, pin); } static int st_pinconf_set(struct pinctrl_dev *pctldev, unsigned pin_id, unsigned long *configs, unsigned num_configs) { int pin = st_gpio_pin(pin_id); struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev); struct st_pio_control *pc = st_get_pio_control(pctldev, pin_id); int i; for (i = 0; i < num_configs; i++) { st_pinconf_set_config(pc, pin, configs[i]); st_pinconf_set_retime(info, pc, pin, configs[i]); } /* for each config */ return 0; } static int st_pinconf_get(struct pinctrl_dev *pctldev, unsigned pin_id, unsigned long *config) { int pin = st_gpio_pin(pin_id); struct st_pinctrl *info = pinctrl_dev_get_drvdata(pctldev); struct st_pio_control *pc = st_get_pio_control(pctldev, pin_id); *config = 0; st_pinconf_get_direction(pc, pin, config); st_pinconf_get_retime(info, pc, pin, config); return 0; } static void st_pinconf_dbg_show(struct pinctrl_dev *pctldev, struct seq_file *s, unsigned pin_id) { struct st_pio_control *pc; unsigned long config; unsigned int function; int offset = st_gpio_pin(pin_id); char f[16]; int oe; mutex_unlock(&pctldev->mutex); pc = st_get_pio_control(pctldev, pin_id); st_pinconf_get(pctldev, pin_id, &config); mutex_lock(&pctldev->mutex); function = st_pctl_get_pin_function(pc, offset); if (function) snprintf(f, 10, "Alt Fn %u", function); else snprintf(f, 5, "GPIO"); oe = st_gpio_get_direction(&pc_to_bank(pc)->gpio_chip, offset); seq_printf(s, "[OE:%d,PU:%ld,OD:%ld]\t%s\n" "\t\t[retime:%ld,invclk:%ld,clknotdat:%ld," "de:%ld,rt-clk:%ld,rt-delay:%ld]", (oe == GPIO_LINE_DIRECTION_OUT), ST_PINCONF_UNPACK_PU(config), ST_PINCONF_UNPACK_OD(config), f, ST_PINCONF_UNPACK_RT(config), ST_PINCONF_UNPACK_RT_INVERTCLK(config), ST_PINCONF_UNPACK_RT_CLKNOTDATA(config), ST_PINCONF_UNPACK_RT_DOUBLE_EDGE(config), ST_PINCONF_UNPACK_RT_CLK(config), ST_PINCONF_UNPACK_RT_DELAY(config)); } static const struct pinconf_ops st_confops = { .pin_config_get = st_pinconf_get, .pin_config_set = st_pinconf_set, .pin_config_dbg_show = st_pinconf_dbg_show, }; static void st_pctl_dt_child_count(struct st_pinctrl *info, struct device_node *np) { struct device_node *child; for_each_child_of_node(np, child) { if (of_property_read_bool(child, "gpio-controller")) { info->nbanks++; } else { info->nfunctions++; info->ngroups += of_get_child_count(child); } } } static int st_pctl_dt_setup_retime_packed(struct st_pinctrl *info, int bank, struct st_pio_control *pc) { struct device *dev = info->dev; struct regmap *rm = info->regmap; const struct st_pctl_data *data = info->data; /* 2 registers per bank */ int reg = (data->rt + bank * RT_P_CFGS_PER_BANK) * 4; struct st_retime_packed *rt_p = &pc->rt.rt_p; /* cfg0 */ struct reg_field clk1notclk0 = RT_P_CFG0_CLK1NOTCLK0_FIELD(reg); struct reg_field delay_0 = RT_P_CFG0_DELAY_0_FIELD(reg); struct reg_field delay_1 = RT_P_CFG0_DELAY_1_FIELD(reg); /* cfg1 */ struct reg_field invertclk = RT_P_CFG1_INVERTCLK_FIELD(reg + 4); struct reg_field retime = RT_P_CFG1_RETIME_FIELD(reg + 4); struct reg_field clknotdata = RT_P_CFG1_CLKNOTDATA_FIELD(reg + 4); struct reg_field double_edge = RT_P_CFG1_DOUBLE_EDGE_FIELD(reg + 4); rt_p->clk1notclk0 = devm_regmap_field_alloc(dev, rm, clk1notclk0); rt_p->delay_0 = devm_regmap_field_alloc(dev, rm, delay_0); rt_p->delay_1 = devm_regmap_field_alloc(dev, rm, delay_1); rt_p->invertclk = devm_regmap_field_alloc(dev, rm, invertclk); rt_p->retime = devm_regmap_field_alloc(dev, rm, retime); rt_p->clknotdata = devm_regmap_field_alloc(dev, rm, clknotdata); rt_p->double_edge = devm_regmap_field_alloc(dev, rm, double_edge); if (IS_ERR(rt_p->clk1notclk0) || IS_ERR(rt_p->delay_0) || IS_ERR(rt_p->delay_1) || IS_ERR(rt_p->invertclk) || IS_ERR(rt_p->retime) || IS_ERR(rt_p->clknotdata) || IS_ERR(rt_p->double_edge)) return -EINVAL; return 0; } static int st_pctl_dt_setup_retime_dedicated(struct st_pinctrl *info, int bank, struct st_pio_control *pc) { struct device *dev = info->dev; struct regmap *rm = info->regmap; const struct st_pctl_data *data = info->data; /* 8 registers per bank */ int reg_offset = (data->rt + bank * RT_D_CFGS_PER_BANK) * 4; struct st_retime_dedicated *rt_d = &pc->rt.rt_d; unsigned int j; u32 pin_mask = pc->rt_pin_mask; for (j = 0; j < RT_D_CFGS_PER_BANK; j++) { if (BIT(j) & pin_mask) { struct reg_field reg = REG_FIELD(reg_offset, 0, 31); rt_d->rt[j] = devm_regmap_field_alloc(dev, rm, reg); if (IS_ERR(rt_d->rt[j])) return -EINVAL; reg_offset += 4; } } return 0; } static int st_pctl_dt_setup_retime(struct st_pinctrl *info, int bank, struct st_pio_control *pc) { const struct st_pctl_data *data = info->data; if (data->rt_style == st_retime_style_packed) return st_pctl_dt_setup_retime_packed(info, bank, pc); else if (data->rt_style == st_retime_style_dedicated) return st_pctl_dt_setup_retime_dedicated(info, bank, pc); return -EINVAL; } static struct regmap_field *st_pc_get_value(struct device *dev, struct regmap *regmap, int bank, int data, int lsb, int msb) { struct reg_field reg = REG_FIELD((data + bank) * 4, lsb, msb); if (data < 0) return NULL; return devm_regmap_field_alloc(dev, regmap, reg); } static void st_parse_syscfgs(struct st_pinctrl *info, int bank, struct device_node *np) { const struct st_pctl_data *data = info->data; /** * For a given shared register like OE/PU/OD, there are 8 bits per bank * 0:7 belongs to bank0, 8:15 belongs to bank1 ... * So each register is shared across 4 banks. */ int lsb = (bank%4) * ST_GPIO_PINS_PER_BANK; int msb = lsb + ST_GPIO_PINS_PER_BANK - 1; struct st_pio_control *pc = &info->banks[bank].pc; struct device *dev = info->dev; struct regmap *regmap = info->regmap; pc->alt = st_pc_get_value(dev, regmap, bank, data->alt, 0, 31); pc->oe = st_pc_get_value(dev, regmap, bank/4, data->oe, lsb, msb); pc->pu = st_pc_get_value(dev, regmap, bank/4, data->pu, lsb, msb); pc->od = st_pc_get_value(dev, regmap, bank/4, data->od, lsb, msb); /* retime avaiable for all pins by default */ pc->rt_pin_mask = 0xff; of_property_read_u32(np, "st,retime-pin-mask", &pc->rt_pin_mask); st_pctl_dt_setup_retime(info, bank, pc); return; } static int st_pctl_dt_calculate_pin(struct st_pinctrl *info, phandle bank, unsigned int offset) { struct device_node *np; struct gpio_chip *chip; int retval = -EINVAL; int i; np = of_find_node_by_phandle(bank); if (!np) return -EINVAL; for (i = 0; i < info->nbanks; i++) { chip = &info->banks[i].gpio_chip; if (chip->of_node == np) { if (offset < chip->ngpio) retval = chip->base + offset; break; } } of_node_put(np); return retval; } /* * Each pin is represented in of the below forms. * <bank offset mux direction rt_type rt_delay rt_clk> */ static int st_pctl_dt_parse_groups(struct device_node *np, struct st_pctl_group *grp, struct st_pinctrl *info, int idx) { /* bank pad direction val altfunction */ const __be32 *list; struct property *pp; struct device *dev = info->dev; struct st_pinconf *conf; struct device_node *pins; phandle bank; unsigned int offset; int i = 0, npins = 0, nr_props, ret = 0; pins = of_get_child_by_name(np, "st,pins"); if (!pins) return -ENODATA; for_each_property_of_node(pins, pp) { /* Skip those we do not want to proceed */ if (!strcmp(pp->name, "name")) continue; if (pp->length / sizeof(__be32) >= OF_GPIO_ARGS_MIN) { npins++; } else { pr_warn("Invalid st,pins in %pOFn node\n", np); ret = -EINVAL; goto out_put_node; } } grp->npins = npins; grp->name = np->name; grp->pins = devm_kcalloc(dev, npins, sizeof(*grp->pins), GFP_KERNEL); grp->pin_conf = devm_kcalloc(dev, npins, sizeof(*grp->pin_conf), GFP_KERNEL); if (!grp->pins || !grp->pin_conf) { ret = -ENOMEM; goto out_put_node; } /* <bank offset mux direction rt_type rt_delay rt_clk> */ for_each_property_of_node(pins, pp) { if (!strcmp(pp->name, "name")) continue; nr_props = pp->length/sizeof(u32); list = pp->value; conf = &grp->pin_conf[i]; /* bank & offset */ bank = be32_to_cpup(list++); offset = be32_to_cpup(list++); conf->pin = st_pctl_dt_calculate_pin(info, bank, offset); conf->name = pp->name; grp->pins[i] = conf->pin; /* mux */ conf->altfunc = be32_to_cpup(list++); conf->config = 0; /* direction */ conf->config |= be32_to_cpup(list++); /* rt_type rt_delay rt_clk */ if (nr_props >= OF_GPIO_ARGS_MIN + OF_RT_ARGS_MIN) { /* rt_type */ conf->config |= be32_to_cpup(list++); /* rt_delay */ conf->config |= be32_to_cpup(list++); /* rt_clk */ if (nr_props > OF_GPIO_ARGS_MIN + OF_RT_ARGS_MIN) conf->config |= be32_to_cpup(list++); } i++; } out_put_node: of_node_put(pins); return ret; } static int st_pctl_parse_functions(struct device_node *np, struct st_pinctrl *info, u32 index, int *grp_index) { struct device *dev = info->dev; struct device_node *child; struct st_pmx_func *func; struct st_pctl_group *grp; int ret, i; func = &info->functions[index]; func->name = np->name; func->ngroups = of_get_child_count(np); if (func->ngroups == 0) return dev_err_probe(dev, -EINVAL, "No groups defined\n"); func->groups = devm_kcalloc(dev, func->ngroups, sizeof(*func->groups), GFP_KERNEL); if (!func->groups) return -ENOMEM; i = 0; for_each_child_of_node(np, child) { func->groups[i] = child->name; grp = &info->groups[*grp_index]; *grp_index += 1; ret = st_pctl_dt_parse_groups(child, grp, info, i++); if (ret) { of_node_put(child); return ret; } } dev_info(dev, "Function[%d\t name:%s,\tgroups:%d]\n", index, func->name, func->ngroups); return 0; } static void st_gpio_irq_mask(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct st_gpio_bank *bank = gpiochip_get_data(gc); writel(BIT(d->hwirq), bank->base + REG_PIO_CLR_PMASK); } static void st_gpio_irq_unmask(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct st_gpio_bank *bank = gpiochip_get_data(gc); writel(BIT(d->hwirq), bank->base + REG_PIO_SET_PMASK); } static int st_gpio_irq_request_resources(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); st_gpio_direction_input(gc, d->hwirq); return gpiochip_lock_as_irq(gc, d->hwirq); } static void st_gpio_irq_release_resources(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); gpiochip_unlock_as_irq(gc, d->hwirq); } static int st_gpio_irq_set_type(struct irq_data *d, unsigned type) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct st_gpio_bank *bank = gpiochip_get_data(gc); unsigned long flags; int comp, pin = d->hwirq; u32 val; u32 pin_edge_conf = 0; switch (type) { case IRQ_TYPE_LEVEL_HIGH: comp = 0; break; case IRQ_TYPE_EDGE_FALLING: comp = 0; pin_edge_conf = ST_IRQ_FALLING_EDGE_CONF(pin); break; case IRQ_TYPE_LEVEL_LOW: comp = 1; break; case IRQ_TYPE_EDGE_RISING: comp = 1; pin_edge_conf = ST_IRQ_RISING_EDGE_CONF(pin); break; case IRQ_TYPE_EDGE_BOTH: comp = st_gpio_get(&bank->gpio_chip, pin); pin_edge_conf = ST_IRQ_BOTH_EDGE_CONF(pin); break; default: return -EINVAL; } spin_lock_irqsave(&bank->lock, flags); bank->irq_edge_conf &= ~(ST_IRQ_EDGE_MASK << ( pin * ST_IRQ_EDGE_CONF_BITS_PER_PIN)); bank->irq_edge_conf |= pin_edge_conf; spin_unlock_irqrestore(&bank->lock, flags); val = readl(bank->base + REG_PIO_PCOMP); val &= ~BIT(pin); val |= (comp << pin); writel(val, bank->base + REG_PIO_PCOMP); return 0; } /* * As edge triggers are not supported at hardware level, it is supported by * software by exploiting the level trigger support in hardware. * * Steps for detection raising edge interrupt in software. * * Step 1: CONFIGURE pin to detect level LOW interrupts. * * Step 2: DETECT level LOW interrupt and in irqmux/gpio bank interrupt handler, * if the value of pin is low, then CONFIGURE pin for level HIGH interrupt. * IGNORE calling the actual interrupt handler for the pin at this stage. * * Step 3: DETECT level HIGH interrupt and in irqmux/gpio-bank interrupt handler * if the value of pin is HIGH, CONFIGURE pin for level LOW interrupt and then * DISPATCH the interrupt to the interrupt handler of the pin. * * step-1 ________ __________ * | | step - 3 * | | * step -2 |_____| * * falling edge is also detected int the same way. * */ static void __gpio_irq_handler(struct st_gpio_bank *bank) { unsigned long port_in, port_mask, port_comp, active_irqs; unsigned long bank_edge_mask, flags; int n, val, ecfg; spin_lock_irqsave(&bank->lock, flags); bank_edge_mask = bank->irq_edge_conf; spin_unlock_irqrestore(&bank->lock, flags); for (;;) { port_in = readl(bank->base + REG_PIO_PIN); port_comp = readl(bank->base + REG_PIO_PCOMP); port_mask = readl(bank->base + REG_PIO_PMASK); active_irqs = (port_in ^ port_comp) & port_mask; if (active_irqs == 0) break; for_each_set_bit(n, &active_irqs, BITS_PER_LONG) { /* check if we are detecting fake edges ... */ ecfg = ST_IRQ_EDGE_CONF(bank_edge_mask, n); if (ecfg) { /* edge detection. */ val = st_gpio_get(&bank->gpio_chip, n); writel(BIT(n), val ? bank->base + REG_PIO_SET_PCOMP : bank->base + REG_PIO_CLR_PCOMP); if (ecfg != ST_IRQ_EDGE_BOTH && !((ecfg & ST_IRQ_EDGE_FALLING) ^ val)) continue; } generic_handle_domain_irq(bank->gpio_chip.irq.domain, n); } } } static void st_gpio_irq_handler(struct irq_desc *desc) { /* interrupt dedicated per bank */ struct irq_chip *chip = irq_desc_get_chip(desc); struct gpio_chip *gc = irq_desc_get_handler_data(desc); struct st_gpio_bank *bank = gpiochip_get_data(gc); chained_irq_enter(chip, desc); __gpio_irq_handler(bank); chained_irq_exit(chip, desc); } static void st_gpio_irqmux_handler(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); struct st_pinctrl *info = irq_desc_get_handler_data(desc); unsigned long status; int n; chained_irq_enter(chip, desc); status = readl(info->irqmux_base); for_each_set_bit(n, &status, info->nbanks) __gpio_irq_handler(&info->banks[n]); chained_irq_exit(chip, desc); } static const struct gpio_chip st_gpio_template = { .request = gpiochip_generic_request, .free = gpiochip_generic_free, .get = st_gpio_get, .set = st_gpio_set, .direction_input = st_gpio_direction_input, .direction_output = st_gpio_direction_output, .get_direction = st_gpio_get_direction, .ngpio = ST_GPIO_PINS_PER_BANK, }; static struct irq_chip st_gpio_irqchip = { .name = "GPIO", .irq_request_resources = st_gpio_irq_request_resources, .irq_release_resources = st_gpio_irq_release_resources, .irq_disable = st_gpio_irq_mask, .irq_mask = st_gpio_irq_mask, .irq_unmask = st_gpio_irq_unmask, .irq_set_type = st_gpio_irq_set_type, .flags = IRQCHIP_SKIP_SET_WAKE, }; static int st_gpiolib_register_bank(struct st_pinctrl *info, int bank_nr, struct device_node *np) { struct st_gpio_bank *bank = &info->banks[bank_nr]; struct pinctrl_gpio_range *range = &bank->range; struct device *dev = info->dev; int bank_num = of_alias_get_id(np, "gpio"); struct resource res, irq_res; int err; if (of_address_to_resource(np, 0, &res)) return -ENODEV; bank->base = devm_ioremap_resource(dev, &res); if (IS_ERR(bank->base)) return PTR_ERR(bank->base); bank->gpio_chip = st_gpio_template; bank->gpio_chip.base = bank_num * ST_GPIO_PINS_PER_BANK; bank->gpio_chip.ngpio = ST_GPIO_PINS_PER_BANK; bank->gpio_chip.of_node = np; bank->gpio_chip.parent = dev; spin_lock_init(&bank->lock); of_property_read_string(np, "st,bank-name", &range->name); bank->gpio_chip.label = range->name; range->id = bank_num; range->pin_base = range->base = range->id * ST_GPIO_PINS_PER_BANK; range->npins = bank->gpio_chip.ngpio; range->gc = &bank->gpio_chip; /** * GPIO bank can have one of the two possible types of * interrupt-wirings. * * First type is via irqmux, single interrupt is used by multiple * gpio banks. This reduces number of overall interrupts numbers * required. All these banks belong to a single pincontroller. * _________ * | |----> [gpio-bank (n) ] * | |----> [gpio-bank (n + 1)] * [irqN]-- | irq-mux |----> [gpio-bank (n + 2)] * | |----> [gpio-bank (... )] * |_________|----> [gpio-bank (n + 7)] * * Second type has a dedicated interrupt per each gpio bank. * * [irqN]----> [gpio-bank (n)] */ if (of_irq_to_resource(np, 0, &irq_res) > 0) { struct gpio_irq_chip *girq; int gpio_irq = irq_res.start; /* This is not a valid IRQ */ if (gpio_irq <= 0) { dev_err(dev, "invalid IRQ for %pOF bank\n", np); goto skip_irq; } /* We need to have a mux as well */ if (!info->irqmux_base) { dev_err(dev, "no irqmux for %pOF bank\n", np); goto skip_irq; } girq = &bank->gpio_chip.irq; girq->chip = &st_gpio_irqchip; girq->parent_handler = st_gpio_irq_handler; girq->num_parents = 1; girq->parents = devm_kcalloc(dev, 1, sizeof(*girq->parents), GFP_KERNEL); if (!girq->parents) return -ENOMEM; girq->parents[0] = gpio_irq; girq->default_type = IRQ_TYPE_NONE; girq->handler = handle_simple_irq; } skip_irq: err = gpiochip_add_data(&bank->gpio_chip, bank); if (err) return dev_err_probe(dev, err, "Failed to add gpiochip(%d)!\n", bank_num); dev_info(dev, "%s bank added.\n", range->name); return 0; } static const struct of_device_id st_pctl_of_match[] = { { .compatible = "st,stih407-sbc-pinctrl", .data = &stih407_data}, { .compatible = "st,stih407-front-pinctrl", .data = &stih407_data}, { .compatible = "st,stih407-rear-pinctrl", .data = &stih407_data}, { .compatible = "st,stih407-flash-pinctrl", .data = &stih407_flashdata}, { /* sentinel */ } }; static int st_pctl_probe_dt(struct platform_device *pdev, struct pinctrl_desc *pctl_desc, struct st_pinctrl *info) { struct device *dev = &pdev->dev; int ret = 0; int i = 0, j = 0, k = 0, bank; struct pinctrl_pin_desc *pdesc; struct device_node *np = dev->of_node; struct device_node *child; int grp_index = 0; int irq = 0; st_pctl_dt_child_count(info, np); if (!info->nbanks) return dev_err_probe(dev, -EINVAL, "you need at least one gpio bank\n"); dev_info(dev, "nbanks = %d\n", info->nbanks); dev_info(dev, "nfunctions = %d\n", info->nfunctions); dev_info(dev, "ngroups = %d\n", info->ngroups); info->functions = devm_kcalloc(dev, info->nfunctions, sizeof(*info->functions), GFP_KERNEL); info->groups = devm_kcalloc(dev, info->ngroups, sizeof(*info->groups), GFP_KERNEL); info->banks = devm_kcalloc(dev, info->nbanks, sizeof(*info->banks), GFP_KERNEL); if (!info->functions || !info->groups || !info->banks) return -ENOMEM; info->regmap = syscon_regmap_lookup_by_phandle(np, "st,syscfg"); if (IS_ERR(info->regmap)) return dev_err_probe(dev, PTR_ERR(info->regmap), "No syscfg phandle specified\n"); info->data = of_match_node(st_pctl_of_match, np)->data; irq = platform_get_irq(pdev, 0); if (irq > 0) { info->irqmux_base = devm_platform_ioremap_resource_byname(pdev, "irqmux"); if (IS_ERR(info->irqmux_base)) return PTR_ERR(info->irqmux_base); irq_set_chained_handler_and_data(irq, st_gpio_irqmux_handler, info); } pctl_desc->npins = info->nbanks * ST_GPIO_PINS_PER_BANK; pdesc = devm_kcalloc(dev, pctl_desc->npins, sizeof(*pdesc), GFP_KERNEL); if (!pdesc) return -ENOMEM; pctl_desc->pins = pdesc; bank = 0; for_each_child_of_node(np, child) { if (of_property_read_bool(child, "gpio-controller")) { const char *bank_name = NULL; char **pin_names; ret = st_gpiolib_register_bank(info, bank, child); if (ret) { of_node_put(child); return ret; } k = info->banks[bank].range.pin_base; bank_name = info->banks[bank].range.name; pin_names = devm_kasprintf_strarray(dev, bank_name, ST_GPIO_PINS_PER_BANK); if (IS_ERR(pin_names)) { of_node_put(child); return PTR_ERR(pin_names); } for (j = 0; j < ST_GPIO_PINS_PER_BANK; j++, k++) { pdesc->number = k; pdesc->name = pin_names[j]; pdesc++; } st_parse_syscfgs(info, bank, child); bank++; } else { ret = st_pctl_parse_functions(child, info, i++, &grp_index); if (ret) { dev_err(dev, "No functions found.\n"); of_node_put(child); return ret; } } } return 0; } static int st_pctl_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct st_pinctrl *info; struct pinctrl_desc *pctl_desc; int ret, i; if (!dev->of_node) { dev_err(dev, "device node not found.\n"); return -EINVAL; } pctl_desc = devm_kzalloc(dev, sizeof(*pctl_desc), GFP_KERNEL); if (!pctl_desc) return -ENOMEM; info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; info->dev = dev; platform_set_drvdata(pdev, info); ret = st_pctl_probe_dt(pdev, pctl_desc, info); if (ret) return ret; pctl_desc->owner = THIS_MODULE; pctl_desc->pctlops = &st_pctlops; pctl_desc->pmxops = &st_pmxops; pctl_desc->confops = &st_confops; pctl_desc->name = dev_name(dev); info->pctl = devm_pinctrl_register(dev, pctl_desc, info); if (IS_ERR(info->pctl)) return dev_err_probe(dev, PTR_ERR(info->pctl), "Failed pinctrl registration\n"); for (i = 0; i < info->nbanks; i++) pinctrl_add_gpio_range(info->pctl, &info->banks[i].range); return 0; } static struct platform_driver st_pctl_driver = { .driver = { .name = "st-pinctrl", .of_match_table = st_pctl_of_match, }, .probe = st_pctl_probe, }; static int __init st_pctl_init(void) { return platform_driver_register(&st_pctl_driver); } arch_initcall(st_pctl_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1