Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matti Vaittinen | 4271 | 97.73% | 1 | 33.33% |
Linus Walleij | 98 | 2.24% | 1 | 33.33% |
Zou Wei | 1 | 0.02% | 1 | 33.33% |
Total | 4370 | 3 |
// SPDX-License-Identifier: GPL-2.0-only /* * ROHM BD99954 charger driver * * Copyright (C) 2020 Rohm Semiconductors * Originally written by: * Mikko Mutanen <mikko.mutanen@fi.rohmeurope.com> * Markus Laine <markus.laine@fi.rohmeurope.com> * Bugs added by: * Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com> */ /* * The battery charging profile of BD99954. * * Curve (1) represents charging current. * Curve (2) represents battery voltage. * * The BD99954 data sheet divides charging to three phases. * a) Trickle-charge with constant current (8). * b) pre-charge with constant current (6) * c) fast-charge, first with constant current (5) phase. After * the battery voltage has reached target level (4) we have constant * voltage phase until charging current has dropped to termination * level (7) * * V ^ ^ I * . . * . . *(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------. * . :/ . * . o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5) * . + :: + . * . + /- -- . * . +`/- + . * . o/- -: . * . .s. +` . * . .--+ `/ . * . ..`` + .: . * . -` + -- . * . (2) ...`` + :- . * . ...`` + -: . *(3)` `.`."" ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6) * . + `:. . * . + -: . * . + -:. . * . + .--. . * . (1) + `.+` ` ` `.` ` (7) * -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8) * . + - * -------------------------------------------------+++++++++--> * | trickle | pre | fast | * * Details of DT properties for different limits can be found from BD99954 * device tree binding documentation. */ #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/linear_range.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/power_supply.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/types.h> #include "bd99954-charger.h" struct battery_data { u16 precharge_current; /* Trickle-charge Current */ u16 fc_reg_voltage; /* Fast Charging Regulation Voltage */ u16 voltage_min; u16 voltage_max; }; /* Initial field values, converted to initial register values */ struct bd9995x_init_data { u16 vsysreg_set; /* VSYS Regulation Setting */ u16 ibus_lim_set; /* VBUS input current limitation */ u16 icc_lim_set; /* VCC/VACP Input Current Limit Setting */ u16 itrich_set; /* Trickle-charge Current Setting */ u16 iprech_set; /* Pre-Charge Current Setting */ u16 ichg_set; /* Fast-Charge constant current */ u16 vfastchg_reg_set1; /* Fast Charging Regulation Voltage */ u16 vprechg_th_set; /* Pre-charge Voltage Threshold Setting */ u16 vrechg_set; /* Re-charge Battery Voltage Setting */ u16 vbatovp_set; /* Battery Over Voltage Threshold Setting */ u16 iterm_set; /* Charging termination current */ }; struct bd9995x_state { u8 online; u16 chgstm_status; u16 vbat_vsys_status; u16 vbus_vcc_status; }; struct bd9995x_device { struct i2c_client *client; struct device *dev; struct power_supply *charger; struct regmap *rmap; struct regmap_field *rmap_fields[F_MAX_FIELDS]; int chip_id; int chip_rev; struct bd9995x_init_data init_data; struct bd9995x_state state; struct mutex lock; /* Protect state data */ }; static const struct regmap_range bd9995x_readonly_reg_ranges[] = { regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL), regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL), regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS), regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS), regmap_reg_range(CHIP_ID, CHIP_REV), regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS), regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL), regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL), }; static const struct regmap_access_table bd9995x_writeable_regs = { .no_ranges = bd9995x_readonly_reg_ranges, .n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges), }; static const struct regmap_range bd9995x_volatile_reg_ranges[] = { regmap_reg_range(CHGSTM_STATUS, WDT_STATUS), regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS), regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS), regmap_reg_range(INT0_STATUS, INT7_STATUS), regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET), regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */ }; static const struct regmap_access_table bd9995x_volatile_regs = { .yes_ranges = bd9995x_volatile_reg_ranges, .n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges), }; static const struct regmap_range_cfg regmap_range_cfg[] = { { .selector_reg = MAP_SET, .selector_mask = 0xFFFF, .selector_shift = 0, .window_start = 0, .window_len = 0x100, .range_min = 0 * 0x100, .range_max = 3 * 0x100, }, }; static const struct regmap_config bd9995x_regmap_config = { .reg_bits = 8, .val_bits = 16, .reg_stride = 1, .max_register = 3 * 0x100, .cache_type = REGCACHE_RBTREE, .ranges = regmap_range_cfg, .num_ranges = ARRAY_SIZE(regmap_range_cfg), .val_format_endian = REGMAP_ENDIAN_LITTLE, .wr_table = &bd9995x_writeable_regs, .volatile_table = &bd9995x_volatile_regs, }; enum bd9995x_chrg_fault { CHRG_FAULT_NORMAL, CHRG_FAULT_INPUT, CHRG_FAULT_THERMAL_SHUTDOWN, CHRG_FAULT_TIMER_EXPIRED, }; static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp); if (ret) return POWER_SUPPLY_HEALTH_UNKNOWN; /* TODO: Check these against datasheet page 34 */ switch (tmp) { case ROOM: return POWER_SUPPLY_HEALTH_GOOD; case HOT1: case HOT2: case HOT3: return POWER_SUPPLY_HEALTH_OVERHEAT; case COLD1: case COLD2: return POWER_SUPPLY_HEALTH_COLD; case TEMP_DIS: case BATT_OPEN: default: return POWER_SUPPLY_HEALTH_UNKNOWN; } } static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp); if (ret) return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN; switch (tmp) { case CHGSTM_TRICKLE_CHARGE: case CHGSTM_PRE_CHARGE: return POWER_SUPPLY_CHARGE_TYPE_TRICKLE; case CHGSTM_FAST_CHARGE: return POWER_SUPPLY_CHARGE_TYPE_FAST; case CHGSTM_TOP_OFF: case CHGSTM_DONE: case CHGSTM_SUSPEND: return POWER_SUPPLY_CHARGE_TYPE_NONE; default: /* Rest of the states are error related, no charging */ return POWER_SUPPLY_CHARGE_TYPE_NONE; } } static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp); if (ret) return false; return tmp != BATT_OPEN; } static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp); if (ret) return 0; tmp = min(tmp, 19200); return tmp * 1000; } static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp); if (ret) return 0; return tmp * 1000; } #define DEFAULT_BATTERY_TEMPERATURE 250 static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd) { int ret, tmp; ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp); if (ret) return DEFAULT_BATTERY_TEMPERATURE; return (200 - tmp) * 10; } static int bd9995x_power_supply_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret, tmp; struct bd9995x_device *bd = power_supply_get_drvdata(psy); struct bd9995x_state state; mutex_lock(&bd->lock); state = bd->state; mutex_unlock(&bd->lock); switch (psp) { case POWER_SUPPLY_PROP_STATUS: switch (state.chgstm_status) { case CHGSTM_TRICKLE_CHARGE: case CHGSTM_PRE_CHARGE: case CHGSTM_FAST_CHARGE: case CHGSTM_TOP_OFF: val->intval = POWER_SUPPLY_STATUS_CHARGING; break; case CHGSTM_DONE: val->intval = POWER_SUPPLY_STATUS_FULL; break; case CHGSTM_SUSPEND: case CHGSTM_TEMPERATURE_ERROR_1: case CHGSTM_TEMPERATURE_ERROR_2: case CHGSTM_TEMPERATURE_ERROR_3: case CHGSTM_TEMPERATURE_ERROR_4: case CHGSTM_TEMPERATURE_ERROR_5: case CHGSTM_TEMPERATURE_ERROR_6: case CHGSTM_TEMPERATURE_ERROR_7: case CHGSTM_THERMAL_SHUT_DOWN_1: case CHGSTM_THERMAL_SHUT_DOWN_2: case CHGSTM_THERMAL_SHUT_DOWN_3: case CHGSTM_THERMAL_SHUT_DOWN_4: case CHGSTM_THERMAL_SHUT_DOWN_5: case CHGSTM_THERMAL_SHUT_DOWN_6: case CHGSTM_THERMAL_SHUT_DOWN_7: case CHGSTM_BATTERY_ERROR: val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING; break; default: val->intval = POWER_SUPPLY_STATUS_UNKNOWN; break; } break; case POWER_SUPPLY_PROP_MANUFACTURER: val->strval = BD9995X_MANUFACTURER; break; case POWER_SUPPLY_PROP_ONLINE: val->intval = state.online; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT: ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp); if (ret) return ret; val->intval = tmp * 1000; break; case POWER_SUPPLY_PROP_CHARGE_AVG: ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp); if (ret) return ret; val->intval = tmp * 1000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: /* * Currently the DT uses this property to give the * target current for fast-charging constant current phase. * I think it is correct in a sense. * * Yet, this prop we read and return here is the programmed * safety limit for combined input currents. This feels * also correct in a sense. * * However, this results a mismatch to DT value and value * read from sysfs. */ ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp); if (ret) return ret; val->intval = tmp * 1000; break; case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE: if (!state.online) { val->intval = 0; break; } ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1], &tmp); if (ret) return ret; /* * The actual range : 2560 to 19200 mV. No matter what the * register says */ val->intval = clamp_val(tmp << 4, 2560, 19200); val->intval *= 1000; break; case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp); if (ret) return ret; /* Start step is 64 mA */ val->intval = tmp << 6; /* Maximum is 1024 mA - no matter what register says */ val->intval = min(val->intval, 1024); val->intval *= 1000; break; /* Battery properties which we access through charger */ case POWER_SUPPLY_PROP_PRESENT: val->intval = bd9995x_get_prop_batt_present(bd); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = bd9995x_get_prop_batt_voltage(bd); break; case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = bd9995x_get_prop_batt_current(bd); break; case POWER_SUPPLY_PROP_CHARGE_TYPE: val->intval = bd9995x_get_prop_charge_type(bd); break; case POWER_SUPPLY_PROP_HEALTH: val->intval = bd9995x_get_prop_batt_health(bd); break; case POWER_SUPPLY_PROP_TEMP: val->intval = bd9995x_get_prop_batt_temp(bd); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_MODEL_NAME: val->strval = "bd99954"; break; default: return -EINVAL; } return 0; } static int bd9995x_get_chip_state(struct bd9995x_device *bd, struct bd9995x_state *state) { int i, ret, tmp; struct { struct regmap_field *id; u16 *data; } state_fields[] = { { bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status, }, { bd->rmap_fields[F_VBAT_VSYS_STATUS], &state->vbat_vsys_status, }, { bd->rmap_fields[F_VBUS_VCC_STATUS], &state->vbus_vcc_status, }, }; for (i = 0; i < ARRAY_SIZE(state_fields); i++) { ret = regmap_field_read(state_fields[i].id, &tmp); if (ret) return ret; *state_fields[i].data = tmp; } if (state->vbus_vcc_status & STATUS_VCC_DET || state->vbus_vcc_status & STATUS_VBUS_DET) state->online = 1; else state->online = 0; return 0; } static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private) { struct bd9995x_device *bd = private; int ret, status, mask, i; unsigned long tmp; struct bd9995x_state state; /* * The bd9995x does not seem to generate big amount of interrupts. * The logic regarding which interrupts can cause relevant * status changes seem to be pretty complex. * * So lets implement really simple and hopefully bullet-proof handler: * It does not really matter which IRQ we handle, we just go and * re-read all interesting statuses + give the framework a nudge. * * Other option would be building a _complex_ and error prone logic * trying to decide what could have been changed (resulting this IRQ * we are now handling). During the normal operation the BD99954 does * not seem to be generating much of interrupts so benefit from such * logic would probably be minimal. */ ret = regmap_read(bd->rmap, INT0_STATUS, &status); if (ret) { dev_err(bd->dev, "Failed to read IRQ status\n"); return IRQ_NONE; } ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask); if (ret) { dev_err(bd->dev, "Failed to read IRQ mask\n"); return IRQ_NONE; } /* Handle only IRQs that are not masked */ status &= mask; tmp = status; /* Lowest bit does not represent any sub-registers */ tmp >>= 1; /* * Mask and ack IRQs we will handle (+ the idiot bit) */ ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0); if (ret) { dev_err(bd->dev, "Failed to mask F_INT0\n"); return IRQ_NONE; } ret = regmap_write(bd->rmap, INT0_STATUS, status); if (ret) { dev_err(bd->dev, "Failed to ack F_INT0\n"); goto err_umask; } for_each_set_bit(i, &tmp, 7) { int sub_status, sub_mask; int sub_status_reg[] = { INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS, INT5_STATUS, INT6_STATUS, INT7_STATUS, }; struct regmap_field *sub_mask_f[] = { bd->rmap_fields[F_INT1_SET], bd->rmap_fields[F_INT2_SET], bd->rmap_fields[F_INT3_SET], bd->rmap_fields[F_INT4_SET], bd->rmap_fields[F_INT5_SET], bd->rmap_fields[F_INT6_SET], bd->rmap_fields[F_INT7_SET], }; /* Clear sub IRQs */ ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status); if (ret) { dev_err(bd->dev, "Failed to read IRQ sub-status\n"); goto err_umask; } ret = regmap_field_read(sub_mask_f[i], &sub_mask); if (ret) { dev_err(bd->dev, "Failed to read IRQ sub-mask\n"); goto err_umask; } /* Ack active sub-statuses */ sub_status &= sub_mask; ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status); if (ret) { dev_err(bd->dev, "Failed to ack sub-IRQ\n"); goto err_umask; } } ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask); if (ret) /* May as well retry once */ goto err_umask; /* Read whole chip state */ ret = bd9995x_get_chip_state(bd, &state); if (ret < 0) { dev_err(bd->dev, "Failed to read chip state\n"); } else { mutex_lock(&bd->lock); bd->state = state; mutex_unlock(&bd->lock); power_supply_changed(bd->charger); } return IRQ_HANDLED; err_umask: ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask); if (ret) dev_err(bd->dev, "Failed to un-mask F_INT0 - IRQ permanently disabled\n"); return IRQ_NONE; } static int __bd9995x_chip_reset(struct bd9995x_device *bd) { int ret, state; int rst_check_counter = 10; u16 tmp = ALLRST | OTPLD; ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2); if (ret < 0) return ret; do { ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state); if (ret) return ret; msleep(10); } while (state == 0 && --rst_check_counter); if (!rst_check_counter) { dev_err(bd->dev, "chip reset not completed\n"); return -ETIMEDOUT; } tmp = 0; ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2); return ret; } static int bd9995x_hw_init(struct bd9995x_device *bd) { int ret; int i; struct bd9995x_state state; struct bd9995x_init_data *id = &bd->init_data; const struct { enum bd9995x_fields id; u16 value; } init_data[] = { /* Enable the charging trigger after SDP charger attached */ {F_SDP_CHG_TRIG_EN, 1}, /* Enable charging trigger after SDP charger attached */ {F_SDP_CHG_TRIG, 1}, /* Disable charging trigger by BC1.2 detection */ {F_VBUS_BC_DISEN, 1}, /* Disable charging trigger by BC1.2 detection */ {F_VCC_BC_DISEN, 1}, /* Disable automatic limitation of the input current */ {F_ILIM_AUTO_DISEN, 1}, /* Select current limitation when SDP charger attached*/ {F_SDP_500_SEL, 1}, /* Select current limitation when DCP charger attached */ {F_DCP_2500_SEL, 1}, {F_VSYSREG_SET, id->vsysreg_set}, /* Activate USB charging and DC/DC converter */ {F_USB_SUS, 0}, /* DCDC clock: 1200 kHz*/ {F_DCDC_CLK_SEL, 3}, /* Enable charging */ {F_CHG_EN, 1}, /* Disable Input current Limit setting voltage measurement */ {F_EXTIADPEN, 0}, /* Disable input current limiting */ {F_VSYS_PRIORITY, 1}, {F_IBUS_LIM_SET, id->ibus_lim_set}, {F_ICC_LIM_SET, id->icc_lim_set}, /* Charge Termination Current Setting to 0*/ {F_ITERM_SET, id->iterm_set}, /* Trickle-charge Current Setting */ {F_ITRICH_SET, id->itrich_set}, /* Pre-charge Current setting */ {F_IPRECH_SET, id->iprech_set}, /* Fast Charge Current for constant current phase */ {F_ICHG_SET, id->ichg_set}, /* Fast Charge Voltage Regulation Setting */ {F_VFASTCHG_REG_SET1, id->vfastchg_reg_set1}, /* Set Pre-charge Voltage Threshold for trickle charging. */ {F_VPRECHG_TH_SET, id->vprechg_th_set}, {F_VRECHG_SET, id->vrechg_set}, {F_VBATOVP_SET, id->vbatovp_set}, /* Reverse buck boost voltage Setting */ {F_VRBOOST_SET, 0}, /* Disable fast-charging watchdog */ {F_WDT_FST, 0}, /* Disable pre-charging watchdog */ {F_WDT_PRE, 0}, /* Power save off */ {F_POWER_SAVE_MODE, 0}, {F_INT1_SET, INT1_ALL}, {F_INT2_SET, INT2_ALL}, {F_INT3_SET, INT3_ALL}, {F_INT4_SET, INT4_ALL}, {F_INT5_SET, INT5_ALL}, {F_INT6_SET, INT6_ALL}, {F_INT7_SET, INT7_ALL}, }; /* * Currently we initialize charger to a known state at startup. * If we want to allow for example the boot code to initialize * charger we should get rid of this. */ ret = __bd9995x_chip_reset(bd); if (ret < 0) return ret; /* Initialize currents/voltages and other parameters */ for (i = 0; i < ARRAY_SIZE(init_data); i++) { ret = regmap_field_write(bd->rmap_fields[init_data[i].id], init_data[i].value); if (ret) { dev_err(bd->dev, "failed to initialize charger (%d)\n", ret); return ret; } } ret = bd9995x_get_chip_state(bd, &state); if (ret < 0) return ret; mutex_lock(&bd->lock); bd->state = state; mutex_unlock(&bd->lock); return 0; } static enum power_supply_property bd9995x_power_supply_props[] = { POWER_SUPPLY_PROP_MANUFACTURER, POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_ONLINE, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT, POWER_SUPPLY_PROP_CHARGE_AVG, POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE, POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, /* Battery props we access through charger */ POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CHARGE_TYPE, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_MODEL_NAME, }; static const struct power_supply_desc bd9995x_power_supply_desc = { .name = "bd9995x-charger", .type = POWER_SUPPLY_TYPE_USB, .properties = bd9995x_power_supply_props, .num_properties = ARRAY_SIZE(bd9995x_power_supply_props), .get_property = bd9995x_power_supply_get_property, }; /* * Limit configurations for vbus-input-current and vcc-vacp-input-current * Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is * configured by writing a register so that each increment in register * value equals to 32000 uA limit increment. * * Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ... * Describe the setting in linear_range table. */ static const struct linear_range input_current_limit_ranges[] = { { .min = 0, .step = 32000, .min_sel = 0x0, .max_sel = 0x1ff, }, }; /* Possible trickle, pre-charging and termination current values */ static const struct linear_range charging_current_ranges[] = { { .min = 0, .step = 64000, .min_sel = 0x0, .max_sel = 0x10, }, { .min = 1024000, .step = 0, .min_sel = 0x11, .max_sel = 0x1f, }, }; /* * Fast charging voltage regulation, starting re-charging limit * and battery over voltage protection have same possible values */ static const struct linear_range charge_voltage_regulation_ranges[] = { { .min = 2560000, .step = 0, .min_sel = 0, .max_sel = 0xA0, }, { .min = 2560000, .step = 16000, .min_sel = 0xA0, .max_sel = 0x4B0, }, { .min = 19200000, .step = 0, .min_sel = 0x4B0, .max_sel = 0x7FF, }, }; /* Possible VSYS voltage regulation values */ static const struct linear_range vsys_voltage_regulation_ranges[] = { { .min = 2560000, .step = 0, .min_sel = 0, .max_sel = 0x28, }, { .min = 2560000, .step = 64000, .min_sel = 0x28, .max_sel = 0x12C, }, { .min = 19200000, .step = 0, .min_sel = 0x12C, .max_sel = 0x1FF, }, }; /* Possible settings for switching from trickle to pre-charging limits */ static const struct linear_range trickle_to_pre_threshold_ranges[] = { { .min = 2048000, .step = 0, .min_sel = 0, .max_sel = 0x20, }, { .min = 2048000, .step = 64000, .min_sel = 0x20, .max_sel = 0x12C, }, { .min = 19200000, .step = 0, .min_sel = 0x12C, .max_sel = 0x1FF } }; /* Possible current values for fast-charging constant current phase */ static const struct linear_range fast_charge_current_ranges[] = { { .min = 0, .step = 64000, .min_sel = 0, .max_sel = 0xFF, } }; struct battery_init { const char *name; int *info_data; const struct linear_range *range; int ranges; u16 *data; }; struct dt_init { char *prop; const struct linear_range *range; int ranges; u16 *data; }; static int bd9995x_fw_probe(struct bd9995x_device *bd) { int ret; struct power_supply_battery_info *info; u32 property; int i; int regval; bool found; struct bd9995x_init_data *init = &bd->init_data; struct battery_init battery_inits[] = { { .name = "trickle-charging current", .range = &charging_current_ranges[0], .ranges = 2, .data = &init->itrich_set, }, { .name = "pre-charging current", .range = &charging_current_ranges[0], .ranges = 2, .data = &init->iprech_set, }, { .name = "pre-to-trickle charge voltage threshold", .range = &trickle_to_pre_threshold_ranges[0], .ranges = 2, .data = &init->vprechg_th_set, }, { .name = "charging termination current", .range = &charging_current_ranges[0], .ranges = 2, .data = &init->iterm_set, }, { .name = "charging re-start voltage", .range = &charge_voltage_regulation_ranges[0], .ranges = 2, .data = &init->vrechg_set, }, { .name = "battery overvoltage limit", .range = &charge_voltage_regulation_ranges[0], .ranges = 2, .data = &init->vbatovp_set, }, { .name = "fast-charging max current", .range = &fast_charge_current_ranges[0], .ranges = 1, .data = &init->ichg_set, }, { .name = "fast-charging voltage", .range = &charge_voltage_regulation_ranges[0], .ranges = 2, .data = &init->vfastchg_reg_set1, }, }; struct dt_init props[] = { { .prop = "rohm,vsys-regulation-microvolt", .range = &vsys_voltage_regulation_ranges[0], .ranges = 2, .data = &init->vsysreg_set, }, { .prop = "rohm,vbus-input-current-limit-microamp", .range = &input_current_limit_ranges[0], .ranges = 1, .data = &init->ibus_lim_set, }, { .prop = "rohm,vcc-input-current-limit-microamp", .range = &input_current_limit_ranges[0], .ranges = 1, .data = &init->icc_lim_set, }, }; /* * The power_supply_get_battery_info() does not support getting values * from ACPI. Let's fix it if ACPI is required here. */ ret = power_supply_get_battery_info(bd->charger, &info); if (ret < 0) return ret; /* Put pointers to the generic battery info */ battery_inits[0].info_data = &info->tricklecharge_current_ua; battery_inits[1].info_data = &info->precharge_current_ua; battery_inits[2].info_data = &info->precharge_voltage_max_uv; battery_inits[3].info_data = &info->charge_term_current_ua; battery_inits[4].info_data = &info->charge_restart_voltage_uv; battery_inits[5].info_data = &info->overvoltage_limit_uv; battery_inits[6].info_data = &info->constant_charge_current_max_ua; battery_inits[7].info_data = &info->constant_charge_voltage_max_uv; for (i = 0; i < ARRAY_SIZE(battery_inits); i++) { int val = *battery_inits[i].info_data; const struct linear_range *range = battery_inits[i].range; int ranges = battery_inits[i].ranges; if (val == -EINVAL) continue; ret = linear_range_get_selector_low_array(range, ranges, val, ®val, &found); if (ret) { dev_err(bd->dev, "Unsupported value for %s\n", battery_inits[i].name); power_supply_put_battery_info(bd->charger, info); return -EINVAL; } if (!found) { dev_warn(bd->dev, "Unsupported value for %s - using smaller\n", battery_inits[i].name); } *(battery_inits[i].data) = regval; } power_supply_put_battery_info(bd->charger, info); for (i = 0; i < ARRAY_SIZE(props); i++) { ret = device_property_read_u32(bd->dev, props[i].prop, &property); if (ret < 0) { dev_err(bd->dev, "failed to read %s", props[i].prop); return ret; } ret = linear_range_get_selector_low_array(props[i].range, props[i].ranges, property, ®val, &found); if (ret) { dev_err(bd->dev, "Unsupported value for '%s'\n", props[i].prop); return -EINVAL; } if (!found) { dev_warn(bd->dev, "Unsupported value for '%s' - using smaller\n", props[i].prop); } *(props[i].data) = regval; } return 0; } static void bd9995x_chip_reset(void *bd) { __bd9995x_chip_reset(bd); } static int bd9995x_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct bd9995x_device *bd; struct power_supply_config psy_cfg = {}; int ret; int i; bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL); if (!bd) return -ENOMEM; bd->client = client; bd->dev = dev; psy_cfg.drv_data = bd; psy_cfg.of_node = dev->of_node; mutex_init(&bd->lock); bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config); if (IS_ERR(bd->rmap)) { dev_err(dev, "Failed to setup register access via i2c\n"); return PTR_ERR(bd->rmap); } for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) { const struct reg_field *reg_fields = bd9995x_reg_fields; bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap, reg_fields[i]); if (IS_ERR(bd->rmap_fields[i])) { dev_err(dev, "cannot allocate regmap field\n"); return PTR_ERR(bd->rmap_fields[i]); } } i2c_set_clientdata(client, bd); ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id); if (ret) { dev_err(dev, "Cannot read chip ID.\n"); return ret; } if (bd->chip_id != BD99954_ID) { dev_err(dev, "Chip with ID=0x%x, not supported!\n", bd->chip_id); return -ENODEV; } ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev); if (ret) { dev_err(dev, "Cannot read revision.\n"); return ret; } dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev); /* * We need to init the psy before we can call * power_supply_get_battery_info() for it */ bd->charger = devm_power_supply_register(bd->dev, &bd9995x_power_supply_desc, &psy_cfg); if (IS_ERR(bd->charger)) { dev_err(dev, "Failed to register power supply\n"); return PTR_ERR(bd->charger); } ret = bd9995x_fw_probe(bd); if (ret < 0) { dev_err(dev, "Cannot read device properties.\n"); return ret; } ret = bd9995x_hw_init(bd); if (ret < 0) { dev_err(dev, "Cannot initialize the chip.\n"); return ret; } ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd); if (ret) return ret; return devm_request_threaded_irq(dev, client->irq, NULL, bd9995x_irq_handler_thread, IRQF_TRIGGER_LOW | IRQF_ONESHOT, BD9995X_IRQ_PIN, bd); } static const struct of_device_id bd9995x_of_match[] = { { .compatible = "rohm,bd99954", }, { } }; MODULE_DEVICE_TABLE(of, bd9995x_of_match); static struct i2c_driver bd9995x_driver = { .driver = { .name = "bd9995x-charger", .of_match_table = bd9995x_of_match, }, .probe_new = bd9995x_probe, }; module_i2c_driver(bd9995x_driver); MODULE_AUTHOR("Laine Markus <markus.laine@fi.rohmeurope.com>"); MODULE_DESCRIPTION("ROHM BD99954 charger driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1