Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Suman Anna | 2427 | 62.73% | 8 | 61.54% |
Grzegorz Jaszczyk | 1419 | 36.68% | 1 | 7.69% |
Kishon Vijay Abraham I | 13 | 0.34% | 1 | 7.69% |
Dimitar Dimitrov | 5 | 0.13% | 1 | 7.69% |
Peng Fan | 4 | 0.10% | 1 | 7.69% |
Li Yang | 1 | 0.03% | 1 | 7.69% |
Total | 3869 | 13 |
// SPDX-License-Identifier: GPL-2.0-only /* * PRU-ICSS remoteproc driver for various TI SoCs * * Copyright (C) 2014-2020 Texas Instruments Incorporated - https://www.ti.com/ * * Author(s): * Suman Anna <s-anna@ti.com> * Andrew F. Davis <afd@ti.com> * Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments */ #include <linux/bitops.h> #include <linux/debugfs.h> #include <linux/irqdomain.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/of_irq.h> #include <linux/pruss_driver.h> #include <linux/remoteproc.h> #include "remoteproc_internal.h" #include "remoteproc_elf_helpers.h" #include "pru_rproc.h" /* PRU_ICSS_PRU_CTRL registers */ #define PRU_CTRL_CTRL 0x0000 #define PRU_CTRL_STS 0x0004 #define PRU_CTRL_WAKEUP_EN 0x0008 #define PRU_CTRL_CYCLE 0x000C #define PRU_CTRL_STALL 0x0010 #define PRU_CTRL_CTBIR0 0x0020 #define PRU_CTRL_CTBIR1 0x0024 #define PRU_CTRL_CTPPR0 0x0028 #define PRU_CTRL_CTPPR1 0x002C /* CTRL register bit-fields */ #define CTRL_CTRL_SOFT_RST_N BIT(0) #define CTRL_CTRL_EN BIT(1) #define CTRL_CTRL_SLEEPING BIT(2) #define CTRL_CTRL_CTR_EN BIT(3) #define CTRL_CTRL_SINGLE_STEP BIT(8) #define CTRL_CTRL_RUNSTATE BIT(15) /* PRU_ICSS_PRU_DEBUG registers */ #define PRU_DEBUG_GPREG(x) (0x0000 + (x) * 4) #define PRU_DEBUG_CT_REG(x) (0x0080 + (x) * 4) /* PRU/RTU/Tx_PRU Core IRAM address masks */ #define PRU_IRAM_ADDR_MASK 0x3ffff #define PRU0_IRAM_ADDR_MASK 0x34000 #define PRU1_IRAM_ADDR_MASK 0x38000 #define RTU0_IRAM_ADDR_MASK 0x4000 #define RTU1_IRAM_ADDR_MASK 0x6000 #define TX_PRU0_IRAM_ADDR_MASK 0xa000 #define TX_PRU1_IRAM_ADDR_MASK 0xc000 /* PRU device addresses for various type of PRU RAMs */ #define PRU_IRAM_DA 0 /* Instruction RAM */ #define PRU_PDRAM_DA 0 /* Primary Data RAM */ #define PRU_SDRAM_DA 0x2000 /* Secondary Data RAM */ #define PRU_SHRDRAM_DA 0x10000 /* Shared Data RAM */ #define MAX_PRU_SYS_EVENTS 160 /** * enum pru_iomem - PRU core memory/register range identifiers * * @PRU_IOMEM_IRAM: PRU Instruction RAM range * @PRU_IOMEM_CTRL: PRU Control register range * @PRU_IOMEM_DEBUG: PRU Debug register range * @PRU_IOMEM_MAX: just keep this one at the end */ enum pru_iomem { PRU_IOMEM_IRAM = 0, PRU_IOMEM_CTRL, PRU_IOMEM_DEBUG, PRU_IOMEM_MAX, }; /** * enum pru_type - PRU core type identifier * * @PRU_TYPE_PRU: Programmable Real-time Unit * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit * @PRU_TYPE_MAX: just keep this one at the end */ enum pru_type { PRU_TYPE_PRU = 0, PRU_TYPE_RTU, PRU_TYPE_TX_PRU, PRU_TYPE_MAX, }; /** * struct pru_private_data - device data for a PRU core * @type: type of the PRU core (PRU, RTU, Tx_PRU) * @is_k3: flag used to identify the need for special load handling */ struct pru_private_data { enum pru_type type; unsigned int is_k3 : 1; }; /** * struct pru_rproc - PRU remoteproc structure * @id: id of the PRU core within the PRUSS * @dev: PRU core device pointer * @pruss: back-reference to parent PRUSS structure * @rproc: remoteproc pointer for this PRU core * @data: PRU core specific data * @mem_regions: data for each of the PRU memory regions * @fw_name: name of firmware image used during loading * @mapped_irq: virtual interrupt numbers of created fw specific mapping * @pru_interrupt_map: pointer to interrupt mapping description (firmware) * @pru_interrupt_map_sz: pru_interrupt_map size * @dbg_single_step: debug state variable to set PRU into single step mode * @dbg_continuous: debug state variable to restore PRU execution mode * @evt_count: number of mapped events */ struct pru_rproc { int id; struct device *dev; struct pruss *pruss; struct rproc *rproc; const struct pru_private_data *data; struct pruss_mem_region mem_regions[PRU_IOMEM_MAX]; const char *fw_name; unsigned int *mapped_irq; struct pru_irq_rsc *pru_interrupt_map; size_t pru_interrupt_map_sz; u32 dbg_single_step; u32 dbg_continuous; u8 evt_count; }; static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg) { return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg); } static inline void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val) { writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg); } static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg) { return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg); } static int regs_show(struct seq_file *s, void *data) { struct rproc *rproc = s->private; struct pru_rproc *pru = rproc->priv; int i, nregs = 32; u32 pru_sts; int pru_is_running; seq_puts(s, "============== Control Registers ==============\n"); seq_printf(s, "CTRL := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CTRL)); pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS); seq_printf(s, "STS (PC) := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2); seq_printf(s, "WAKEUP_EN := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN)); seq_printf(s, "CYCLE := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CYCLE)); seq_printf(s, "STALL := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_STALL)); seq_printf(s, "CTBIR0 := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CTBIR0)); seq_printf(s, "CTBIR1 := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CTBIR1)); seq_printf(s, "CTPPR0 := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CTPPR0)); seq_printf(s, "CTPPR1 := 0x%08x\n", pru_control_read_reg(pru, PRU_CTRL_CTPPR1)); seq_puts(s, "=============== Debug Registers ===============\n"); pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) & CTRL_CTRL_RUNSTATE; if (pru_is_running) { seq_puts(s, "PRU is executing, cannot print/access debug registers.\n"); return 0; } for (i = 0; i < nregs; i++) { seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n", i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)), i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i))); } return 0; } DEFINE_SHOW_ATTRIBUTE(regs); /* * Control PRU single-step mode * * This is a debug helper function used for controlling the single-step * mode of the PRU. The PRU Debug registers are not accessible when the * PRU is in RUNNING state. * * Writing a non-zero value sets the PRU into single-step mode irrespective * of its previous state. The PRU mode is saved only on the first set into * a single-step mode. Writing a zero value will restore the PRU into its * original mode. */ static int pru_rproc_debug_ss_set(void *data, u64 val) { struct rproc *rproc = data; struct pru_rproc *pru = rproc->priv; u32 reg_val; val = val ? 1 : 0; if (!val && !pru->dbg_single_step) return 0; reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL); if (val && !pru->dbg_single_step) pru->dbg_continuous = reg_val; if (val) reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN; else reg_val = pru->dbg_continuous; pru->dbg_single_step = val; pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val); return 0; } static int pru_rproc_debug_ss_get(void *data, u64 *val) { struct rproc *rproc = data; struct pru_rproc *pru = rproc->priv; *val = pru->dbg_single_step; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get, pru_rproc_debug_ss_set, "%llu\n"); /* * Create PRU-specific debugfs entries * * The entries are created only if the parent remoteproc debugfs directory * exists, and will be cleaned up by the remoteproc core. */ static void pru_rproc_create_debug_entries(struct rproc *rproc) { if (!rproc->dbg_dir) return; debugfs_create_file("regs", 0400, rproc->dbg_dir, rproc, ®s_fops); debugfs_create_file("single_step", 0600, rproc->dbg_dir, rproc, &pru_rproc_debug_ss_fops); } static void pru_dispose_irq_mapping(struct pru_rproc *pru) { if (!pru->mapped_irq) return; while (pru->evt_count) { pru->evt_count--; if (pru->mapped_irq[pru->evt_count] > 0) irq_dispose_mapping(pru->mapped_irq[pru->evt_count]); } kfree(pru->mapped_irq); pru->mapped_irq = NULL; } /* * Parse the custom PRU interrupt map resource and configure the INTC * appropriately. */ static int pru_handle_intrmap(struct rproc *rproc) { struct device *dev = rproc->dev.parent; struct pru_rproc *pru = rproc->priv; struct pru_irq_rsc *rsc = pru->pru_interrupt_map; struct irq_fwspec fwspec; struct device_node *parent, *irq_parent; int i, ret = 0; /* not having pru_interrupt_map is not an error */ if (!rsc) return 0; /* currently supporting only type 0 */ if (rsc->type != 0) { dev_err(dev, "unsupported rsc type: %d\n", rsc->type); return -EINVAL; } if (rsc->num_evts > MAX_PRU_SYS_EVENTS) return -EINVAL; if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) != pru->pru_interrupt_map_sz) return -EINVAL; pru->evt_count = rsc->num_evts; pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int), GFP_KERNEL); if (!pru->mapped_irq) { pru->evt_count = 0; return -ENOMEM; } /* * parse and fill in system event to interrupt channel and * channel-to-host mapping. The interrupt controller to be used * for these mappings for a given PRU remoteproc is always its * corresponding sibling PRUSS INTC node. */ parent = of_get_parent(dev_of_node(pru->dev)); if (!parent) { kfree(pru->mapped_irq); pru->mapped_irq = NULL; pru->evt_count = 0; return -ENODEV; } irq_parent = of_get_child_by_name(parent, "interrupt-controller"); of_node_put(parent); if (!irq_parent) { kfree(pru->mapped_irq); pru->mapped_irq = NULL; pru->evt_count = 0; return -ENODEV; } fwspec.fwnode = of_node_to_fwnode(irq_parent); fwspec.param_count = 3; for (i = 0; i < pru->evt_count; i++) { fwspec.param[0] = rsc->pru_intc_map[i].event; fwspec.param[1] = rsc->pru_intc_map[i].chnl; fwspec.param[2] = rsc->pru_intc_map[i].host; dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n", i, fwspec.param[0], fwspec.param[1], fwspec.param[2]); pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec); if (!pru->mapped_irq[i]) { dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n", i, fwspec.param[0], fwspec.param[1], fwspec.param[2]); ret = -EINVAL; goto map_fail; } } of_node_put(irq_parent); return ret; map_fail: pru_dispose_irq_mapping(pru); of_node_put(irq_parent); return ret; } static int pru_rproc_start(struct rproc *rproc) { struct device *dev = &rproc->dev; struct pru_rproc *pru = rproc->priv; const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; u32 val; int ret; dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n", names[pru->data->type], pru->id, (rproc->bootaddr >> 2)); ret = pru_handle_intrmap(rproc); /* * reset references to pru interrupt map - they will stop being valid * after rproc_start returns */ pru->pru_interrupt_map = NULL; pru->pru_interrupt_map_sz = 0; if (ret) return ret; val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16); pru_control_write_reg(pru, PRU_CTRL_CTRL, val); return 0; } static int pru_rproc_stop(struct rproc *rproc) { struct device *dev = &rproc->dev; struct pru_rproc *pru = rproc->priv; const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" }; u32 val; dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id); val = pru_control_read_reg(pru, PRU_CTRL_CTRL); val &= ~CTRL_CTRL_EN; pru_control_write_reg(pru, PRU_CTRL_CTRL, val); /* dispose irq mapping - new firmware can provide new mapping */ pru_dispose_irq_mapping(pru); return 0; } /* * Convert PRU device address (data spaces only) to kernel virtual address. * * Each PRU has access to all data memories within the PRUSS, accessible at * different ranges. So, look through both its primary and secondary Data * RAMs as well as any shared Data RAM to convert a PRU device address to * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data * RAM1 is primary Data RAM for PRU1. */ static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len) { struct pruss_mem_region dram0, dram1, shrd_ram; struct pruss *pruss = pru->pruss; u32 offset; void *va = NULL; if (len == 0) return NULL; dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0]; dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1]; /* PRU1 has its local RAM addresses reversed */ if (pru->id == 1) swap(dram0, dram1); shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2]; if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) { offset = da - PRU_PDRAM_DA; va = (__force void *)(dram0.va + offset); } else if (da >= PRU_SDRAM_DA && da + len <= PRU_SDRAM_DA + dram1.size) { offset = da - PRU_SDRAM_DA; va = (__force void *)(dram1.va + offset); } else if (da >= PRU_SHRDRAM_DA && da + len <= PRU_SHRDRAM_DA + shrd_ram.size) { offset = da - PRU_SHRDRAM_DA; va = (__force void *)(shrd_ram.va + offset); } return va; } /* * Convert PRU device address (instruction space) to kernel virtual address. * * A PRU does not have an unified address space. Each PRU has its very own * private Instruction RAM, and its device address is identical to that of * its primary Data RAM device address. */ static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len) { u32 offset; void *va = NULL; if (len == 0) return NULL; /* * GNU binutils do not support multiple address spaces. The GNU * linker's default linker script places IRAM at an arbitrary high * offset, in order to differentiate it from DRAM. Hence we need to * strip the artificial offset in the IRAM addresses coming from the * ELF file. * * The TI proprietary linker would never set those higher IRAM address * bits anyway. PRU architecture limits the program counter to 16-bit * word-address range. This in turn corresponds to 18-bit IRAM * byte-address range for ELF. * * Two more bits are added just in case to make the final 20-bit mask. * Idea is to have a safeguard in case TI decides to add banking * in future SoCs. */ da &= 0xfffff; if (da >= PRU_IRAM_DA && da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) { offset = da - PRU_IRAM_DA; va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va + offset); } return va; } /* * Provide address translations for only PRU Data RAMs through the remoteproc * core for any PRU client drivers. The PRU Instruction RAM access is restricted * only to the PRU loader code. */ static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct pru_rproc *pru = rproc->priv; return pru_d_da_to_va(pru, da, len); } /* PRU-specific address translator used by PRU loader. */ static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram) { struct pru_rproc *pru = rproc->priv; void *va; if (is_iram) va = pru_i_da_to_va(pru, da, len); else va = pru_d_da_to_va(pru, da, len); return va; } static struct rproc_ops pru_rproc_ops = { .start = pru_rproc_start, .stop = pru_rproc_stop, .da_to_va = pru_rproc_da_to_va, }; /* * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores * * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM * memories, that is not seen on previous generation SoCs. The data is reflected * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned * copies result in all the other pre-existing bytes zeroed out within that * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the * IRAM memory port interface does not allow any 8-byte copies (as commonly used * by ARM64 memcpy implementation) and throws an exception. The DRAM memory * ports do not show this behavior. */ static int pru_rproc_memcpy(void *dest, const void *src, size_t count) { const u32 *s = src; u32 *d = dest; size_t size = count / 4; u32 *tmp_src = NULL; /* * TODO: relax limitation of 4-byte aligned dest addresses and copy * sizes */ if ((long)dest % 4 || count % 4) return -EINVAL; /* src offsets in ELF firmware image can be non-aligned */ if ((long)src % 4) { tmp_src = kmemdup(src, count, GFP_KERNEL); if (!tmp_src) return -ENOMEM; s = tmp_src; } while (size--) *d++ = *s++; kfree(tmp_src); return 0; } static int pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw) { struct pru_rproc *pru = rproc->priv; struct device *dev = &rproc->dev; struct elf32_hdr *ehdr; struct elf32_phdr *phdr; int i, ret = 0; const u8 *elf_data = fw->data; ehdr = (struct elf32_hdr *)elf_data; phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); /* go through the available ELF segments */ for (i = 0; i < ehdr->e_phnum; i++, phdr++) { u32 da = phdr->p_paddr; u32 memsz = phdr->p_memsz; u32 filesz = phdr->p_filesz; u32 offset = phdr->p_offset; bool is_iram; void *ptr; if (phdr->p_type != PT_LOAD || !filesz) continue; dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", phdr->p_type, da, memsz, filesz); if (filesz > memsz) { dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", filesz, memsz); ret = -EINVAL; break; } if (offset + filesz > fw->size) { dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", offset + filesz, fw->size); ret = -EINVAL; break; } /* grab the kernel address for this device address */ is_iram = phdr->p_flags & PF_X; ptr = pru_da_to_va(rproc, da, memsz, is_iram); if (!ptr) { dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); ret = -EINVAL; break; } if (pru->data->is_k3) { ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset, filesz); if (ret) { dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n", da, memsz); break; } } else { memcpy(ptr, elf_data + phdr->p_offset, filesz); } /* skip the memzero logic performed by remoteproc ELF loader */ } return ret; } static const void * pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw) { struct elf32_shdr *shdr, *name_table_shdr; const char *name_table; const u8 *elf_data = fw->data; struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data; u16 shnum = ehdr->e_shnum; u16 shstrndx = ehdr->e_shstrndx; int i; /* first, get the section header */ shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff); /* compute name table section header entry in shdr array */ name_table_shdr = shdr + shstrndx; /* finally, compute the name table section address in elf */ name_table = elf_data + name_table_shdr->sh_offset; for (i = 0; i < shnum; i++, shdr++) { u32 size = shdr->sh_size; u32 offset = shdr->sh_offset; u32 name = shdr->sh_name; if (strcmp(name_table + name, ".pru_irq_map")) continue; /* make sure we have the entire irq map */ if (offset + size > fw->size || offset + size < size) { dev_err(dev, ".pru_irq_map section truncated\n"); return ERR_PTR(-EINVAL); } /* make sure irq map has at least the header */ if (sizeof(struct pru_irq_rsc) > size) { dev_err(dev, "header-less .pru_irq_map section\n"); return ERR_PTR(-EINVAL); } return shdr; } dev_dbg(dev, "no .pru_irq_map section found for this fw\n"); return NULL; } /* * Use a custom parse_fw callback function for dealing with PRU firmware * specific sections. * * The firmware blob can contain optional ELF sections: .resource_table section * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping * description, which needs to be setup before powering on the PRU core. To * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the * firmware linker) and therefore is not loaded to PRU memory. */ static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw) { struct device *dev = &rproc->dev; struct pru_rproc *pru = rproc->priv; const u8 *elf_data = fw->data; const void *shdr; u8 class = fw_elf_get_class(fw); u64 sh_offset; int ret; /* load optional rsc table */ ret = rproc_elf_load_rsc_table(rproc, fw); if (ret == -EINVAL) dev_dbg(&rproc->dev, "no resource table found for this fw\n"); else if (ret) return ret; /* find .pru_interrupt_map section, not having it is not an error */ shdr = pru_rproc_find_interrupt_map(dev, fw); if (IS_ERR(shdr)) return PTR_ERR(shdr); if (!shdr) return 0; /* preserve pointer to PRU interrupt map together with it size */ sh_offset = elf_shdr_get_sh_offset(class, shdr); pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset); pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr); return 0; } /* * Compute PRU id based on the IRAM addresses. The PRU IRAMs are * always at a particular offset within the PRUSS address space. */ static int pru_rproc_set_id(struct pru_rproc *pru) { int ret = 0; switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) { case TX_PRU0_IRAM_ADDR_MASK: fallthrough; case RTU0_IRAM_ADDR_MASK: fallthrough; case PRU0_IRAM_ADDR_MASK: pru->id = 0; break; case TX_PRU1_IRAM_ADDR_MASK: fallthrough; case RTU1_IRAM_ADDR_MASK: fallthrough; case PRU1_IRAM_ADDR_MASK: pru->id = 1; break; default: ret = -EINVAL; } return ret; } static int pru_rproc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct platform_device *ppdev = to_platform_device(dev->parent); struct pru_rproc *pru; const char *fw_name; struct rproc *rproc = NULL; struct resource *res; int i, ret; const struct pru_private_data *data; const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" }; data = of_device_get_match_data(&pdev->dev); if (!data) return -ENODEV; ret = of_property_read_string(np, "firmware-name", &fw_name); if (ret) { dev_err(dev, "unable to retrieve firmware-name %d\n", ret); return ret; } rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name, sizeof(*pru)); if (!rproc) { dev_err(dev, "rproc_alloc failed\n"); return -ENOMEM; } /* use a custom load function to deal with PRU-specific quirks */ rproc->ops->load = pru_rproc_load_elf_segments; /* use a custom parse function to deal with PRU-specific resources */ rproc->ops->parse_fw = pru_rproc_parse_fw; /* error recovery is not supported for PRUs */ rproc->recovery_disabled = true; /* * rproc_add will auto-boot the processor normally, but this is not * desired with PRU client driven boot-flow methodology. A PRU * application/client driver will boot the corresponding PRU * remote-processor as part of its state machine either through the * remoteproc sysfs interface or through the equivalent kernel API. */ rproc->auto_boot = false; pru = rproc->priv; pru->dev = dev; pru->data = data; pru->pruss = platform_get_drvdata(ppdev); pru->rproc = rproc; pru->fw_name = fw_name; for (i = 0; i < ARRAY_SIZE(mem_names); i++) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, mem_names[i]); pru->mem_regions[i].va = devm_ioremap_resource(dev, res); if (IS_ERR(pru->mem_regions[i].va)) { dev_err(dev, "failed to parse and map memory resource %d %s\n", i, mem_names[i]); ret = PTR_ERR(pru->mem_regions[i].va); return ret; } pru->mem_regions[i].pa = res->start; pru->mem_regions[i].size = resource_size(res); dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n", mem_names[i], &pru->mem_regions[i].pa, pru->mem_regions[i].size, pru->mem_regions[i].va); } ret = pru_rproc_set_id(pru); if (ret < 0) return ret; platform_set_drvdata(pdev, rproc); ret = devm_rproc_add(dev, pru->rproc); if (ret) { dev_err(dev, "rproc_add failed: %d\n", ret); return ret; } pru_rproc_create_debug_entries(rproc); dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np); return 0; } static int pru_rproc_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rproc *rproc = platform_get_drvdata(pdev); dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name); return 0; } static const struct pru_private_data pru_data = { .type = PRU_TYPE_PRU, }; static const struct pru_private_data k3_pru_data = { .type = PRU_TYPE_PRU, .is_k3 = 1, }; static const struct pru_private_data k3_rtu_data = { .type = PRU_TYPE_RTU, .is_k3 = 1, }; static const struct pru_private_data k3_tx_pru_data = { .type = PRU_TYPE_TX_PRU, .is_k3 = 1, }; static const struct of_device_id pru_rproc_match[] = { { .compatible = "ti,am3356-pru", .data = &pru_data }, { .compatible = "ti,am4376-pru", .data = &pru_data }, { .compatible = "ti,am5728-pru", .data = &pru_data }, { .compatible = "ti,am642-pru", .data = &k3_pru_data }, { .compatible = "ti,am642-rtu", .data = &k3_rtu_data }, { .compatible = "ti,am642-tx-pru", .data = &k3_tx_pru_data }, { .compatible = "ti,k2g-pru", .data = &pru_data }, { .compatible = "ti,am654-pru", .data = &k3_pru_data }, { .compatible = "ti,am654-rtu", .data = &k3_rtu_data }, { .compatible = "ti,am654-tx-pru", .data = &k3_tx_pru_data }, { .compatible = "ti,j721e-pru", .data = &k3_pru_data }, { .compatible = "ti,j721e-rtu", .data = &k3_rtu_data }, { .compatible = "ti,j721e-tx-pru", .data = &k3_tx_pru_data }, { .compatible = "ti,am625-pru", .data = &k3_pru_data }, {}, }; MODULE_DEVICE_TABLE(of, pru_rproc_match); static struct platform_driver pru_rproc_driver = { .driver = { .name = "pru-rproc", .of_match_table = pru_rproc_match, .suppress_bind_attrs = true, }, .probe = pru_rproc_probe, .remove = pru_rproc_remove, }; module_platform_driver(pru_rproc_driver); MODULE_AUTHOR("Suman Anna <s-anna@ti.com>"); MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>"); MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>"); MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1