Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
James Smart | 5556 | 99.77% | 1 | 33.33% |
Yang Yingliang | 11 | 0.20% | 1 | 33.33% |
Christoph Hellwig | 2 | 0.04% | 1 | 33.33% |
Total | 5569 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2021 Broadcom. All Rights Reserved. The term * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. */ /* * Functions to build and send ELS/CT/BLS commands and responses. */ #include "efc.h" #include "efc_els.h" #include "../libefc_sli/sli4.h" #define EFC_LOG_ENABLE_ELS_TRACE(efc) \ (((efc) != NULL) ? (((efc)->logmask & (1U << 1)) != 0) : 0) #define node_els_trace() \ do { \ if (EFC_LOG_ENABLE_ELS_TRACE(efc)) \ efc_log_info(efc, "[%s] %-20s\n", \ node->display_name, __func__); \ } while (0) #define els_io_printf(els, fmt, ...) \ efc_log_err((struct efc *)els->node->efc,\ "[%s] %-8s " fmt, \ els->node->display_name,\ els->display_name, ##__VA_ARGS__) #define EFC_ELS_RSP_LEN 1024 #define EFC_ELS_GID_PT_RSP_LEN 8096 struct efc_els_io_req * efc_els_io_alloc(struct efc_node *node, u32 reqlen) { return efc_els_io_alloc_size(node, reqlen, EFC_ELS_RSP_LEN); } struct efc_els_io_req * efc_els_io_alloc_size(struct efc_node *node, u32 reqlen, u32 rsplen) { struct efc *efc; struct efc_els_io_req *els; unsigned long flags = 0; efc = node->efc; if (!node->els_io_enabled) { efc_log_err(efc, "els io alloc disabled\n"); return NULL; } els = mempool_alloc(efc->els_io_pool, GFP_ATOMIC); if (!els) { atomic_add_return(1, &efc->els_io_alloc_failed_count); return NULL; } /* initialize refcount */ kref_init(&els->ref); els->release = _efc_els_io_free; /* populate generic io fields */ els->node = node; /* now allocate DMA for request and response */ els->io.req.size = reqlen; els->io.req.virt = dma_alloc_coherent(&efc->pci->dev, els->io.req.size, &els->io.req.phys, GFP_KERNEL); if (!els->io.req.virt) { mempool_free(els, efc->els_io_pool); return NULL; } els->io.rsp.size = rsplen; els->io.rsp.virt = dma_alloc_coherent(&efc->pci->dev, els->io.rsp.size, &els->io.rsp.phys, GFP_KERNEL); if (!els->io.rsp.virt) { dma_free_coherent(&efc->pci->dev, els->io.req.size, els->io.req.virt, els->io.req.phys); mempool_free(els, efc->els_io_pool); els = NULL; } if (els) { /* initialize fields */ els->els_retries_remaining = EFC_FC_ELS_DEFAULT_RETRIES; /* add els structure to ELS IO list */ INIT_LIST_HEAD(&els->list_entry); spin_lock_irqsave(&node->els_ios_lock, flags); list_add_tail(&els->list_entry, &node->els_ios_list); spin_unlock_irqrestore(&node->els_ios_lock, flags); } return els; } void efc_els_io_free(struct efc_els_io_req *els) { kref_put(&els->ref, els->release); } void _efc_els_io_free(struct kref *arg) { struct efc_els_io_req *els = container_of(arg, struct efc_els_io_req, ref); struct efc *efc; struct efc_node *node; int send_empty_event = false; unsigned long flags = 0; node = els->node; efc = node->efc; spin_lock_irqsave(&node->els_ios_lock, flags); list_del(&els->list_entry); /* Send list empty event if the IO allocator * is disabled, and the list is empty * If node->els_io_enabled was not checked, * the event would be posted continually */ send_empty_event = (!node->els_io_enabled && list_empty(&node->els_ios_list)); spin_unlock_irqrestore(&node->els_ios_lock, flags); /* free ELS request and response buffers */ dma_free_coherent(&efc->pci->dev, els->io.rsp.size, els->io.rsp.virt, els->io.rsp.phys); dma_free_coherent(&efc->pci->dev, els->io.req.size, els->io.req.virt, els->io.req.phys); mempool_free(els, efc->els_io_pool); if (send_empty_event) efc_scsi_io_list_empty(node->efc, node); } static void efc_els_retry(struct efc_els_io_req *els); static void efc_els_delay_timer_cb(struct timer_list *t) { struct efc_els_io_req *els = from_timer(els, t, delay_timer); /* Retry delay timer expired, retry the ELS request */ efc_els_retry(els); } static int efc_els_req_cb(void *arg, u32 length, int status, u32 ext_status) { struct efc_els_io_req *els; struct efc_node *node; struct efc *efc; struct efc_node_cb cbdata; u32 reason_code; els = arg; node = els->node; efc = node->efc; if (status) els_io_printf(els, "status x%x ext x%x\n", status, ext_status); /* set the response len element of els->rsp */ els->io.rsp.len = length; cbdata.status = status; cbdata.ext_status = ext_status; cbdata.header = NULL; cbdata.els_rsp = els->io.rsp; /* set the response len element of els->rsp */ cbdata.rsp_len = length; /* FW returns the number of bytes received on the link in * the WCQE, not the amount placed in the buffer; use this info to * check if there was an overrun. */ if (length > els->io.rsp.size) { efc_log_warn(efc, "ELS response returned len=%d > buflen=%zu\n", length, els->io.rsp.size); efc_els_io_cleanup(els, EFC_EVT_SRRS_ELS_REQ_FAIL, &cbdata); return 0; } /* Post event to ELS IO object */ switch (status) { case SLI4_FC_WCQE_STATUS_SUCCESS: efc_els_io_cleanup(els, EFC_EVT_SRRS_ELS_REQ_OK, &cbdata); break; case SLI4_FC_WCQE_STATUS_LS_RJT: reason_code = (ext_status >> 16) & 0xff; /* delay and retry if reason code is Logical Busy */ switch (reason_code) { case ELS_RJT_BUSY: els->node->els_req_cnt--; els_io_printf(els, "LS_RJT Logical Busy, delay and retry\n"); timer_setup(&els->delay_timer, efc_els_delay_timer_cb, 0); mod_timer(&els->delay_timer, jiffies + msecs_to_jiffies(5000)); break; default: efc_els_io_cleanup(els, EFC_EVT_SRRS_ELS_REQ_RJT, &cbdata); break; } break; case SLI4_FC_WCQE_STATUS_LOCAL_REJECT: switch (ext_status) { case SLI4_FC_LOCAL_REJECT_SEQUENCE_TIMEOUT: efc_els_retry(els); break; default: efc_log_err(efc, "LOCAL_REJECT with ext status:%x\n", ext_status); efc_els_io_cleanup(els, EFC_EVT_SRRS_ELS_REQ_FAIL, &cbdata); break; } break; default: /* Other error */ efc_log_warn(efc, "els req failed status x%x, ext_status x%x\n", status, ext_status); efc_els_io_cleanup(els, EFC_EVT_SRRS_ELS_REQ_FAIL, &cbdata); break; } return 0; } void efc_disc_io_complete(struct efc_disc_io *io, u32 len, u32 status, u32 ext_status) { struct efc_els_io_req *els = container_of(io, struct efc_els_io_req, io); WARN_ON_ONCE(!els->cb); ((efc_hw_srrs_cb_t)els->cb) (els, len, status, ext_status); } static int efc_els_send_req(struct efc_node *node, struct efc_els_io_req *els, enum efc_disc_io_type io_type) { int rc = 0; struct efc *efc = node->efc; struct efc_node_cb cbdata; /* update ELS request counter */ els->node->els_req_cnt++; /* Prepare the IO request details */ els->io.io_type = io_type; els->io.xmit_len = els->io.req.size; els->io.rsp_len = els->io.rsp.size; els->io.rpi = node->rnode.indicator; els->io.vpi = node->nport->indicator; els->io.s_id = node->nport->fc_id; els->io.d_id = node->rnode.fc_id; if (node->rnode.attached) els->io.rpi_registered = true; els->cb = efc_els_req_cb; rc = efc->tt.send_els(efc, &els->io); if (!rc) return rc; cbdata.status = EFC_STATUS_INVALID; cbdata.ext_status = EFC_STATUS_INVALID; cbdata.els_rsp = els->io.rsp; efc_log_err(efc, "efc_els_send failed: %d\n", rc); efc_els_io_cleanup(els, EFC_EVT_SRRS_ELS_REQ_FAIL, &cbdata); return rc; } static void efc_els_retry(struct efc_els_io_req *els) { struct efc *efc; struct efc_node_cb cbdata; u32 rc; efc = els->node->efc; cbdata.status = EFC_STATUS_INVALID; cbdata.ext_status = EFC_STATUS_INVALID; cbdata.els_rsp = els->io.rsp; if (els->els_retries_remaining) { els->els_retries_remaining--; rc = efc->tt.send_els(efc, &els->io); } else { rc = -EIO; } if (rc) { efc_log_err(efc, "ELS retries exhausted\n"); efc_els_io_cleanup(els, EFC_EVT_SRRS_ELS_REQ_FAIL, &cbdata); } } static int efc_els_acc_cb(void *arg, u32 length, int status, u32 ext_status) { struct efc_els_io_req *els; struct efc_node *node; struct efc *efc; struct efc_node_cb cbdata; els = arg; node = els->node; efc = node->efc; cbdata.status = status; cbdata.ext_status = ext_status; cbdata.header = NULL; cbdata.els_rsp = els->io.rsp; /* Post node event */ switch (status) { case SLI4_FC_WCQE_STATUS_SUCCESS: efc_els_io_cleanup(els, EFC_EVT_SRRS_ELS_CMPL_OK, &cbdata); break; default: /* Other error */ efc_log_warn(efc, "[%s] %-8s failed status x%x, ext x%x\n", node->display_name, els->display_name, status, ext_status); efc_els_io_cleanup(els, EFC_EVT_SRRS_ELS_CMPL_FAIL, &cbdata); break; } return 0; } static int efc_els_send_rsp(struct efc_els_io_req *els, u32 rsplen) { int rc = 0; struct efc_node_cb cbdata; struct efc_node *node = els->node; struct efc *efc = node->efc; /* increment ELS completion counter */ node->els_cmpl_cnt++; els->io.io_type = EFC_DISC_IO_ELS_RESP; els->cb = efc_els_acc_cb; /* Prepare the IO request details */ els->io.xmit_len = rsplen; els->io.rsp_len = els->io.rsp.size; els->io.rpi = node->rnode.indicator; els->io.vpi = node->nport->indicator; if (node->nport->fc_id != U32_MAX) els->io.s_id = node->nport->fc_id; else els->io.s_id = els->io.iparam.els.s_id; els->io.d_id = node->rnode.fc_id; if (node->attached) els->io.rpi_registered = true; rc = efc->tt.send_els(efc, &els->io); if (!rc) return rc; cbdata.status = EFC_STATUS_INVALID; cbdata.ext_status = EFC_STATUS_INVALID; cbdata.els_rsp = els->io.rsp; efc_els_io_cleanup(els, EFC_EVT_SRRS_ELS_CMPL_FAIL, &cbdata); return rc; } int efc_send_plogi(struct efc_node *node) { struct efc_els_io_req *els; struct efc *efc = node->efc; struct fc_els_flogi *plogi; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*plogi)); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } els->display_name = "plogi"; /* Build PLOGI request */ plogi = els->io.req.virt; memcpy(plogi, node->nport->service_params, sizeof(*plogi)); plogi->fl_cmd = ELS_PLOGI; memset(plogi->_fl_resvd, 0, sizeof(plogi->_fl_resvd)); return efc_els_send_req(node, els, EFC_DISC_IO_ELS_REQ); } int efc_send_flogi(struct efc_node *node) { struct efc_els_io_req *els; struct efc *efc; struct fc_els_flogi *flogi; efc = node->efc; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*flogi)); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } els->display_name = "flogi"; /* Build FLOGI request */ flogi = els->io.req.virt; memcpy(flogi, node->nport->service_params, sizeof(*flogi)); flogi->fl_cmd = ELS_FLOGI; memset(flogi->_fl_resvd, 0, sizeof(flogi->_fl_resvd)); return efc_els_send_req(node, els, EFC_DISC_IO_ELS_REQ); } int efc_send_fdisc(struct efc_node *node) { struct efc_els_io_req *els; struct efc *efc; struct fc_els_flogi *fdisc; efc = node->efc; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*fdisc)); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } els->display_name = "fdisc"; /* Build FDISC request */ fdisc = els->io.req.virt; memcpy(fdisc, node->nport->service_params, sizeof(*fdisc)); fdisc->fl_cmd = ELS_FDISC; memset(fdisc->_fl_resvd, 0, sizeof(fdisc->_fl_resvd)); return efc_els_send_req(node, els, EFC_DISC_IO_ELS_REQ); } int efc_send_prli(struct efc_node *node) { struct efc *efc = node->efc; struct efc_els_io_req *els; struct { struct fc_els_prli prli; struct fc_els_spp spp; } *pp; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*pp)); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } els->display_name = "prli"; /* Build PRLI request */ pp = els->io.req.virt; memset(pp, 0, sizeof(*pp)); pp->prli.prli_cmd = ELS_PRLI; pp->prli.prli_spp_len = 16; pp->prli.prli_len = cpu_to_be16(sizeof(*pp)); pp->spp.spp_type = FC_TYPE_FCP; pp->spp.spp_type_ext = 0; pp->spp.spp_flags = FC_SPP_EST_IMG_PAIR; pp->spp.spp_params = cpu_to_be32(FCP_SPPF_RD_XRDY_DIS | (node->nport->enable_ini ? FCP_SPPF_INIT_FCN : 0) | (node->nport->enable_tgt ? FCP_SPPF_TARG_FCN : 0)); return efc_els_send_req(node, els, EFC_DISC_IO_ELS_REQ); } int efc_send_logo(struct efc_node *node) { struct efc *efc = node->efc; struct efc_els_io_req *els; struct fc_els_logo *logo; struct fc_els_flogi *sparams; node_els_trace(); sparams = (struct fc_els_flogi *)node->nport->service_params; els = efc_els_io_alloc(node, sizeof(*logo)); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } els->display_name = "logo"; /* Build LOGO request */ logo = els->io.req.virt; memset(logo, 0, sizeof(*logo)); logo->fl_cmd = ELS_LOGO; hton24(logo->fl_n_port_id, node->rnode.nport->fc_id); logo->fl_n_port_wwn = sparams->fl_wwpn; return efc_els_send_req(node, els, EFC_DISC_IO_ELS_REQ); } int efc_send_adisc(struct efc_node *node) { struct efc *efc = node->efc; struct efc_els_io_req *els; struct fc_els_adisc *adisc; struct fc_els_flogi *sparams; struct efc_nport *nport = node->nport; node_els_trace(); sparams = (struct fc_els_flogi *)node->nport->service_params; els = efc_els_io_alloc(node, sizeof(*adisc)); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } els->display_name = "adisc"; /* Build ADISC request */ adisc = els->io.req.virt; memset(adisc, 0, sizeof(*adisc)); adisc->adisc_cmd = ELS_ADISC; hton24(adisc->adisc_hard_addr, nport->fc_id); adisc->adisc_wwpn = sparams->fl_wwpn; adisc->adisc_wwnn = sparams->fl_wwnn; hton24(adisc->adisc_port_id, node->rnode.nport->fc_id); return efc_els_send_req(node, els, EFC_DISC_IO_ELS_REQ); } int efc_send_scr(struct efc_node *node) { struct efc_els_io_req *els; struct efc *efc = node->efc; struct fc_els_scr *req; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*req)); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } els->display_name = "scr"; req = els->io.req.virt; memset(req, 0, sizeof(*req)); req->scr_cmd = ELS_SCR; req->scr_reg_func = ELS_SCRF_FULL; return efc_els_send_req(node, els, EFC_DISC_IO_ELS_REQ); } int efc_send_ls_rjt(struct efc_node *node, u32 ox_id, u32 reason_code, u32 reason_code_expl, u32 vendor_unique) { struct efc *efc = node->efc; struct efc_els_io_req *els = NULL; struct fc_els_ls_rjt *rjt; els = efc_els_io_alloc(node, sizeof(*rjt)); if (!els) { efc_log_err(efc, "els IO alloc failed\n"); return -EIO; } node_els_trace(); els->display_name = "ls_rjt"; memset(&els->io.iparam, 0, sizeof(els->io.iparam)); els->io.iparam.els.ox_id = ox_id; rjt = els->io.req.virt; memset(rjt, 0, sizeof(*rjt)); rjt->er_cmd = ELS_LS_RJT; rjt->er_reason = reason_code; rjt->er_explan = reason_code_expl; return efc_els_send_rsp(els, sizeof(*rjt)); } int efc_send_plogi_acc(struct efc_node *node, u32 ox_id) { struct efc *efc = node->efc; struct efc_els_io_req *els = NULL; struct fc_els_flogi *plogi; struct fc_els_flogi *req = (struct fc_els_flogi *)node->service_params; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*plogi)); if (!els) { efc_log_err(efc, "els IO alloc failed\n"); return -EIO; } els->display_name = "plogi_acc"; memset(&els->io.iparam, 0, sizeof(els->io.iparam)); els->io.iparam.els.ox_id = ox_id; plogi = els->io.req.virt; /* copy our port's service parameters to payload */ memcpy(plogi, node->nport->service_params, sizeof(*plogi)); plogi->fl_cmd = ELS_LS_ACC; memset(plogi->_fl_resvd, 0, sizeof(plogi->_fl_resvd)); /* Set Application header support bit if requested */ if (req->fl_csp.sp_features & cpu_to_be16(FC_SP_FT_BCAST)) plogi->fl_csp.sp_features |= cpu_to_be16(FC_SP_FT_BCAST); return efc_els_send_rsp(els, sizeof(*plogi)); } int efc_send_flogi_p2p_acc(struct efc_node *node, u32 ox_id, u32 s_id) { struct efc *efc = node->efc; struct efc_els_io_req *els = NULL; struct fc_els_flogi *flogi; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*flogi)); if (!els) { efc_log_err(efc, "els IO alloc failed\n"); return -EIO; } els->display_name = "flogi_p2p_acc"; memset(&els->io.iparam, 0, sizeof(els->io.iparam)); els->io.iparam.els.ox_id = ox_id; els->io.iparam.els.s_id = s_id; flogi = els->io.req.virt; /* copy our port's service parameters to payload */ memcpy(flogi, node->nport->service_params, sizeof(*flogi)); flogi->fl_cmd = ELS_LS_ACC; memset(flogi->_fl_resvd, 0, sizeof(flogi->_fl_resvd)); memset(flogi->fl_cssp, 0, sizeof(flogi->fl_cssp)); return efc_els_send_rsp(els, sizeof(*flogi)); } int efc_send_prli_acc(struct efc_node *node, u32 ox_id) { struct efc *efc = node->efc; struct efc_els_io_req *els = NULL; struct { struct fc_els_prli prli; struct fc_els_spp spp; } *pp; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*pp)); if (!els) { efc_log_err(efc, "els IO alloc failed\n"); return -EIO; } els->display_name = "prli_acc"; memset(&els->io.iparam, 0, sizeof(els->io.iparam)); els->io.iparam.els.ox_id = ox_id; pp = els->io.req.virt; memset(pp, 0, sizeof(*pp)); pp->prli.prli_cmd = ELS_LS_ACC; pp->prli.prli_spp_len = 0x10; pp->prli.prli_len = cpu_to_be16(sizeof(*pp)); pp->spp.spp_type = FC_TYPE_FCP; pp->spp.spp_type_ext = 0; pp->spp.spp_flags = FC_SPP_EST_IMG_PAIR | FC_SPP_RESP_ACK; pp->spp.spp_params = cpu_to_be32(FCP_SPPF_RD_XRDY_DIS | (node->nport->enable_ini ? FCP_SPPF_INIT_FCN : 0) | (node->nport->enable_tgt ? FCP_SPPF_TARG_FCN : 0)); return efc_els_send_rsp(els, sizeof(*pp)); } int efc_send_prlo_acc(struct efc_node *node, u32 ox_id) { struct efc *efc = node->efc; struct efc_els_io_req *els = NULL; struct { struct fc_els_prlo prlo; struct fc_els_spp spp; } *pp; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*pp)); if (!els) { efc_log_err(efc, "els IO alloc failed\n"); return -EIO; } els->display_name = "prlo_acc"; memset(&els->io.iparam, 0, sizeof(els->io.iparam)); els->io.iparam.els.ox_id = ox_id; pp = els->io.req.virt; memset(pp, 0, sizeof(*pp)); pp->prlo.prlo_cmd = ELS_LS_ACC; pp->prlo.prlo_obs = 0x10; pp->prlo.prlo_len = cpu_to_be16(sizeof(*pp)); pp->spp.spp_type = FC_TYPE_FCP; pp->spp.spp_type_ext = 0; pp->spp.spp_flags = FC_SPP_RESP_ACK; return efc_els_send_rsp(els, sizeof(*pp)); } int efc_send_ls_acc(struct efc_node *node, u32 ox_id) { struct efc *efc = node->efc; struct efc_els_io_req *els = NULL; struct fc_els_ls_acc *acc; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*acc)); if (!els) { efc_log_err(efc, "els IO alloc failed\n"); return -EIO; } els->display_name = "ls_acc"; memset(&els->io.iparam, 0, sizeof(els->io.iparam)); els->io.iparam.els.ox_id = ox_id; acc = els->io.req.virt; memset(acc, 0, sizeof(*acc)); acc->la_cmd = ELS_LS_ACC; return efc_els_send_rsp(els, sizeof(*acc)); } int efc_send_logo_acc(struct efc_node *node, u32 ox_id) { struct efc_els_io_req *els = NULL; struct efc *efc = node->efc; struct fc_els_ls_acc *logo; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*logo)); if (!els) { efc_log_err(efc, "els IO alloc failed\n"); return -EIO; } els->display_name = "logo_acc"; memset(&els->io.iparam, 0, sizeof(els->io.iparam)); els->io.iparam.els.ox_id = ox_id; logo = els->io.req.virt; memset(logo, 0, sizeof(*logo)); logo->la_cmd = ELS_LS_ACC; return efc_els_send_rsp(els, sizeof(*logo)); } int efc_send_adisc_acc(struct efc_node *node, u32 ox_id) { struct efc *efc = node->efc; struct efc_els_io_req *els = NULL; struct fc_els_adisc *adisc; struct fc_els_flogi *sparams; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*adisc)); if (!els) { efc_log_err(efc, "els IO alloc failed\n"); return -EIO; } els->display_name = "adisc_acc"; /* Go ahead and send the ELS_ACC */ memset(&els->io.iparam, 0, sizeof(els->io.iparam)); els->io.iparam.els.ox_id = ox_id; sparams = (struct fc_els_flogi *)node->nport->service_params; adisc = els->io.req.virt; memset(adisc, 0, sizeof(*adisc)); adisc->adisc_cmd = ELS_LS_ACC; adisc->adisc_wwpn = sparams->fl_wwpn; adisc->adisc_wwnn = sparams->fl_wwnn; hton24(adisc->adisc_port_id, node->rnode.nport->fc_id); return efc_els_send_rsp(els, sizeof(*adisc)); } static inline void fcct_build_req_header(struct fc_ct_hdr *hdr, u16 cmd, u16 max_size) { hdr->ct_rev = FC_CT_REV; hdr->ct_fs_type = FC_FST_DIR; hdr->ct_fs_subtype = FC_NS_SUBTYPE; hdr->ct_options = 0; hdr->ct_cmd = cpu_to_be16(cmd); /* words */ hdr->ct_mr_size = cpu_to_be16(max_size / (sizeof(u32))); hdr->ct_reason = 0; hdr->ct_explan = 0; hdr->ct_vendor = 0; } int efc_ns_send_rftid(struct efc_node *node) { struct efc *efc = node->efc; struct efc_els_io_req *els; struct { struct fc_ct_hdr hdr; struct fc_ns_rft_id rftid; } *ct; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*ct)); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } els->io.iparam.ct.r_ctl = FC_RCTL_ELS_REQ; els->io.iparam.ct.type = FC_TYPE_CT; els->io.iparam.ct.df_ctl = 0; els->io.iparam.ct.timeout = EFC_FC_ELS_SEND_DEFAULT_TIMEOUT; els->display_name = "rftid"; ct = els->io.req.virt; memset(ct, 0, sizeof(*ct)); fcct_build_req_header(&ct->hdr, FC_NS_RFT_ID, sizeof(struct fc_ns_rft_id)); hton24(ct->rftid.fr_fid.fp_fid, node->rnode.nport->fc_id); ct->rftid.fr_fts.ff_type_map[FC_TYPE_FCP / FC_NS_BPW] = cpu_to_be32(1 << (FC_TYPE_FCP % FC_NS_BPW)); return efc_els_send_req(node, els, EFC_DISC_IO_CT_REQ); } int efc_ns_send_rffid(struct efc_node *node) { struct efc *efc = node->efc; struct efc_els_io_req *els; struct { struct fc_ct_hdr hdr; struct fc_ns_rff_id rffid; } *ct; node_els_trace(); els = efc_els_io_alloc(node, sizeof(*ct)); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } els->io.iparam.ct.r_ctl = FC_RCTL_ELS_REQ; els->io.iparam.ct.type = FC_TYPE_CT; els->io.iparam.ct.df_ctl = 0; els->io.iparam.ct.timeout = EFC_FC_ELS_SEND_DEFAULT_TIMEOUT; els->display_name = "rffid"; ct = els->io.req.virt; memset(ct, 0, sizeof(*ct)); fcct_build_req_header(&ct->hdr, FC_NS_RFF_ID, sizeof(struct fc_ns_rff_id)); hton24(ct->rffid.fr_fid.fp_fid, node->rnode.nport->fc_id); if (node->nport->enable_ini) ct->rffid.fr_feat |= FCP_FEAT_INIT; if (node->nport->enable_tgt) ct->rffid.fr_feat |= FCP_FEAT_TARG; ct->rffid.fr_type = FC_TYPE_FCP; return efc_els_send_req(node, els, EFC_DISC_IO_CT_REQ); } int efc_ns_send_gidpt(struct efc_node *node) { struct efc_els_io_req *els = NULL; struct efc *efc = node->efc; struct { struct fc_ct_hdr hdr; struct fc_ns_gid_pt gidpt; } *ct; node_els_trace(); els = efc_els_io_alloc_size(node, sizeof(*ct), EFC_ELS_GID_PT_RSP_LEN); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } els->io.iparam.ct.r_ctl = FC_RCTL_ELS_REQ; els->io.iparam.ct.type = FC_TYPE_CT; els->io.iparam.ct.df_ctl = 0; els->io.iparam.ct.timeout = EFC_FC_ELS_SEND_DEFAULT_TIMEOUT; els->display_name = "gidpt"; ct = els->io.req.virt; memset(ct, 0, sizeof(*ct)); fcct_build_req_header(&ct->hdr, FC_NS_GID_PT, sizeof(struct fc_ns_gid_pt)); ct->gidpt.fn_pt_type = FC_TYPE_FCP; return efc_els_send_req(node, els, EFC_DISC_IO_CT_REQ); } void efc_els_io_cleanup(struct efc_els_io_req *els, int evt, void *arg) { /* don't want further events that could come; e.g. abort requests * from the node state machine; thus, disable state machine */ els->els_req_free = true; efc_node_post_els_resp(els->node, evt, arg); efc_els_io_free(els); } static int efc_ct_acc_cb(void *arg, u32 length, int status, u32 ext_status) { struct efc_els_io_req *els = arg; efc_els_io_free(els); return 0; } int efc_send_ct_rsp(struct efc *efc, struct efc_node *node, u16 ox_id, struct fc_ct_hdr *ct_hdr, u32 cmd_rsp_code, u32 reason_code, u32 reason_code_explanation) { struct efc_els_io_req *els = NULL; struct fc_ct_hdr *rsp = NULL; els = efc_els_io_alloc(node, 256); if (!els) { efc_log_err(efc, "IO alloc failed\n"); return -EIO; } rsp = els->io.rsp.virt; *rsp = *ct_hdr; fcct_build_req_header(rsp, cmd_rsp_code, 0); rsp->ct_reason = reason_code; rsp->ct_explan = reason_code_explanation; els->display_name = "ct_rsp"; els->cb = efc_ct_acc_cb; /* Prepare the IO request details */ els->io.io_type = EFC_DISC_IO_CT_RESP; els->io.xmit_len = sizeof(*rsp); els->io.rpi = node->rnode.indicator; els->io.d_id = node->rnode.fc_id; memset(&els->io.iparam, 0, sizeof(els->io.iparam)); els->io.iparam.ct.ox_id = ox_id; els->io.iparam.ct.r_ctl = 3; els->io.iparam.ct.type = FC_TYPE_CT; els->io.iparam.ct.df_ctl = 0; els->io.iparam.ct.timeout = 5; if (efc->tt.send_els(efc, &els->io)) { efc_els_io_free(els); return -EIO; } return 0; } int efc_send_bls_acc(struct efc_node *node, struct fc_frame_header *hdr) { struct sli_bls_params bls; struct fc_ba_acc *acc; struct efc *efc = node->efc; memset(&bls, 0, sizeof(bls)); bls.ox_id = be16_to_cpu(hdr->fh_ox_id); bls.rx_id = be16_to_cpu(hdr->fh_rx_id); bls.s_id = ntoh24(hdr->fh_d_id); bls.d_id = node->rnode.fc_id; bls.rpi = node->rnode.indicator; bls.vpi = node->nport->indicator; acc = (void *)bls.payload; acc->ba_ox_id = cpu_to_be16(bls.ox_id); acc->ba_rx_id = cpu_to_be16(bls.rx_id); acc->ba_high_seq_cnt = cpu_to_be16(U16_MAX); return efc->tt.send_bls(efc, FC_RCTL_BA_ACC, &bls); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1