Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kamal Dasu | 7710 | 93.73% | 19 | 47.50% |
Boris Brezillon | 299 | 3.63% | 2 | 5.00% |
Florian Fainelli | 113 | 1.37% | 2 | 5.00% |
Chris Packham | 20 | 0.24% | 1 | 2.50% |
Lukas Wunner | 20 | 0.24% | 1 | 2.50% |
Ray Jui | 14 | 0.17% | 2 | 5.00% |
Rayagonda Kokatanur | 9 | 0.11% | 3 | 7.50% |
Yoshitaka Ikeda | 8 | 0.10% | 1 | 2.50% |
Wei Yongjun | 8 | 0.10% | 2 | 5.00% |
Arnd Bergmann | 8 | 0.10% | 1 | 2.50% |
Justin Chen | 6 | 0.07% | 1 | 2.50% |
Yang Yingliang | 4 | 0.05% | 1 | 2.50% |
Alexandru Ardelean | 3 | 0.04% | 1 | 2.50% |
Thomas Gleixner | 2 | 0.02% | 1 | 2.50% |
Li Yang | 1 | 0.01% | 1 | 2.50% |
Rafał Miłecki | 1 | 0.01% | 1 | 2.50% |
Total | 8226 | 40 |
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for Broadcom BRCMSTB, NSP, NS2, Cygnus SPI Controllers * * Copyright 2016 Broadcom */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> #include <linux/sysfs.h> #include <linux/types.h> #include "spi-bcm-qspi.h" #define DRIVER_NAME "bcm_qspi" /* BSPI register offsets */ #define BSPI_REVISION_ID 0x000 #define BSPI_SCRATCH 0x004 #define BSPI_MAST_N_BOOT_CTRL 0x008 #define BSPI_BUSY_STATUS 0x00c #define BSPI_INTR_STATUS 0x010 #define BSPI_B0_STATUS 0x014 #define BSPI_B0_CTRL 0x018 #define BSPI_B1_STATUS 0x01c #define BSPI_B1_CTRL 0x020 #define BSPI_STRAP_OVERRIDE_CTRL 0x024 #define BSPI_FLEX_MODE_ENABLE 0x028 #define BSPI_BITS_PER_CYCLE 0x02c #define BSPI_BITS_PER_PHASE 0x030 #define BSPI_CMD_AND_MODE_BYTE 0x034 #define BSPI_BSPI_FLASH_UPPER_ADDR_BYTE 0x038 #define BSPI_BSPI_XOR_VALUE 0x03c #define BSPI_BSPI_XOR_ENABLE 0x040 #define BSPI_BSPI_PIO_MODE_ENABLE 0x044 #define BSPI_BSPI_PIO_IODIR 0x048 #define BSPI_BSPI_PIO_DATA 0x04c /* RAF register offsets */ #define BSPI_RAF_START_ADDR 0x100 #define BSPI_RAF_NUM_WORDS 0x104 #define BSPI_RAF_CTRL 0x108 #define BSPI_RAF_FULLNESS 0x10c #define BSPI_RAF_WATERMARK 0x110 #define BSPI_RAF_STATUS 0x114 #define BSPI_RAF_READ_DATA 0x118 #define BSPI_RAF_WORD_CNT 0x11c #define BSPI_RAF_CURR_ADDR 0x120 /* Override mode masks */ #define BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE BIT(0) #define BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL BIT(1) #define BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE BIT(2) #define BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD BIT(3) #define BSPI_STRAP_OVERRIDE_CTRL_ENDAIN_MODE BIT(4) #define BSPI_ADDRLEN_3BYTES 3 #define BSPI_ADDRLEN_4BYTES 4 #define BSPI_RAF_STATUS_FIFO_EMPTY_MASK BIT(1) #define BSPI_RAF_CTRL_START_MASK BIT(0) #define BSPI_RAF_CTRL_CLEAR_MASK BIT(1) #define BSPI_BPP_MODE_SELECT_MASK BIT(8) #define BSPI_BPP_ADDR_SELECT_MASK BIT(16) #define BSPI_READ_LENGTH 256 /* MSPI register offsets */ #define MSPI_SPCR0_LSB 0x000 #define MSPI_SPCR0_MSB 0x004 #define MSPI_SPCR0_MSB_CPHA BIT(0) #define MSPI_SPCR0_MSB_CPOL BIT(1) #define MSPI_SPCR0_MSB_BITS_SHIFT 0x2 #define MSPI_SPCR1_LSB 0x008 #define MSPI_SPCR1_MSB 0x00c #define MSPI_NEWQP 0x010 #define MSPI_ENDQP 0x014 #define MSPI_SPCR2 0x018 #define MSPI_MSPI_STATUS 0x020 #define MSPI_CPTQP 0x024 #define MSPI_SPCR3 0x028 #define MSPI_REV 0x02c #define MSPI_TXRAM 0x040 #define MSPI_RXRAM 0x0c0 #define MSPI_CDRAM 0x140 #define MSPI_WRITE_LOCK 0x180 #define MSPI_MASTER_BIT BIT(7) #define MSPI_NUM_CDRAM 16 #define MSPI_CDRAM_OUTP BIT(8) #define MSPI_CDRAM_CONT_BIT BIT(7) #define MSPI_CDRAM_BITSE_BIT BIT(6) #define MSPI_CDRAM_DT_BIT BIT(5) #define MSPI_CDRAM_PCS 0xf #define MSPI_SPCR2_SPE BIT(6) #define MSPI_SPCR2_CONT_AFTER_CMD BIT(7) #define MSPI_SPCR3_FASTBR BIT(0) #define MSPI_SPCR3_FASTDT BIT(1) #define MSPI_SPCR3_SYSCLKSEL_MASK GENMASK(11, 10) #define MSPI_SPCR3_SYSCLKSEL_27 (MSPI_SPCR3_SYSCLKSEL_MASK & \ ~(BIT(10) | BIT(11))) #define MSPI_SPCR3_SYSCLKSEL_108 (MSPI_SPCR3_SYSCLKSEL_MASK & \ BIT(11)) #define MSPI_SPCR3_TXRXDAM_MASK GENMASK(4, 2) #define MSPI_SPCR3_DAM_8BYTE 0 #define MSPI_SPCR3_DAM_16BYTE (BIT(2) | BIT(4)) #define MSPI_SPCR3_DAM_32BYTE (BIT(3) | BIT(5)) #define MSPI_SPCR3_HALFDUPLEX BIT(6) #define MSPI_SPCR3_HDOUTTYPE BIT(7) #define MSPI_SPCR3_DATA_REG_SZ BIT(8) #define MSPI_SPCR3_CPHARX BIT(9) #define MSPI_MSPI_STATUS_SPIF BIT(0) #define INTR_BASE_BIT_SHIFT 0x02 #define INTR_COUNT 0x07 #define NUM_CHIPSELECT 4 #define QSPI_SPBR_MAX 255U #define MSPI_BASE_FREQ 27000000UL #define OPCODE_DIOR 0xBB #define OPCODE_QIOR 0xEB #define OPCODE_DIOR_4B 0xBC #define OPCODE_QIOR_4B 0xEC #define MAX_CMD_SIZE 6 #define ADDR_4MB_MASK GENMASK(22, 0) /* stop at end of transfer, no other reason */ #define TRANS_STATUS_BREAK_NONE 0 /* stop at end of spi_message */ #define TRANS_STATUS_BREAK_EOM 1 /* stop at end of spi_transfer if delay */ #define TRANS_STATUS_BREAK_DELAY 2 /* stop at end of spi_transfer if cs_change */ #define TRANS_STATUS_BREAK_CS_CHANGE 4 /* stop if we run out of bytes */ #define TRANS_STATUS_BREAK_NO_BYTES 8 /* events that make us stop filling TX slots */ #define TRANS_STATUS_BREAK_TX (TRANS_STATUS_BREAK_EOM | \ TRANS_STATUS_BREAK_DELAY | \ TRANS_STATUS_BREAK_CS_CHANGE) /* events that make us deassert CS */ #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \ TRANS_STATUS_BREAK_CS_CHANGE) /* * Used for writing and reading data in the right order * to TXRAM and RXRAM when used as 32-bit registers respectively */ #define swap4bytes(__val) \ ((((__val) >> 24) & 0x000000FF) | (((__val) >> 8) & 0x0000FF00) | \ (((__val) << 8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000)) struct bcm_qspi_parms { u32 speed_hz; u8 mode; u8 bits_per_word; }; struct bcm_xfer_mode { bool flex_mode; unsigned int width; unsigned int addrlen; unsigned int hp; }; enum base_type { MSPI, BSPI, CHIP_SELECT, BASEMAX, }; enum irq_source { SINGLE_L2, MUXED_L1, }; struct bcm_qspi_irq { const char *irq_name; const irq_handler_t irq_handler; int irq_source; u32 mask; }; struct bcm_qspi_dev_id { const struct bcm_qspi_irq *irqp; void *dev; }; struct qspi_trans { struct spi_transfer *trans; int byte; bool mspi_last_trans; }; struct bcm_qspi { struct platform_device *pdev; struct spi_master *master; struct clk *clk; u32 base_clk; u32 max_speed_hz; void __iomem *base[BASEMAX]; /* Some SoCs provide custom interrupt status register(s) */ struct bcm_qspi_soc_intc *soc_intc; struct bcm_qspi_parms last_parms; struct qspi_trans trans_pos; int curr_cs; int bspi_maj_rev; int bspi_min_rev; int bspi_enabled; const struct spi_mem_op *bspi_rf_op; u32 bspi_rf_op_idx; u32 bspi_rf_op_len; u32 bspi_rf_op_status; struct bcm_xfer_mode xfer_mode; u32 s3_strap_override_ctrl; bool bspi_mode; bool big_endian; int num_irqs; struct bcm_qspi_dev_id *dev_ids; struct completion mspi_done; struct completion bspi_done; u8 mspi_maj_rev; u8 mspi_min_rev; bool mspi_spcr3_sysclk; }; static inline bool has_bspi(struct bcm_qspi *qspi) { return qspi->bspi_mode; } /* hardware supports spcr3 and fast baud-rate */ static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi) { if (!has_bspi(qspi) && ((qspi->mspi_maj_rev >= 1) && (qspi->mspi_min_rev >= 5))) return true; return false; } /* hardware supports sys clk 108Mhz */ static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi) { if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk || ((qspi->mspi_maj_rev >= 1) && (qspi->mspi_min_rev >= 6)))) return true; return false; } static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi) { if (bcm_qspi_has_fastbr(qspi)) return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1); else return 8; } static u32 bcm_qspi_calc_spbr(u32 clk_speed_hz, const struct bcm_qspi_parms *xp) { u32 spbr = 0; /* SPBR = System Clock/(2 * SCK Baud Rate) */ if (xp->speed_hz) spbr = clk_speed_hz / (xp->speed_hz * 2); return spbr; } /* Read qspi controller register*/ static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type, unsigned int offset) { return bcm_qspi_readl(qspi->big_endian, qspi->base[type] + offset); } /* Write qspi controller register*/ static inline void bcm_qspi_write(struct bcm_qspi *qspi, enum base_type type, unsigned int offset, unsigned int data) { bcm_qspi_writel(qspi->big_endian, data, qspi->base[type] + offset); } /* BSPI helpers */ static int bcm_qspi_bspi_busy_poll(struct bcm_qspi *qspi) { int i; /* this should normally finish within 10us */ for (i = 0; i < 1000; i++) { if (!(bcm_qspi_read(qspi, BSPI, BSPI_BUSY_STATUS) & 1)) return 0; udelay(1); } dev_warn(&qspi->pdev->dev, "timeout waiting for !busy_status\n"); return -EIO; } static inline bool bcm_qspi_bspi_ver_three(struct bcm_qspi *qspi) { if (qspi->bspi_maj_rev < 4) return true; return false; } static void bcm_qspi_bspi_flush_prefetch_buffers(struct bcm_qspi *qspi) { bcm_qspi_bspi_busy_poll(qspi); /* Force rising edge for the b0/b1 'flush' field */ bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 1); bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 1); bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0); bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0); } static int bcm_qspi_bspi_lr_is_fifo_empty(struct bcm_qspi *qspi) { return (bcm_qspi_read(qspi, BSPI, BSPI_RAF_STATUS) & BSPI_RAF_STATUS_FIFO_EMPTY_MASK); } static inline u32 bcm_qspi_bspi_lr_read_fifo(struct bcm_qspi *qspi) { u32 data = bcm_qspi_read(qspi, BSPI, BSPI_RAF_READ_DATA); /* BSPI v3 LR is LE only, convert data to host endianness */ if (bcm_qspi_bspi_ver_three(qspi)) data = le32_to_cpu(data); return data; } static inline void bcm_qspi_bspi_lr_start(struct bcm_qspi *qspi) { bcm_qspi_bspi_busy_poll(qspi); bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL, BSPI_RAF_CTRL_START_MASK); } static inline void bcm_qspi_bspi_lr_clear(struct bcm_qspi *qspi) { bcm_qspi_write(qspi, BSPI, BSPI_RAF_CTRL, BSPI_RAF_CTRL_CLEAR_MASK); bcm_qspi_bspi_flush_prefetch_buffers(qspi); } static void bcm_qspi_bspi_lr_data_read(struct bcm_qspi *qspi) { u32 *buf = (u32 *)qspi->bspi_rf_op->data.buf.in; u32 data = 0; dev_dbg(&qspi->pdev->dev, "xfer %p rx %p rxlen %d\n", qspi->bspi_rf_op, qspi->bspi_rf_op->data.buf.in, qspi->bspi_rf_op_len); while (!bcm_qspi_bspi_lr_is_fifo_empty(qspi)) { data = bcm_qspi_bspi_lr_read_fifo(qspi); if (likely(qspi->bspi_rf_op_len >= 4) && IS_ALIGNED((uintptr_t)buf, 4)) { buf[qspi->bspi_rf_op_idx++] = data; qspi->bspi_rf_op_len -= 4; } else { /* Read out remaining bytes, make sure*/ u8 *cbuf = (u8 *)&buf[qspi->bspi_rf_op_idx]; data = cpu_to_le32(data); while (qspi->bspi_rf_op_len) { *cbuf++ = (u8)data; data >>= 8; qspi->bspi_rf_op_len--; } } } } static void bcm_qspi_bspi_set_xfer_params(struct bcm_qspi *qspi, u8 cmd_byte, int bpp, int bpc, int flex_mode) { bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0); bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_CYCLE, bpc); bcm_qspi_write(qspi, BSPI, BSPI_BITS_PER_PHASE, bpp); bcm_qspi_write(qspi, BSPI, BSPI_CMD_AND_MODE_BYTE, cmd_byte); bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, flex_mode); } static int bcm_qspi_bspi_set_flex_mode(struct bcm_qspi *qspi, const struct spi_mem_op *op, int hp) { int bpc = 0, bpp = 0; u8 command = op->cmd.opcode; int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE; int addrlen = op->addr.nbytes; int flex_mode = 1; dev_dbg(&qspi->pdev->dev, "set flex mode w %x addrlen %x hp %d\n", width, addrlen, hp); if (addrlen == BSPI_ADDRLEN_4BYTES) bpp = BSPI_BPP_ADDR_SELECT_MASK; if (op->dummy.nbytes) bpp |= (op->dummy.nbytes * 8) / op->dummy.buswidth; switch (width) { case SPI_NBITS_SINGLE: if (addrlen == BSPI_ADDRLEN_3BYTES) /* default mode, does not need flex_cmd */ flex_mode = 0; break; case SPI_NBITS_DUAL: bpc = 0x00000001; if (hp) { bpc |= 0x00010100; /* address and mode are 2-bit */ bpp = BSPI_BPP_MODE_SELECT_MASK; } break; case SPI_NBITS_QUAD: bpc = 0x00000002; if (hp) { bpc |= 0x00020200; /* address and mode are 4-bit */ bpp |= BSPI_BPP_MODE_SELECT_MASK; } break; default: return -EINVAL; } bcm_qspi_bspi_set_xfer_params(qspi, command, bpp, bpc, flex_mode); return 0; } static int bcm_qspi_bspi_set_override(struct bcm_qspi *qspi, const struct spi_mem_op *op, int hp) { int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE; int addrlen = op->addr.nbytes; u32 data = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL); dev_dbg(&qspi->pdev->dev, "set override mode w %x addrlen %x hp %d\n", width, addrlen, hp); switch (width) { case SPI_NBITS_SINGLE: /* clear quad/dual mode */ data &= ~(BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD | BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL); break; case SPI_NBITS_QUAD: /* clear dual mode and set quad mode */ data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL; data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD; break; case SPI_NBITS_DUAL: /* clear quad mode set dual mode */ data &= ~BSPI_STRAP_OVERRIDE_CTRL_DATA_QUAD; data |= BSPI_STRAP_OVERRIDE_CTRL_DATA_DUAL; break; default: return -EINVAL; } if (addrlen == BSPI_ADDRLEN_4BYTES) /* set 4byte mode*/ data |= BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE; else /* clear 4 byte mode */ data &= ~BSPI_STRAP_OVERRIDE_CTRL_ADDR_4BYTE; /* set the override mode */ data |= BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE; bcm_qspi_write(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL, data); bcm_qspi_bspi_set_xfer_params(qspi, op->cmd.opcode, 0, 0, 0); return 0; } static int bcm_qspi_bspi_set_mode(struct bcm_qspi *qspi, const struct spi_mem_op *op, int hp) { int error = 0; int width = op->data.buswidth ? op->data.buswidth : SPI_NBITS_SINGLE; int addrlen = op->addr.nbytes; /* default mode */ qspi->xfer_mode.flex_mode = true; if (!bcm_qspi_bspi_ver_three(qspi)) { u32 val, mask; val = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL); mask = BSPI_STRAP_OVERRIDE_CTRL_OVERRIDE; if (val & mask || qspi->s3_strap_override_ctrl & mask) { qspi->xfer_mode.flex_mode = false; bcm_qspi_write(qspi, BSPI, BSPI_FLEX_MODE_ENABLE, 0); error = bcm_qspi_bspi_set_override(qspi, op, hp); } } if (qspi->xfer_mode.flex_mode) error = bcm_qspi_bspi_set_flex_mode(qspi, op, hp); if (error) { dev_warn(&qspi->pdev->dev, "INVALID COMBINATION: width=%d addrlen=%d hp=%d\n", width, addrlen, hp); } else if (qspi->xfer_mode.width != width || qspi->xfer_mode.addrlen != addrlen || qspi->xfer_mode.hp != hp) { qspi->xfer_mode.width = width; qspi->xfer_mode.addrlen = addrlen; qspi->xfer_mode.hp = hp; dev_dbg(&qspi->pdev->dev, "cs:%d %d-lane output, %d-byte address%s\n", qspi->curr_cs, qspi->xfer_mode.width, qspi->xfer_mode.addrlen, qspi->xfer_mode.hp != -1 ? ", hp mode" : ""); } return error; } static void bcm_qspi_enable_bspi(struct bcm_qspi *qspi) { if (!has_bspi(qspi)) return; qspi->bspi_enabled = 1; if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1) == 0) return; bcm_qspi_bspi_flush_prefetch_buffers(qspi); udelay(1); bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 0); udelay(1); } static void bcm_qspi_disable_bspi(struct bcm_qspi *qspi) { if (!has_bspi(qspi)) return; qspi->bspi_enabled = 0; if ((bcm_qspi_read(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL) & 1)) return; bcm_qspi_bspi_busy_poll(qspi); bcm_qspi_write(qspi, BSPI, BSPI_MAST_N_BOOT_CTRL, 1); udelay(1); } static void bcm_qspi_chip_select(struct bcm_qspi *qspi, int cs) { u32 rd = 0; u32 wr = 0; if (cs >= 0 && qspi->base[CHIP_SELECT]) { rd = bcm_qspi_read(qspi, CHIP_SELECT, 0); wr = (rd & ~0xff) | (1 << cs); if (rd == wr) return; bcm_qspi_write(qspi, CHIP_SELECT, 0, wr); usleep_range(10, 20); } dev_dbg(&qspi->pdev->dev, "using cs:%d\n", cs); qspi->curr_cs = cs; } static bool bcmspi_parms_did_change(const struct bcm_qspi_parms * const cur, const struct bcm_qspi_parms * const prev) { return (cur->speed_hz != prev->speed_hz) || (cur->mode != prev->mode) || (cur->bits_per_word != prev->bits_per_word); } /* MSPI helpers */ static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi, const struct bcm_qspi_parms *xp) { u32 spcr, spbr = 0; if (!bcmspi_parms_did_change(xp, &qspi->last_parms)) return; if (!qspi->mspi_maj_rev) /* legacy controller */ spcr = MSPI_MASTER_BIT; else spcr = 0; /* * Bits per transfer. BITS determines the number of data bits * transferred if the command control bit (BITSE of a * CDRAM Register) is equal to 1. * If CDRAM BITSE is equal to 0, 8 data bits are transferred * regardless */ if (xp->bits_per_word != 16 && xp->bits_per_word != 64) spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT; spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL); bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr); if (bcm_qspi_has_fastbr(qspi)) { spcr = 0; /* enable fastbr */ spcr |= MSPI_SPCR3_FASTBR; if (xp->mode & SPI_3WIRE) spcr |= MSPI_SPCR3_HALFDUPLEX | MSPI_SPCR3_HDOUTTYPE; if (bcm_qspi_has_sysclk_108(qspi)) { /* check requested baud rate before moving to 108Mhz */ spbr = bcm_qspi_calc_spbr(MSPI_BASE_FREQ * 4, xp); if (spbr > QSPI_SPBR_MAX) { /* use SYSCLK_27Mhz for slower baud rates */ spcr &= ~MSPI_SPCR3_SYSCLKSEL_MASK; qspi->base_clk = MSPI_BASE_FREQ; } else { /* SYSCLK_108Mhz */ spcr |= MSPI_SPCR3_SYSCLKSEL_108; qspi->base_clk = MSPI_BASE_FREQ * 4; } } if (xp->bits_per_word > 16) { /* data_reg_size 1 (64bit) */ spcr |= MSPI_SPCR3_DATA_REG_SZ; /* TxRx RAM data access mode 2 for 32B and set fastdt */ spcr |= MSPI_SPCR3_DAM_32BYTE | MSPI_SPCR3_FASTDT; /* * Set length of delay after transfer * DTL from 0(256) to 1 */ bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1); } else { /* data_reg_size[8] = 0 */ spcr &= ~(MSPI_SPCR3_DATA_REG_SZ); /* * TxRx RAM access mode 8B * and disable fastdt */ spcr &= ~(MSPI_SPCR3_DAM_32BYTE); } bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr); } /* SCK Baud Rate = System Clock/(2 * SPBR) */ qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2); spbr = bcm_qspi_calc_spbr(qspi->base_clk, xp); spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX); bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr); qspi->last_parms = *xp; } static void bcm_qspi_update_parms(struct bcm_qspi *qspi, struct spi_device *spi, struct spi_transfer *trans) { struct bcm_qspi_parms xp; xp.speed_hz = trans->speed_hz; xp.bits_per_word = trans->bits_per_word; xp.mode = spi->mode; bcm_qspi_hw_set_parms(qspi, &xp); } static int bcm_qspi_setup(struct spi_device *spi) { struct bcm_qspi_parms *xp; if (spi->bits_per_word > 64) return -EINVAL; xp = spi_get_ctldata(spi); if (!xp) { xp = kzalloc(sizeof(*xp), GFP_KERNEL); if (!xp) return -ENOMEM; spi_set_ctldata(spi, xp); } xp->speed_hz = spi->max_speed_hz; xp->mode = spi->mode; if (spi->bits_per_word) xp->bits_per_word = spi->bits_per_word; else xp->bits_per_word = 8; return 0; } static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi, struct qspi_trans *qt) { if (qt->mspi_last_trans && spi_transfer_is_last(qspi->master, qt->trans)) return true; else return false; } static int update_qspi_trans_byte_count(struct bcm_qspi *qspi, struct qspi_trans *qt, int flags) { int ret = TRANS_STATUS_BREAK_NONE; /* count the last transferred bytes */ if (qt->trans->bits_per_word <= 8) qt->byte++; else if (qt->trans->bits_per_word <= 16) qt->byte += 2; else if (qt->trans->bits_per_word <= 32) qt->byte += 4; else if (qt->trans->bits_per_word <= 64) qt->byte += 8; if (qt->byte >= qt->trans->len) { /* we're at the end of the spi_transfer */ /* in TX mode, need to pause for a delay or CS change */ if (qt->trans->delay.value && (flags & TRANS_STATUS_BREAK_DELAY)) ret |= TRANS_STATUS_BREAK_DELAY; if (qt->trans->cs_change && (flags & TRANS_STATUS_BREAK_CS_CHANGE)) ret |= TRANS_STATUS_BREAK_CS_CHANGE; if (bcm_qspi_mspi_transfer_is_last(qspi, qt)) ret |= TRANS_STATUS_BREAK_EOM; else ret |= TRANS_STATUS_BREAK_NO_BYTES; qt->trans = NULL; } dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n", qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret); return ret; } static inline u8 read_rxram_slot_u8(struct bcm_qspi *qspi, int slot) { u32 slot_offset = MSPI_RXRAM + (slot << 3) + 0x4; /* mask out reserved bits */ return bcm_qspi_read(qspi, MSPI, slot_offset) & 0xff; } static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot) { u32 reg_offset = MSPI_RXRAM; u32 lsb_offset = reg_offset + (slot << 3) + 0x4; u32 msb_offset = reg_offset + (slot << 3); return (bcm_qspi_read(qspi, MSPI, lsb_offset) & 0xff) | ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8); } static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot) { u32 reg_offset = MSPI_RXRAM; u32 offset = reg_offset + (slot << 3); u32 val; val = bcm_qspi_read(qspi, MSPI, offset); val = swap4bytes(val); return val; } static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot) { u32 reg_offset = MSPI_RXRAM; u32 lsb_offset = reg_offset + (slot << 3) + 0x4; u32 msb_offset = reg_offset + (slot << 3); u32 msb, lsb; msb = bcm_qspi_read(qspi, MSPI, msb_offset); msb = swap4bytes(msb); lsb = bcm_qspi_read(qspi, MSPI, lsb_offset); lsb = swap4bytes(lsb); return ((u64)msb << 32 | lsb); } static void read_from_hw(struct bcm_qspi *qspi, int slots) { struct qspi_trans tp; int slot; bcm_qspi_disable_bspi(qspi); if (slots > MSPI_NUM_CDRAM) { /* should never happen */ dev_err(&qspi->pdev->dev, "%s: too many slots!\n", __func__); return; } tp = qspi->trans_pos; for (slot = 0; slot < slots; slot++) { if (tp.trans->bits_per_word <= 8) { u8 *buf = tp.trans->rx_buf; if (buf) buf[tp.byte] = read_rxram_slot_u8(qspi, slot); dev_dbg(&qspi->pdev->dev, "RD %02x\n", buf ? buf[tp.byte] : 0x0); } else if (tp.trans->bits_per_word <= 16) { u16 *buf = tp.trans->rx_buf; if (buf) buf[tp.byte / 2] = read_rxram_slot_u16(qspi, slot); dev_dbg(&qspi->pdev->dev, "RD %04x\n", buf ? buf[tp.byte / 2] : 0x0); } else if (tp.trans->bits_per_word <= 32) { u32 *buf = tp.trans->rx_buf; if (buf) buf[tp.byte / 4] = read_rxram_slot_u32(qspi, slot); dev_dbg(&qspi->pdev->dev, "RD %08x\n", buf ? buf[tp.byte / 4] : 0x0); } else if (tp.trans->bits_per_word <= 64) { u64 *buf = tp.trans->rx_buf; if (buf) buf[tp.byte / 8] = read_rxram_slot_u64(qspi, slot); dev_dbg(&qspi->pdev->dev, "RD %llx\n", buf ? buf[tp.byte / 8] : 0x0); } update_qspi_trans_byte_count(qspi, &tp, TRANS_STATUS_BREAK_NONE); } qspi->trans_pos = tp; } static inline void write_txram_slot_u8(struct bcm_qspi *qspi, int slot, u8 val) { u32 reg_offset = MSPI_TXRAM + (slot << 3); /* mask out reserved bits */ bcm_qspi_write(qspi, MSPI, reg_offset, val); } static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot, u16 val) { u32 reg_offset = MSPI_TXRAM; u32 msb_offset = reg_offset + (slot << 3); u32 lsb_offset = reg_offset + (slot << 3) + 0x4; bcm_qspi_write(qspi, MSPI, msb_offset, (val >> 8)); bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff)); } static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot, u32 val) { u32 reg_offset = MSPI_TXRAM; u32 msb_offset = reg_offset + (slot << 3); bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val)); } static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot, u64 val) { u32 reg_offset = MSPI_TXRAM; u32 msb_offset = reg_offset + (slot << 3); u32 lsb_offset = reg_offset + (slot << 3) + 0x4; u32 msb = upper_32_bits(val); u32 lsb = lower_32_bits(val); bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb)); bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb)); } static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot) { return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2)); } static inline void write_cdram_slot(struct bcm_qspi *qspi, int slot, u32 val) { bcm_qspi_write(qspi, MSPI, (MSPI_CDRAM + (slot << 2)), val); } /* Return number of slots written */ static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi) { struct qspi_trans tp; int slot = 0, tstatus = 0; u32 mspi_cdram = 0; bcm_qspi_disable_bspi(qspi); tp = qspi->trans_pos; bcm_qspi_update_parms(qspi, spi, tp.trans); /* Run until end of transfer or reached the max data */ while (!tstatus && slot < MSPI_NUM_CDRAM) { mspi_cdram = MSPI_CDRAM_CONT_BIT; if (tp.trans->bits_per_word <= 8) { const u8 *buf = tp.trans->tx_buf; u8 val = buf ? buf[tp.byte] : 0x00; write_txram_slot_u8(qspi, slot, val); dev_dbg(&qspi->pdev->dev, "WR %02x\n", val); } else if (tp.trans->bits_per_word <= 16) { const u16 *buf = tp.trans->tx_buf; u16 val = buf ? buf[tp.byte / 2] : 0x0000; write_txram_slot_u16(qspi, slot, val); dev_dbg(&qspi->pdev->dev, "WR %04x\n", val); } else if (tp.trans->bits_per_word <= 32) { const u32 *buf = tp.trans->tx_buf; u32 val = buf ? buf[tp.byte/4] : 0x0; write_txram_slot_u32(qspi, slot, val); dev_dbg(&qspi->pdev->dev, "WR %08x\n", val); } else if (tp.trans->bits_per_word <= 64) { const u64 *buf = tp.trans->tx_buf; u64 val = (buf ? buf[tp.byte/8] : 0x0); /* use the length of delay from SPCR1_LSB */ if (bcm_qspi_has_fastbr(qspi)) mspi_cdram |= MSPI_CDRAM_DT_BIT; write_txram_slot_u64(qspi, slot, val); dev_dbg(&qspi->pdev->dev, "WR %llx\n", val); } mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 : MSPI_CDRAM_BITSE_BIT); /* set 3wrire halfduplex mode data from master to slave */ if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf) mspi_cdram |= MSPI_CDRAM_OUTP; if (has_bspi(qspi)) mspi_cdram &= ~1; else mspi_cdram |= (~(1 << spi->chip_select) & MSPI_CDRAM_PCS); write_cdram_slot(qspi, slot, mspi_cdram); tstatus = update_qspi_trans_byte_count(qspi, &tp, TRANS_STATUS_BREAK_TX); slot++; } if (!slot) { dev_err(&qspi->pdev->dev, "%s: no data to send?", __func__); goto done; } dev_dbg(&qspi->pdev->dev, "submitting %d slots\n", slot); bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0); bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1); /* * case 1) EOM =1, cs_change =0: SSb inactive * case 2) EOM =1, cs_change =1: SSb stay active * case 3) EOM =0, cs_change =0: SSb stay active * case 4) EOM =0, cs_change =1: SSb inactive */ if (((tstatus & TRANS_STATUS_BREAK_DESELECT) == TRANS_STATUS_BREAK_CS_CHANGE) || ((tstatus & TRANS_STATUS_BREAK_DESELECT) == TRANS_STATUS_BREAK_EOM)) { mspi_cdram = read_cdram_slot(qspi, slot - 1) & ~MSPI_CDRAM_CONT_BIT; write_cdram_slot(qspi, slot - 1, mspi_cdram); } if (has_bspi(qspi)) bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 1); /* Must flush previous writes before starting MSPI operation */ mb(); /* Set cont | spe | spifie */ bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0xe0); done: return slot; } static int bcm_qspi_bspi_exec_mem_op(struct spi_device *spi, const struct spi_mem_op *op) { struct bcm_qspi *qspi = spi_master_get_devdata(spi->master); u32 addr = 0, len, rdlen, len_words, from = 0; int ret = 0; unsigned long timeo = msecs_to_jiffies(100); struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc; if (bcm_qspi_bspi_ver_three(qspi)) if (op->addr.nbytes == BSPI_ADDRLEN_4BYTES) return -EIO; from = op->addr.val; if (!spi->cs_gpiod) bcm_qspi_chip_select(qspi, spi->chip_select); bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0); /* * when using flex mode we need to send * the upper address byte to bspi */ if (!bcm_qspi_bspi_ver_three(qspi)) { addr = from & 0xff000000; bcm_qspi_write(qspi, BSPI, BSPI_BSPI_FLASH_UPPER_ADDR_BYTE, addr); } if (!qspi->xfer_mode.flex_mode) addr = from; else addr = from & 0x00ffffff; if (bcm_qspi_bspi_ver_three(qspi) == true) addr = (addr + 0xc00000) & 0xffffff; /* * read into the entire buffer by breaking the reads * into RAF buffer read lengths */ len = op->data.nbytes; qspi->bspi_rf_op_idx = 0; do { if (len > BSPI_READ_LENGTH) rdlen = BSPI_READ_LENGTH; else rdlen = len; reinit_completion(&qspi->bspi_done); bcm_qspi_enable_bspi(qspi); len_words = (rdlen + 3) >> 2; qspi->bspi_rf_op = op; qspi->bspi_rf_op_status = 0; qspi->bspi_rf_op_len = rdlen; dev_dbg(&qspi->pdev->dev, "bspi xfr addr 0x%x len 0x%x", addr, rdlen); bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr); bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words); bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0); if (qspi->soc_intc) { /* * clear soc MSPI and BSPI interrupts and enable * BSPI interrupts. */ soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE); soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true); } /* Must flush previous writes before starting BSPI operation */ mb(); bcm_qspi_bspi_lr_start(qspi); if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) { dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n"); ret = -ETIMEDOUT; break; } /* set msg return length */ addr += rdlen; len -= rdlen; } while (len); return ret; } static int bcm_qspi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *trans) { struct bcm_qspi *qspi = spi_master_get_devdata(master); int slots; unsigned long timeo = msecs_to_jiffies(100); if (!spi->cs_gpiod) bcm_qspi_chip_select(qspi, spi->chip_select); qspi->trans_pos.trans = trans; qspi->trans_pos.byte = 0; while (qspi->trans_pos.byte < trans->len) { reinit_completion(&qspi->mspi_done); slots = write_to_hw(qspi, spi); if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) { dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n"); return -ETIMEDOUT; } read_from_hw(qspi, slots); } bcm_qspi_enable_bspi(qspi); return 0; } static int bcm_qspi_mspi_exec_mem_op(struct spi_device *spi, const struct spi_mem_op *op) { struct spi_master *master = spi->master; struct bcm_qspi *qspi = spi_master_get_devdata(master); struct spi_transfer t[2]; u8 cmd[6] = { }; int ret, i; memset(cmd, 0, sizeof(cmd)); memset(t, 0, sizeof(t)); /* tx */ /* opcode is in cmd[0] */ cmd[0] = op->cmd.opcode; for (i = 0; i < op->addr.nbytes; i++) cmd[1 + i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); t[0].tx_buf = cmd; t[0].len = op->addr.nbytes + op->dummy.nbytes + 1; t[0].bits_per_word = spi->bits_per_word; t[0].tx_nbits = op->cmd.buswidth; /* lets mspi know that this is not last transfer */ qspi->trans_pos.mspi_last_trans = false; ret = bcm_qspi_transfer_one(master, spi, &t[0]); /* rx */ qspi->trans_pos.mspi_last_trans = true; if (!ret) { /* rx */ t[1].rx_buf = op->data.buf.in; t[1].len = op->data.nbytes; t[1].rx_nbits = op->data.buswidth; t[1].bits_per_word = spi->bits_per_word; ret = bcm_qspi_transfer_one(master, spi, &t[1]); } return ret; } static int bcm_qspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct spi_device *spi = mem->spi; struct bcm_qspi *qspi = spi_master_get_devdata(spi->master); int ret = 0; bool mspi_read = false; u32 addr = 0, len; u_char *buf; if (!op->data.nbytes || !op->addr.nbytes || op->addr.nbytes > 4 || op->data.dir != SPI_MEM_DATA_IN) return -ENOTSUPP; buf = op->data.buf.in; addr = op->addr.val; len = op->data.nbytes; if (has_bspi(qspi) && bcm_qspi_bspi_ver_three(qspi) == true) { /* * The address coming into this function is a raw flash offset. * But for BSPI <= V3, we need to convert it to a remapped BSPI * address. If it crosses a 4MB boundary, just revert back to * using MSPI. */ addr = (addr + 0xc00000) & 0xffffff; if ((~ADDR_4MB_MASK & addr) ^ (~ADDR_4MB_MASK & (addr + len - 1))) mspi_read = true; } /* non-aligned and very short transfers are handled by MSPI */ if (!IS_ALIGNED((uintptr_t)addr, 4) || !IS_ALIGNED((uintptr_t)buf, 4) || len < 4) mspi_read = true; if (!has_bspi(qspi) || mspi_read) return bcm_qspi_mspi_exec_mem_op(spi, op); ret = bcm_qspi_bspi_set_mode(qspi, op, 0); if (!ret) ret = bcm_qspi_bspi_exec_mem_op(spi, op); return ret; } static void bcm_qspi_cleanup(struct spi_device *spi) { struct bcm_qspi_parms *xp = spi_get_ctldata(spi); kfree(xp); } static irqreturn_t bcm_qspi_mspi_l2_isr(int irq, void *dev_id) { struct bcm_qspi_dev_id *qspi_dev_id = dev_id; struct bcm_qspi *qspi = qspi_dev_id->dev; u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS); if (status & MSPI_MSPI_STATUS_SPIF) { struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc; /* clear interrupt */ status &= ~MSPI_MSPI_STATUS_SPIF; bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status); if (qspi->soc_intc) soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_DONE); complete(&qspi->mspi_done); return IRQ_HANDLED; } return IRQ_NONE; } static irqreturn_t bcm_qspi_bspi_lr_l2_isr(int irq, void *dev_id) { struct bcm_qspi_dev_id *qspi_dev_id = dev_id; struct bcm_qspi *qspi = qspi_dev_id->dev; struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc; u32 status = qspi_dev_id->irqp->mask; if (qspi->bspi_enabled && qspi->bspi_rf_op) { bcm_qspi_bspi_lr_data_read(qspi); if (qspi->bspi_rf_op_len == 0) { qspi->bspi_rf_op = NULL; if (qspi->soc_intc) { /* disable soc BSPI interrupt */ soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, false); /* indicate done */ status = INTR_BSPI_LR_SESSION_DONE_MASK; } if (qspi->bspi_rf_op_status) bcm_qspi_bspi_lr_clear(qspi); else bcm_qspi_bspi_flush_prefetch_buffers(qspi); } if (qspi->soc_intc) /* clear soc BSPI interrupt */ soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_DONE); } status &= INTR_BSPI_LR_SESSION_DONE_MASK; if (qspi->bspi_enabled && status && qspi->bspi_rf_op_len == 0) complete(&qspi->bspi_done); return IRQ_HANDLED; } static irqreturn_t bcm_qspi_bspi_lr_err_l2_isr(int irq, void *dev_id) { struct bcm_qspi_dev_id *qspi_dev_id = dev_id; struct bcm_qspi *qspi = qspi_dev_id->dev; struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc; dev_err(&qspi->pdev->dev, "BSPI INT error\n"); qspi->bspi_rf_op_status = -EIO; if (qspi->soc_intc) /* clear soc interrupt */ soc_intc->bcm_qspi_int_ack(soc_intc, BSPI_ERR); complete(&qspi->bspi_done); return IRQ_HANDLED; } static irqreturn_t bcm_qspi_l1_isr(int irq, void *dev_id) { struct bcm_qspi_dev_id *qspi_dev_id = dev_id; struct bcm_qspi *qspi = qspi_dev_id->dev; struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc; irqreturn_t ret = IRQ_NONE; if (soc_intc) { u32 status = soc_intc->bcm_qspi_get_int_status(soc_intc); if (status & MSPI_DONE) ret = bcm_qspi_mspi_l2_isr(irq, dev_id); else if (status & BSPI_DONE) ret = bcm_qspi_bspi_lr_l2_isr(irq, dev_id); else if (status & BSPI_ERR) ret = bcm_qspi_bspi_lr_err_l2_isr(irq, dev_id); } return ret; } static const struct bcm_qspi_irq qspi_irq_tab[] = { { .irq_name = "spi_lr_fullness_reached", .irq_handler = bcm_qspi_bspi_lr_l2_isr, .mask = INTR_BSPI_LR_FULLNESS_REACHED_MASK, }, { .irq_name = "spi_lr_session_aborted", .irq_handler = bcm_qspi_bspi_lr_err_l2_isr, .mask = INTR_BSPI_LR_SESSION_ABORTED_MASK, }, { .irq_name = "spi_lr_impatient", .irq_handler = bcm_qspi_bspi_lr_err_l2_isr, .mask = INTR_BSPI_LR_IMPATIENT_MASK, }, { .irq_name = "spi_lr_session_done", .irq_handler = bcm_qspi_bspi_lr_l2_isr, .mask = INTR_BSPI_LR_SESSION_DONE_MASK, }, #ifdef QSPI_INT_DEBUG /* this interrupt is for debug purposes only, dont request irq */ { .irq_name = "spi_lr_overread", .irq_handler = bcm_qspi_bspi_lr_err_l2_isr, .mask = INTR_BSPI_LR_OVERREAD_MASK, }, #endif { .irq_name = "mspi_done", .irq_handler = bcm_qspi_mspi_l2_isr, .mask = INTR_MSPI_DONE_MASK, }, { .irq_name = "mspi_halted", .irq_handler = bcm_qspi_mspi_l2_isr, .mask = INTR_MSPI_HALTED_MASK, }, { /* single muxed L1 interrupt source */ .irq_name = "spi_l1_intr", .irq_handler = bcm_qspi_l1_isr, .irq_source = MUXED_L1, .mask = QSPI_INTERRUPTS_ALL, }, }; static void bcm_qspi_bspi_init(struct bcm_qspi *qspi) { u32 val = 0; val = bcm_qspi_read(qspi, BSPI, BSPI_REVISION_ID); qspi->bspi_maj_rev = (val >> 8) & 0xff; qspi->bspi_min_rev = val & 0xff; if (!(bcm_qspi_bspi_ver_three(qspi))) { /* Force mapping of BSPI address -> flash offset */ bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_VALUE, 0); bcm_qspi_write(qspi, BSPI, BSPI_BSPI_XOR_ENABLE, 1); } qspi->bspi_enabled = 1; bcm_qspi_disable_bspi(qspi); bcm_qspi_write(qspi, BSPI, BSPI_B0_CTRL, 0); bcm_qspi_write(qspi, BSPI, BSPI_B1_CTRL, 0); } static void bcm_qspi_hw_init(struct bcm_qspi *qspi) { struct bcm_qspi_parms parms; bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 0); bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_MSB, 0); bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0); bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, 0); bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0x20); parms.mode = SPI_MODE_3; parms.bits_per_word = 8; parms.speed_hz = qspi->max_speed_hz; bcm_qspi_hw_set_parms(qspi, &parms); if (has_bspi(qspi)) bcm_qspi_bspi_init(qspi); } static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi) { u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS); bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0); if (has_bspi(qspi)) bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0); /* clear interrupt */ bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1); } static const struct spi_controller_mem_ops bcm_qspi_mem_ops = { .exec_op = bcm_qspi_exec_mem_op, }; struct bcm_qspi_data { bool has_mspi_rev; bool has_spcr3_sysclk; }; static const struct bcm_qspi_data bcm_qspi_no_rev_data = { .has_mspi_rev = false, .has_spcr3_sysclk = false, }; static const struct bcm_qspi_data bcm_qspi_rev_data = { .has_mspi_rev = true, .has_spcr3_sysclk = false, }; static const struct bcm_qspi_data bcm_qspi_spcr3_data = { .has_mspi_rev = true, .has_spcr3_sysclk = true, }; static const struct of_device_id bcm_qspi_of_match[] = { { .compatible = "brcm,spi-bcm7445-qspi", .data = &bcm_qspi_rev_data, }, { .compatible = "brcm,spi-bcm-qspi", .data = &bcm_qspi_no_rev_data, }, { .compatible = "brcm,spi-bcm7216-qspi", .data = &bcm_qspi_spcr3_data, }, { .compatible = "brcm,spi-bcm7278-qspi", .data = &bcm_qspi_spcr3_data, }, {}, }; MODULE_DEVICE_TABLE(of, bcm_qspi_of_match); int bcm_qspi_probe(struct platform_device *pdev, struct bcm_qspi_soc_intc *soc_intc) { const struct of_device_id *of_id = NULL; const struct bcm_qspi_data *data; struct device *dev = &pdev->dev; struct bcm_qspi *qspi; struct spi_master *master; struct resource *res; int irq, ret = 0, num_ints = 0; u32 val; u32 rev = 0; const char *name = NULL; int num_irqs = ARRAY_SIZE(qspi_irq_tab); /* We only support device-tree instantiation */ if (!dev->of_node) return -ENODEV; of_id = of_match_node(bcm_qspi_of_match, dev->of_node); if (!of_id) return -ENODEV; data = of_id->data; master = devm_spi_alloc_master(dev, sizeof(struct bcm_qspi)); if (!master) { dev_err(dev, "error allocating spi_master\n"); return -ENOMEM; } qspi = spi_master_get_devdata(master); qspi->clk = devm_clk_get_optional(&pdev->dev, NULL); if (IS_ERR(qspi->clk)) return PTR_ERR(qspi->clk); qspi->pdev = pdev; qspi->trans_pos.trans = NULL; qspi->trans_pos.byte = 0; qspi->trans_pos.mspi_last_trans = true; qspi->master = master; master->bus_num = -1; master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD | SPI_3WIRE; master->setup = bcm_qspi_setup; master->transfer_one = bcm_qspi_transfer_one; master->mem_ops = &bcm_qspi_mem_ops; master->cleanup = bcm_qspi_cleanup; master->dev.of_node = dev->of_node; master->num_chipselect = NUM_CHIPSELECT; master->use_gpio_descriptors = true; qspi->big_endian = of_device_is_big_endian(dev->of_node); if (!of_property_read_u32(dev->of_node, "num-cs", &val)) master->num_chipselect = val; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "hif_mspi"); if (!res) res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mspi"); if (res) { qspi->base[MSPI] = devm_ioremap_resource(dev, res); if (IS_ERR(qspi->base[MSPI])) return PTR_ERR(qspi->base[MSPI]); } else { return 0; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "bspi"); if (res) { qspi->base[BSPI] = devm_ioremap_resource(dev, res); if (IS_ERR(qspi->base[BSPI])) return PTR_ERR(qspi->base[BSPI]); qspi->bspi_mode = true; } else { qspi->bspi_mode = false; } dev_info(dev, "using %smspi mode\n", qspi->bspi_mode ? "bspi-" : ""); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs_reg"); if (res) { qspi->base[CHIP_SELECT] = devm_ioremap_resource(dev, res); if (IS_ERR(qspi->base[CHIP_SELECT])) return PTR_ERR(qspi->base[CHIP_SELECT]); } qspi->dev_ids = kcalloc(num_irqs, sizeof(struct bcm_qspi_dev_id), GFP_KERNEL); if (!qspi->dev_ids) return -ENOMEM; /* * Some SoCs integrate spi controller (e.g., its interrupt bits) * in specific ways */ if (soc_intc) { qspi->soc_intc = soc_intc; soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true); } else { qspi->soc_intc = NULL; } if (qspi->clk) { ret = clk_prepare_enable(qspi->clk); if (ret) { dev_err(dev, "failed to prepare clock\n"); goto qspi_probe_err; } qspi->base_clk = clk_get_rate(qspi->clk); } else { qspi->base_clk = MSPI_BASE_FREQ; } if (data->has_mspi_rev) { rev = bcm_qspi_read(qspi, MSPI, MSPI_REV); /* some older revs do not have a MSPI_REV register */ if ((rev & 0xff) == 0xff) rev = 0; } qspi->mspi_maj_rev = (rev >> 4) & 0xf; qspi->mspi_min_rev = rev & 0xf; qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk; qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2); /* * On SW resets it is possible to have the mask still enabled * Need to disable the mask and clear the status while we init */ bcm_qspi_hw_uninit(qspi); for (val = 0; val < num_irqs; val++) { irq = -1; name = qspi_irq_tab[val].irq_name; if (qspi_irq_tab[val].irq_source == SINGLE_L2) { /* get the l2 interrupts */ irq = platform_get_irq_byname_optional(pdev, name); } else if (!num_ints && soc_intc) { /* all mspi, bspi intrs muxed to one L1 intr */ irq = platform_get_irq(pdev, 0); } if (irq >= 0) { ret = devm_request_irq(&pdev->dev, irq, qspi_irq_tab[val].irq_handler, 0, name, &qspi->dev_ids[val]); if (ret < 0) { dev_err(&pdev->dev, "IRQ %s not found\n", name); goto qspi_unprepare_err; } qspi->dev_ids[val].dev = qspi; qspi->dev_ids[val].irqp = &qspi_irq_tab[val]; num_ints++; dev_dbg(&pdev->dev, "registered IRQ %s %d\n", qspi_irq_tab[val].irq_name, irq); } } if (!num_ints) { dev_err(&pdev->dev, "no IRQs registered, cannot init driver\n"); ret = -EINVAL; goto qspi_unprepare_err; } bcm_qspi_hw_init(qspi); init_completion(&qspi->mspi_done); init_completion(&qspi->bspi_done); qspi->curr_cs = -1; platform_set_drvdata(pdev, qspi); qspi->xfer_mode.width = -1; qspi->xfer_mode.addrlen = -1; qspi->xfer_mode.hp = -1; ret = spi_register_master(master); if (ret < 0) { dev_err(dev, "can't register master\n"); goto qspi_reg_err; } return 0; qspi_reg_err: bcm_qspi_hw_uninit(qspi); qspi_unprepare_err: clk_disable_unprepare(qspi->clk); qspi_probe_err: kfree(qspi->dev_ids); return ret; } /* probe function to be called by SoC specific platform driver probe */ EXPORT_SYMBOL_GPL(bcm_qspi_probe); int bcm_qspi_remove(struct platform_device *pdev) { struct bcm_qspi *qspi = platform_get_drvdata(pdev); spi_unregister_master(qspi->master); bcm_qspi_hw_uninit(qspi); clk_disable_unprepare(qspi->clk); kfree(qspi->dev_ids); return 0; } /* function to be called by SoC specific platform driver remove() */ EXPORT_SYMBOL_GPL(bcm_qspi_remove); static int __maybe_unused bcm_qspi_suspend(struct device *dev) { struct bcm_qspi *qspi = dev_get_drvdata(dev); /* store the override strap value */ if (!bcm_qspi_bspi_ver_three(qspi)) qspi->s3_strap_override_ctrl = bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL); spi_master_suspend(qspi->master); clk_disable_unprepare(qspi->clk); bcm_qspi_hw_uninit(qspi); return 0; }; static int __maybe_unused bcm_qspi_resume(struct device *dev) { struct bcm_qspi *qspi = dev_get_drvdata(dev); int ret = 0; bcm_qspi_hw_init(qspi); bcm_qspi_chip_select(qspi, qspi->curr_cs); if (qspi->soc_intc) /* enable MSPI interrupt */ qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE, true); ret = clk_prepare_enable(qspi->clk); if (!ret) spi_master_resume(qspi->master); return ret; } SIMPLE_DEV_PM_OPS(bcm_qspi_pm_ops, bcm_qspi_suspend, bcm_qspi_resume); /* pm_ops to be called by SoC specific platform driver */ EXPORT_SYMBOL_GPL(bcm_qspi_pm_ops); MODULE_AUTHOR("Kamal Dasu"); MODULE_DESCRIPTION("Broadcom QSPI driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" DRIVER_NAME);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1