Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Girish Mahadevan | 2080 | 41.01% | 1 | 2.70% |
Vinod Koul | 1268 | 25.00% | 3 | 8.11% |
Doug Anderson | 1216 | 23.97% | 18 | 48.65% |
Stephen Boyd | 175 | 3.45% | 5 | 13.51% |
Akash Asthana | 140 | 2.76% | 1 | 2.70% |
Alok Chauhan | 89 | 1.75% | 2 | 5.41% |
Rajendra Nayak | 60 | 1.18% | 1 | 2.70% |
Dan Carpenter | 31 | 0.61% | 1 | 2.70% |
Yangtao Li | 8 | 0.16% | 1 | 2.70% |
Yue haibing | 2 | 0.04% | 1 | 2.70% |
Viresh Kumar | 1 | 0.02% | 1 | 2.70% |
Lukas Wunner | 1 | 0.02% | 1 | 2.70% |
Jay Fang | 1 | 0.02% | 1 | 2.70% |
Total | 5072 | 37 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved. #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/dma/qcom-gpi-dma.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/log2.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/pm_runtime.h> #include <linux/qcom-geni-se.h> #include <linux/spi/spi.h> #include <linux/spinlock.h> /* SPI SE specific registers and respective register fields */ #define SE_SPI_CPHA 0x224 #define CPHA BIT(0) #define SE_SPI_LOOPBACK 0x22c #define LOOPBACK_ENABLE 0x1 #define NORMAL_MODE 0x0 #define LOOPBACK_MSK GENMASK(1, 0) #define SE_SPI_CPOL 0x230 #define CPOL BIT(2) #define SE_SPI_DEMUX_OUTPUT_INV 0x24c #define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0) #define SE_SPI_DEMUX_SEL 0x250 #define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0) #define SE_SPI_TRANS_CFG 0x25c #define CS_TOGGLE BIT(0) #define SE_SPI_WORD_LEN 0x268 #define WORD_LEN_MSK GENMASK(9, 0) #define MIN_WORD_LEN 4 #define SE_SPI_TX_TRANS_LEN 0x26c #define SE_SPI_RX_TRANS_LEN 0x270 #define TRANS_LEN_MSK GENMASK(23, 0) #define SE_SPI_PRE_POST_CMD_DLY 0x274 #define SE_SPI_DELAY_COUNTERS 0x278 #define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0) #define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10) #define SPI_CS_CLK_DELAY_SHFT 10 /* M_CMD OP codes for SPI */ #define SPI_TX_ONLY 1 #define SPI_RX_ONLY 2 #define SPI_TX_RX 7 #define SPI_CS_ASSERT 8 #define SPI_CS_DEASSERT 9 #define SPI_SCK_ONLY 10 /* M_CMD params for SPI */ #define SPI_PRE_CMD_DELAY BIT(0) #define TIMESTAMP_BEFORE BIT(1) #define FRAGMENTATION BIT(2) #define TIMESTAMP_AFTER BIT(3) #define POST_CMD_DELAY BIT(4) #define GSI_LOOPBACK_EN BIT(0) #define GSI_CS_TOGGLE BIT(3) #define GSI_CPHA BIT(4) #define GSI_CPOL BIT(5) struct spi_geni_master { struct geni_se se; struct device *dev; u32 tx_fifo_depth; u32 fifo_width_bits; u32 tx_wm; u32 last_mode; unsigned long cur_speed_hz; unsigned long cur_sclk_hz; unsigned int cur_bits_per_word; unsigned int tx_rem_bytes; unsigned int rx_rem_bytes; const struct spi_transfer *cur_xfer; struct completion cs_done; struct completion cancel_done; struct completion abort_done; unsigned int oversampling; spinlock_t lock; int irq; bool cs_flag; bool abort_failed; struct dma_chan *tx; struct dma_chan *rx; int cur_xfer_mode; }; static int get_spi_clk_cfg(unsigned int speed_hz, struct spi_geni_master *mas, unsigned int *clk_idx, unsigned int *clk_div) { unsigned long sclk_freq; unsigned int actual_hz; int ret; ret = geni_se_clk_freq_match(&mas->se, speed_hz * mas->oversampling, clk_idx, &sclk_freq, false); if (ret) { dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n", ret, speed_hz); return ret; } *clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz); actual_hz = sclk_freq / (mas->oversampling * *clk_div); dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz, actual_hz, sclk_freq, *clk_idx, *clk_div); ret = dev_pm_opp_set_rate(mas->dev, sclk_freq); if (ret) dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret); else mas->cur_sclk_hz = sclk_freq; return ret; } static void handle_fifo_timeout(struct spi_master *spi, struct spi_message *msg) { struct spi_geni_master *mas = spi_master_get_devdata(spi); unsigned long time_left; struct geni_se *se = &mas->se; spin_lock_irq(&mas->lock); reinit_completion(&mas->cancel_done); writel(0, se->base + SE_GENI_TX_WATERMARK_REG); mas->cur_xfer = NULL; geni_se_cancel_m_cmd(se); spin_unlock_irq(&mas->lock); time_left = wait_for_completion_timeout(&mas->cancel_done, HZ); if (time_left) return; spin_lock_irq(&mas->lock); reinit_completion(&mas->abort_done); geni_se_abort_m_cmd(se); spin_unlock_irq(&mas->lock); time_left = wait_for_completion_timeout(&mas->abort_done, HZ); if (!time_left) { dev_err(mas->dev, "Failed to cancel/abort m_cmd\n"); /* * No need for a lock since SPI core has a lock and we never * access this from an interrupt. */ mas->abort_failed = true; } } static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg) { struct spi_geni_master *mas = spi_master_get_devdata(spi); dmaengine_terminate_sync(mas->tx); dmaengine_terminate_sync(mas->rx); } static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg) { struct spi_geni_master *mas = spi_master_get_devdata(spi); switch (mas->cur_xfer_mode) { case GENI_SE_FIFO: handle_fifo_timeout(spi, msg); break; case GENI_GPI_DMA: handle_gpi_timeout(spi, msg); break; default: dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode); } } static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas) { struct geni_se *se = &mas->se; u32 m_irq, m_irq_en; if (!mas->abort_failed) return false; /* * The only known case where a transfer times out and then a cancel * times out then an abort times out is if something is blocking our * interrupt handler from running. Avoid starting any new transfers * until that sorts itself out. */ spin_lock_irq(&mas->lock); m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN); spin_unlock_irq(&mas->lock); if (m_irq & m_irq_en) { dev_err(mas->dev, "Interrupts pending after abort: %#010x\n", m_irq & m_irq_en); return true; } /* * If we're here the problem resolved itself so no need to check more * on future transfers. */ mas->abort_failed = false; return false; } static void spi_geni_set_cs(struct spi_device *slv, bool set_flag) { struct spi_geni_master *mas = spi_master_get_devdata(slv->master); struct spi_master *spi = dev_get_drvdata(mas->dev); struct geni_se *se = &mas->se; unsigned long time_left; if (!(slv->mode & SPI_CS_HIGH)) set_flag = !set_flag; if (set_flag == mas->cs_flag) return; pm_runtime_get_sync(mas->dev); if (spi_geni_is_abort_still_pending(mas)) { dev_err(mas->dev, "Can't set chip select\n"); goto exit; } spin_lock_irq(&mas->lock); if (mas->cur_xfer) { dev_err(mas->dev, "Can't set CS when prev xfer running\n"); spin_unlock_irq(&mas->lock); goto exit; } mas->cs_flag = set_flag; reinit_completion(&mas->cs_done); if (set_flag) geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0); else geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0); spin_unlock_irq(&mas->lock); time_left = wait_for_completion_timeout(&mas->cs_done, HZ); if (!time_left) { dev_warn(mas->dev, "Timeout setting chip select\n"); handle_fifo_timeout(spi, NULL); } exit: pm_runtime_put(mas->dev); } static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode, unsigned int bits_per_word) { unsigned int pack_words; bool msb_first = (mode & SPI_LSB_FIRST) ? false : true; struct geni_se *se = &mas->se; u32 word_len; /* * If bits_per_word isn't a byte aligned value, set the packing to be * 1 SPI word per FIFO word. */ if (!(mas->fifo_width_bits % bits_per_word)) pack_words = mas->fifo_width_bits / bits_per_word; else pack_words = 1; geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first, true, true); word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK; writel(word_len, se->base + SE_SPI_WORD_LEN); } static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas, unsigned long clk_hz) { u32 clk_sel, m_clk_cfg, idx, div; struct geni_se *se = &mas->se; int ret; if (clk_hz == mas->cur_speed_hz) return 0; ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div); if (ret) { dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret); return ret; } /* * SPI core clock gets configured with the requested frequency * or the frequency closer to the requested frequency. * For that reason requested frequency is stored in the * cur_speed_hz and referred in the consecutive transfer instead * of calling clk_get_rate() API. */ mas->cur_speed_hz = clk_hz; clk_sel = idx & CLK_SEL_MSK; m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN; writel(clk_sel, se->base + SE_GENI_CLK_SEL); writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG); /* Set BW quota for CPU as driver supports FIFO mode only. */ se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz); ret = geni_icc_set_bw(se); if (ret) return ret; return 0; } static int setup_fifo_params(struct spi_device *spi_slv, struct spi_master *spi) { struct spi_geni_master *mas = spi_master_get_devdata(spi); struct geni_se *se = &mas->se; u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0; u32 demux_sel; if (mas->last_mode != spi_slv->mode) { if (spi_slv->mode & SPI_LOOP) loopback_cfg = LOOPBACK_ENABLE; if (spi_slv->mode & SPI_CPOL) cpol = CPOL; if (spi_slv->mode & SPI_CPHA) cpha = CPHA; if (spi_slv->mode & SPI_CS_HIGH) demux_output_inv = BIT(spi_slv->chip_select); demux_sel = spi_slv->chip_select; mas->cur_bits_per_word = spi_slv->bits_per_word; spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word); writel(loopback_cfg, se->base + SE_SPI_LOOPBACK); writel(demux_sel, se->base + SE_SPI_DEMUX_SEL); writel(cpha, se->base + SE_SPI_CPHA); writel(cpol, se->base + SE_SPI_CPOL); writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV); mas->last_mode = spi_slv->mode; } return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz); } static void spi_gsi_callback_result(void *cb, const struct dmaengine_result *result) { struct spi_master *spi = cb; spi->cur_msg->status = -EIO; if (result->result != DMA_TRANS_NOERROR) { dev_err(&spi->dev, "DMA txn failed: %d\n", result->result); spi_finalize_current_transfer(spi); return; } if (!result->residue) { spi->cur_msg->status = 0; dev_dbg(&spi->dev, "DMA txn completed\n"); } else { dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue); } spi_finalize_current_transfer(spi); } static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas, struct spi_device *spi_slv, struct spi_master *spi) { unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK; struct dma_slave_config config = {}; struct gpi_spi_config peripheral = {}; struct dma_async_tx_descriptor *tx_desc, *rx_desc; int ret; config.peripheral_config = &peripheral; config.peripheral_size = sizeof(peripheral); peripheral.set_config = true; if (xfer->bits_per_word != mas->cur_bits_per_word || xfer->speed_hz != mas->cur_speed_hz) { mas->cur_bits_per_word = xfer->bits_per_word; mas->cur_speed_hz = xfer->speed_hz; } if (xfer->tx_buf && xfer->rx_buf) { peripheral.cmd = SPI_DUPLEX; } else if (xfer->tx_buf) { peripheral.cmd = SPI_TX; peripheral.rx_len = 0; } else if (xfer->rx_buf) { peripheral.cmd = SPI_RX; if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) { peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word); } else { int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1; peripheral.rx_len = (xfer->len / bytes_per_word); } } peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP); peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL); peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA); peripheral.cs = spi_slv->chip_select; peripheral.pack_en = true; peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN; ret = get_spi_clk_cfg(mas->cur_speed_hz, mas, &peripheral.clk_src, &peripheral.clk_div); if (ret) { dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret); return ret; } if (!xfer->cs_change) { if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers)) peripheral.fragmentation = FRAGMENTATION; } if (peripheral.cmd & SPI_RX) { dmaengine_slave_config(mas->rx, &config); rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents, DMA_DEV_TO_MEM, flags); if (!rx_desc) { dev_err(mas->dev, "Err setting up rx desc\n"); return -EIO; } } /* * Prepare the TX always, even for RX or tx_buf being null, we would * need TX to be prepared per GSI spec */ dmaengine_slave_config(mas->tx, &config); tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents, DMA_MEM_TO_DEV, flags); if (!tx_desc) { dev_err(mas->dev, "Err setting up tx desc\n"); return -EIO; } tx_desc->callback_result = spi_gsi_callback_result; tx_desc->callback_param = spi; if (peripheral.cmd & SPI_RX) dmaengine_submit(rx_desc); dmaengine_submit(tx_desc); if (peripheral.cmd & SPI_RX) dma_async_issue_pending(mas->rx); dma_async_issue_pending(mas->tx); return 1; } static bool geni_can_dma(struct spi_controller *ctlr, struct spi_device *slv, struct spi_transfer *xfer) { struct spi_geni_master *mas = spi_master_get_devdata(slv->master); /* check if dma is supported */ return mas->cur_xfer_mode != GENI_SE_FIFO; } static int spi_geni_prepare_message(struct spi_master *spi, struct spi_message *spi_msg) { struct spi_geni_master *mas = spi_master_get_devdata(spi); int ret; switch (mas->cur_xfer_mode) { case GENI_SE_FIFO: if (spi_geni_is_abort_still_pending(mas)) return -EBUSY; ret = setup_fifo_params(spi_msg->spi, spi); if (ret) dev_err(mas->dev, "Couldn't select mode %d\n", ret); return ret; case GENI_GPI_DMA: /* nothing to do for GPI DMA */ return 0; } dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode); return -EINVAL; } static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas) { int ret; mas->tx = dma_request_chan(mas->dev, "tx"); if (IS_ERR(mas->tx)) { ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx), "Failed to get tx DMA ch\n"); goto err_tx; } mas->rx = dma_request_chan(mas->dev, "rx"); if (IS_ERR(mas->rx)) { ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx), "Failed to get rx DMA ch\n"); goto err_rx; } return 0; err_rx: mas->rx = NULL; dma_release_channel(mas->tx); err_tx: mas->tx = NULL; return ret; } static void spi_geni_release_dma_chan(struct spi_geni_master *mas) { if (mas->rx) { dma_release_channel(mas->rx); mas->rx = NULL; } if (mas->tx) { dma_release_channel(mas->tx); mas->tx = NULL; } } static int spi_geni_init(struct spi_geni_master *mas) { struct geni_se *se = &mas->se; unsigned int proto, major, minor, ver; u32 spi_tx_cfg, fifo_disable; int ret = -ENXIO; pm_runtime_get_sync(mas->dev); proto = geni_se_read_proto(se); if (proto != GENI_SE_SPI) { dev_err(mas->dev, "Invalid proto %d\n", proto); goto out_pm; } mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se); /* Width of Tx and Rx FIFO is same */ mas->fifo_width_bits = geni_se_get_tx_fifo_width(se); /* * Hardware programming guide suggests to configure * RX FIFO RFR level to fifo_depth-2. */ geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2); /* Transmit an entire FIFO worth of data per IRQ */ mas->tx_wm = 1; ver = geni_se_get_qup_hw_version(se); major = GENI_SE_VERSION_MAJOR(ver); minor = GENI_SE_VERSION_MINOR(ver); if (major == 1 && minor == 0) mas->oversampling = 2; else mas->oversampling = 1; fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE; switch (fifo_disable) { case 1: ret = spi_geni_grab_gpi_chan(mas); if (!ret) { /* success case */ mas->cur_xfer_mode = GENI_GPI_DMA; geni_se_select_mode(se, GENI_GPI_DMA); dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n"); break; } /* * in case of failure to get dma channel, we can still do the * FIFO mode, so fallthrough */ dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n"); fallthrough; case 0: mas->cur_xfer_mode = GENI_SE_FIFO; geni_se_select_mode(se, GENI_SE_FIFO); ret = 0; break; } /* We always control CS manually */ spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG); spi_tx_cfg &= ~CS_TOGGLE; writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG); out_pm: pm_runtime_put(mas->dev); return ret; } static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas) { /* * Calculate how many bytes we'll put in each FIFO word. If the * transfer words don't pack cleanly into a FIFO word we'll just put * one transfer word in each FIFO word. If they do pack we'll pack 'em. */ if (mas->fifo_width_bits % mas->cur_bits_per_word) return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word, BITS_PER_BYTE)); return mas->fifo_width_bits / BITS_PER_BYTE; } static bool geni_spi_handle_tx(struct spi_geni_master *mas) { struct geni_se *se = &mas->se; unsigned int max_bytes; const u8 *tx_buf; unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); unsigned int i = 0; /* Stop the watermark IRQ if nothing to send */ if (!mas->cur_xfer) { writel(0, se->base + SE_GENI_TX_WATERMARK_REG); return false; } max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word; if (mas->tx_rem_bytes < max_bytes) max_bytes = mas->tx_rem_bytes; tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes; while (i < max_bytes) { unsigned int j; unsigned int bytes_to_write; u32 fifo_word = 0; u8 *fifo_byte = (u8 *)&fifo_word; bytes_to_write = min(bytes_per_fifo_word, max_bytes - i); for (j = 0; j < bytes_to_write; j++) fifo_byte[j] = tx_buf[i++]; iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1); } mas->tx_rem_bytes -= max_bytes; if (!mas->tx_rem_bytes) { writel(0, se->base + SE_GENI_TX_WATERMARK_REG); return false; } return true; } static void geni_spi_handle_rx(struct spi_geni_master *mas) { struct geni_se *se = &mas->se; u32 rx_fifo_status; unsigned int rx_bytes; unsigned int rx_last_byte_valid; u8 *rx_buf; unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas); unsigned int i = 0; rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS); rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word; if (rx_fifo_status & RX_LAST) { rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK; rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT; if (rx_last_byte_valid && rx_last_byte_valid < 4) rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid; } /* Clear out the FIFO and bail if nowhere to put it */ if (!mas->cur_xfer) { for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++) readl(se->base + SE_GENI_RX_FIFOn); return; } if (mas->rx_rem_bytes < rx_bytes) rx_bytes = mas->rx_rem_bytes; rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes; while (i < rx_bytes) { u32 fifo_word = 0; u8 *fifo_byte = (u8 *)&fifo_word; unsigned int bytes_to_read; unsigned int j; bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i); ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1); for (j = 0; j < bytes_to_read; j++) rx_buf[i++] = fifo_byte[j]; } mas->rx_rem_bytes -= rx_bytes; } static void setup_fifo_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas, u16 mode, struct spi_master *spi) { u32 m_cmd = 0; u32 len; struct geni_se *se = &mas->se; int ret; /* * Ensure that our interrupt handler isn't still running from some * prior command before we start messing with the hardware behind * its back. We don't need to _keep_ the lock here since we're only * worried about racing with out interrupt handler. The SPI core * already handles making sure that we're not trying to do two * transfers at once or setting a chip select and doing a transfer * concurrently. * * NOTE: we actually _can't_ hold the lock here because possibly we * might call clk_set_rate() which needs to be able to sleep. */ spin_lock_irq(&mas->lock); spin_unlock_irq(&mas->lock); if (xfer->bits_per_word != mas->cur_bits_per_word) { spi_setup_word_len(mas, mode, xfer->bits_per_word); mas->cur_bits_per_word = xfer->bits_per_word; } /* Speed and bits per word can be overridden per transfer */ ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz); if (ret) return; mas->tx_rem_bytes = 0; mas->rx_rem_bytes = 0; if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word; else len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1); len &= TRANS_LEN_MSK; mas->cur_xfer = xfer; if (xfer->tx_buf) { m_cmd |= SPI_TX_ONLY; mas->tx_rem_bytes = xfer->len; writel(len, se->base + SE_SPI_TX_TRANS_LEN); } if (xfer->rx_buf) { m_cmd |= SPI_RX_ONLY; writel(len, se->base + SE_SPI_RX_TRANS_LEN); mas->rx_rem_bytes = xfer->len; } /* * Lock around right before we start the transfer since our * interrupt could come in at any time now. */ spin_lock_irq(&mas->lock); geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION); if (m_cmd & SPI_TX_ONLY) { if (geni_spi_handle_tx(mas)) writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG); } spin_unlock_irq(&mas->lock); } static int spi_geni_transfer_one(struct spi_master *spi, struct spi_device *slv, struct spi_transfer *xfer) { struct spi_geni_master *mas = spi_master_get_devdata(spi); if (spi_geni_is_abort_still_pending(mas)) return -EBUSY; /* Terminate and return success for 0 byte length transfer */ if (!xfer->len) return 0; if (mas->cur_xfer_mode == GENI_SE_FIFO) { setup_fifo_xfer(xfer, mas, slv->mode, spi); return 1; } return setup_gsi_xfer(xfer, mas, slv, spi); } static irqreturn_t geni_spi_isr(int irq, void *data) { struct spi_master *spi = data; struct spi_geni_master *mas = spi_master_get_devdata(spi); struct geni_se *se = &mas->se; u32 m_irq; m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS); if (!m_irq) return IRQ_NONE; if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN | M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN | M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN)) dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq); spin_lock(&mas->lock); if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN)) geni_spi_handle_rx(mas); if (m_irq & M_TX_FIFO_WATERMARK_EN) geni_spi_handle_tx(mas); if (m_irq & M_CMD_DONE_EN) { if (mas->cur_xfer) { spi_finalize_current_transfer(spi); mas->cur_xfer = NULL; /* * If this happens, then a CMD_DONE came before all the * Tx buffer bytes were sent out. This is unusual, log * this condition and disable the WM interrupt to * prevent the system from stalling due an interrupt * storm. * * If this happens when all Rx bytes haven't been * received, log the condition. The only known time * this can happen is if bits_per_word != 8 and some * registers that expect xfer lengths in num spi_words * weren't written correctly. */ if (mas->tx_rem_bytes) { writel(0, se->base + SE_GENI_TX_WATERMARK_REG); dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n", mas->tx_rem_bytes, mas->cur_bits_per_word); } if (mas->rx_rem_bytes) dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n", mas->rx_rem_bytes, mas->cur_bits_per_word); } else { complete(&mas->cs_done); } } if (m_irq & M_CMD_CANCEL_EN) complete(&mas->cancel_done); if (m_irq & M_CMD_ABORT_EN) complete(&mas->abort_done); /* * It's safe or a good idea to Ack all of our interrupts at the end * of the function. Specifically: * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and * clearing Acks. Clearing at the end relies on nobody else having * started a new transfer yet or else we could be clearing _their_ * done bit, but everyone grabs the spinlock before starting a new * transfer. * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear * to be "latched level" interrupts so it's important to clear them * _after_ you've handled the condition and always safe to do so * since they'll re-assert if they're still happening. */ writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR); spin_unlock(&mas->lock); return IRQ_HANDLED; } static int spi_geni_probe(struct platform_device *pdev) { int ret, irq; struct spi_master *spi; struct spi_geni_master *mas; void __iomem *base; struct clk *clk; struct device *dev = &pdev->dev; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (ret) return dev_err_probe(dev, ret, "could not set DMA mask\n"); base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); clk = devm_clk_get(dev, "se"); if (IS_ERR(clk)) return PTR_ERR(clk); spi = devm_spi_alloc_master(dev, sizeof(*mas)); if (!spi) return -ENOMEM; platform_set_drvdata(pdev, spi); mas = spi_master_get_devdata(spi); mas->irq = irq; mas->dev = dev; mas->se.dev = dev; mas->se.wrapper = dev_get_drvdata(dev->parent); mas->se.base = base; mas->se.clk = clk; ret = devm_pm_opp_set_clkname(&pdev->dev, "se"); if (ret) return ret; /* OPP table is optional */ ret = devm_pm_opp_of_add_table(&pdev->dev); if (ret && ret != -ENODEV) { dev_err(&pdev->dev, "invalid OPP table in device tree\n"); return ret; } spi->bus_num = -1; spi->dev.of_node = dev->of_node; spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH; spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); spi->num_chipselect = 4; spi->max_speed_hz = 50000000; spi->prepare_message = spi_geni_prepare_message; spi->transfer_one = spi_geni_transfer_one; spi->can_dma = geni_can_dma; spi->dma_map_dev = dev->parent; spi->auto_runtime_pm = true; spi->handle_err = spi_geni_handle_err; spi->use_gpio_descriptors = true; init_completion(&mas->cs_done); init_completion(&mas->cancel_done); init_completion(&mas->abort_done); spin_lock_init(&mas->lock); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, 250); pm_runtime_enable(dev); ret = geni_icc_get(&mas->se, NULL); if (ret) goto spi_geni_probe_runtime_disable; /* Set the bus quota to a reasonable value for register access */ mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ); mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW; ret = geni_icc_set_bw(&mas->se); if (ret) goto spi_geni_probe_runtime_disable; ret = spi_geni_init(mas); if (ret) goto spi_geni_probe_runtime_disable; /* * check the mode supported and set_cs for fifo mode only * for dma (gsi) mode, the gsi will set cs based on params passed in * TRE */ if (mas->cur_xfer_mode == GENI_SE_FIFO) spi->set_cs = spi_geni_set_cs; ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi); if (ret) goto spi_geni_release_dma; ret = spi_register_master(spi); if (ret) goto spi_geni_probe_free_irq; return 0; spi_geni_probe_free_irq: free_irq(mas->irq, spi); spi_geni_release_dma: spi_geni_release_dma_chan(mas); spi_geni_probe_runtime_disable: pm_runtime_disable(dev); return ret; } static int spi_geni_remove(struct platform_device *pdev) { struct spi_master *spi = platform_get_drvdata(pdev); struct spi_geni_master *mas = spi_master_get_devdata(spi); /* Unregister _before_ disabling pm_runtime() so we stop transfers */ spi_unregister_master(spi); spi_geni_release_dma_chan(mas); free_irq(mas->irq, spi); pm_runtime_disable(&pdev->dev); return 0; } static int __maybe_unused spi_geni_runtime_suspend(struct device *dev) { struct spi_master *spi = dev_get_drvdata(dev); struct spi_geni_master *mas = spi_master_get_devdata(spi); int ret; /* Drop the performance state vote */ dev_pm_opp_set_rate(dev, 0); ret = geni_se_resources_off(&mas->se); if (ret) return ret; return geni_icc_disable(&mas->se); } static int __maybe_unused spi_geni_runtime_resume(struct device *dev) { struct spi_master *spi = dev_get_drvdata(dev); struct spi_geni_master *mas = spi_master_get_devdata(spi); int ret; ret = geni_icc_enable(&mas->se); if (ret) return ret; ret = geni_se_resources_on(&mas->se); if (ret) return ret; return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz); } static int __maybe_unused spi_geni_suspend(struct device *dev) { struct spi_master *spi = dev_get_drvdata(dev); int ret; ret = spi_master_suspend(spi); if (ret) return ret; ret = pm_runtime_force_suspend(dev); if (ret) spi_master_resume(spi); return ret; } static int __maybe_unused spi_geni_resume(struct device *dev) { struct spi_master *spi = dev_get_drvdata(dev); int ret; ret = pm_runtime_force_resume(dev); if (ret) return ret; ret = spi_master_resume(spi); if (ret) pm_runtime_force_suspend(dev); return ret; } static const struct dev_pm_ops spi_geni_pm_ops = { SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend, spi_geni_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume) }; static const struct of_device_id spi_geni_dt_match[] = { { .compatible = "qcom,geni-spi" }, {} }; MODULE_DEVICE_TABLE(of, spi_geni_dt_match); static struct platform_driver spi_geni_driver = { .probe = spi_geni_probe, .remove = spi_geni_remove, .driver = { .name = "geni_spi", .pm = &spi_geni_pm_ops, .of_match_table = spi_geni_dt_match, }, }; module_platform_driver(spi_geni_driver); MODULE_DESCRIPTION("SPI driver for GENI based QUP cores"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1