Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Conor Dooley | 2451 | 98.04% | 2 | 40.00% |
Yang Yingliang | 47 | 1.88% | 2 | 40.00% |
Christophe Jaillet | 2 | 0.08% | 1 | 20.00% |
Total | 2500 | 5 |
// SPDX-License-Identifier: (GPL-2.0) /* * Microchip CoreSPI SPI controller driver * * Copyright (c) 2018-2022 Microchip Technology Inc. and its subsidiaries * * Author: Daire McNamara <daire.mcnamara@microchip.com> * Author: Conor Dooley <conor.dooley@microchip.com> * */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #define MAX_LEN (0xffff) #define MAX_CS (8) #define DEFAULT_FRAMESIZE (8) #define FIFO_DEPTH (32) #define CLK_GEN_MODE1_MAX (255) #define CLK_GEN_MODE0_MAX (15) #define CLK_GEN_MIN (0) #define MODE_X_MASK_SHIFT (24) #define CONTROL_ENABLE BIT(0) #define CONTROL_MASTER BIT(1) #define CONTROL_RX_DATA_INT BIT(4) #define CONTROL_TX_DATA_INT BIT(5) #define CONTROL_RX_OVER_INT BIT(6) #define CONTROL_TX_UNDER_INT BIT(7) #define CONTROL_SPO BIT(24) #define CONTROL_SPH BIT(25) #define CONTROL_SPS BIT(26) #define CONTROL_FRAMEURUN BIT(27) #define CONTROL_CLKMODE BIT(28) #define CONTROL_BIGFIFO BIT(29) #define CONTROL_OENOFF BIT(30) #define CONTROL_RESET BIT(31) #define CONTROL_MODE_MASK GENMASK(3, 2) #define MOTOROLA_MODE (0) #define CONTROL_FRAMECNT_MASK GENMASK(23, 8) #define CONTROL_FRAMECNT_SHIFT (8) #define STATUS_ACTIVE BIT(14) #define STATUS_SSEL BIT(13) #define STATUS_FRAMESTART BIT(12) #define STATUS_TXFIFO_EMPTY_NEXT_READ BIT(11) #define STATUS_TXFIFO_EMPTY BIT(10) #define STATUS_TXFIFO_FULL_NEXT_WRITE BIT(9) #define STATUS_TXFIFO_FULL BIT(8) #define STATUS_RXFIFO_EMPTY_NEXT_READ BIT(7) #define STATUS_RXFIFO_EMPTY BIT(6) #define STATUS_RXFIFO_FULL_NEXT_WRITE BIT(5) #define STATUS_RXFIFO_FULL BIT(4) #define STATUS_TX_UNDERRUN BIT(3) #define STATUS_RX_OVERFLOW BIT(2) #define STATUS_RXDAT_RXED BIT(1) #define STATUS_TXDAT_SENT BIT(0) #define INT_TXDONE BIT(0) #define INT_RXRDY BIT(1) #define INT_RX_CHANNEL_OVERFLOW BIT(2) #define INT_TX_CHANNEL_UNDERRUN BIT(3) #define INT_ENABLE_MASK (CONTROL_RX_DATA_INT | CONTROL_TX_DATA_INT | \ CONTROL_RX_OVER_INT | CONTROL_TX_UNDER_INT) #define REG_CONTROL (0x00) #define REG_FRAME_SIZE (0x04) #define REG_STATUS (0x08) #define REG_INT_CLEAR (0x0c) #define REG_RX_DATA (0x10) #define REG_TX_DATA (0x14) #define REG_CLK_GEN (0x18) #define REG_SLAVE_SELECT (0x1c) #define SSEL_MASK GENMASK(7, 0) #define SSEL_DIRECT BIT(8) #define SSELOUT_SHIFT 9 #define SSELOUT BIT(SSELOUT_SHIFT) #define REG_MIS (0x20) #define REG_RIS (0x24) #define REG_CONTROL2 (0x28) #define REG_COMMAND (0x2c) #define REG_PKTSIZE (0x30) #define REG_CMD_SIZE (0x34) #define REG_HWSTATUS (0x38) #define REG_STAT8 (0x3c) #define REG_CTRL2 (0x48) #define REG_FRAMESUP (0x50) struct mchp_corespi { void __iomem *regs; struct clk *clk; const u8 *tx_buf; u8 *rx_buf; u32 clk_gen; /* divider for spi output clock generated by the controller */ u32 clk_mode; int irq; int tx_len; int rx_len; int pending; }; static inline u32 mchp_corespi_read(struct mchp_corespi *spi, unsigned int reg) { return readl(spi->regs + reg); } static inline void mchp_corespi_write(struct mchp_corespi *spi, unsigned int reg, u32 val) { writel(val, spi->regs + reg); } static inline void mchp_corespi_enable(struct mchp_corespi *spi) { u32 control = mchp_corespi_read(spi, REG_CONTROL); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static inline void mchp_corespi_disable(struct mchp_corespi *spi) { u32 control = mchp_corespi_read(spi, REG_CONTROL); control &= ~CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static inline void mchp_corespi_read_fifo(struct mchp_corespi *spi) { u8 data; int fifo_max, i = 0; fifo_max = min(spi->rx_len, FIFO_DEPTH); while ((i < fifo_max) && !(mchp_corespi_read(spi, REG_STATUS) & STATUS_RXFIFO_EMPTY)) { data = mchp_corespi_read(spi, REG_RX_DATA); if (spi->rx_buf) *spi->rx_buf++ = data; i++; } spi->rx_len -= i; spi->pending -= i; } static void mchp_corespi_enable_ints(struct mchp_corespi *spi) { u32 control, mask = INT_ENABLE_MASK; mchp_corespi_disable(spi); control = mchp_corespi_read(spi, REG_CONTROL); control |= mask; mchp_corespi_write(spi, REG_CONTROL, control); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static void mchp_corespi_disable_ints(struct mchp_corespi *spi) { u32 control, mask = INT_ENABLE_MASK; mchp_corespi_disable(spi); control = mchp_corespi_read(spi, REG_CONTROL); control &= ~mask; mchp_corespi_write(spi, REG_CONTROL, control); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static inline void mchp_corespi_set_xfer_size(struct mchp_corespi *spi, int len) { u32 control; u16 lenpart; /* * Disable the SPI controller. Writes to transfer length have * no effect when the controller is enabled. */ mchp_corespi_disable(spi); /* * The lower 16 bits of the frame count are stored in the control reg * for legacy reasons, but the upper 16 written to a different register: * FRAMESUP. While both the upper and lower bits can be *READ* from the * FRAMESUP register, writing to the lower 16 bits is a NOP */ lenpart = len & 0xffff; control = mchp_corespi_read(spi, REG_CONTROL); control &= ~CONTROL_FRAMECNT_MASK; control |= lenpart << CONTROL_FRAMECNT_SHIFT; mchp_corespi_write(spi, REG_CONTROL, control); lenpart = len & 0xffff0000; mchp_corespi_write(spi, REG_FRAMESUP, lenpart); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static inline void mchp_corespi_write_fifo(struct mchp_corespi *spi) { u8 byte; int fifo_max, i = 0; fifo_max = min(spi->tx_len, FIFO_DEPTH); mchp_corespi_set_xfer_size(spi, fifo_max); while ((i < fifo_max) && !(mchp_corespi_read(spi, REG_STATUS) & STATUS_TXFIFO_FULL)) { byte = spi->tx_buf ? *spi->tx_buf++ : 0xaa; mchp_corespi_write(spi, REG_TX_DATA, byte); i++; } spi->tx_len -= i; spi->pending += i; } static inline void mchp_corespi_set_framesize(struct mchp_corespi *spi, int bt) { u32 control; /* * Disable the SPI controller. Writes to the frame size have * no effect when the controller is enabled. */ mchp_corespi_disable(spi); mchp_corespi_write(spi, REG_FRAME_SIZE, bt); control = mchp_corespi_read(spi, REG_CONTROL); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static void mchp_corespi_set_cs(struct spi_device *spi, bool disable) { u32 reg; struct mchp_corespi *corespi = spi_master_get_devdata(spi->master); reg = mchp_corespi_read(corespi, REG_SLAVE_SELECT); reg &= ~BIT(spi->chip_select); reg |= !disable << spi->chip_select; mchp_corespi_write(corespi, REG_SLAVE_SELECT, reg); } static int mchp_corespi_setup(struct spi_device *spi) { struct mchp_corespi *corespi = spi_master_get_devdata(spi->master); u32 reg; /* * Active high slaves need to be specifically set to their inactive * states during probe by adding them to the "control group" & thus * driving their select line low. */ if (spi->mode & SPI_CS_HIGH) { reg = mchp_corespi_read(corespi, REG_SLAVE_SELECT); reg |= BIT(spi->chip_select); mchp_corespi_write(corespi, REG_SLAVE_SELECT, reg); } return 0; } static void mchp_corespi_init(struct spi_master *master, struct mchp_corespi *spi) { unsigned long clk_hz; u32 control = mchp_corespi_read(spi, REG_CONTROL); control |= CONTROL_MASTER; control &= ~CONTROL_MODE_MASK; control |= MOTOROLA_MODE; mchp_corespi_set_framesize(spi, DEFAULT_FRAMESIZE); /* max. possible spi clock rate is the apb clock rate */ clk_hz = clk_get_rate(spi->clk); master->max_speed_hz = clk_hz; /* * The controller must be configured so that it doesn't remove Chip * Select until the entire message has been transferred, even if at * some points TX FIFO becomes empty. * * BIGFIFO mode is also enabled, which sets the fifo depth to 32 frames * for the 8 bit transfers that this driver uses. */ control = mchp_corespi_read(spi, REG_CONTROL); control |= CONTROL_SPS | CONTROL_BIGFIFO; mchp_corespi_write(spi, REG_CONTROL, control); mchp_corespi_enable_ints(spi); /* * It is required to enable direct mode, otherwise control over the chip * select is relinquished to the hardware. SSELOUT is enabled too so we * can deal with active high slaves. */ mchp_corespi_write(spi, REG_SLAVE_SELECT, SSELOUT | SSEL_DIRECT); control = mchp_corespi_read(spi, REG_CONTROL); control &= ~CONTROL_RESET; control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static inline void mchp_corespi_set_clk_gen(struct mchp_corespi *spi) { u32 control; mchp_corespi_disable(spi); control = mchp_corespi_read(spi, REG_CONTROL); if (spi->clk_mode) control |= CONTROL_CLKMODE; else control &= ~CONTROL_CLKMODE; mchp_corespi_write(spi, REG_CLK_GEN, spi->clk_gen); mchp_corespi_write(spi, REG_CONTROL, control); mchp_corespi_write(spi, REG_CONTROL, control | CONTROL_ENABLE); } static inline void mchp_corespi_set_mode(struct mchp_corespi *spi, unsigned int mode) { u32 control, mode_val; switch (mode & SPI_MODE_X_MASK) { case SPI_MODE_0: mode_val = 0; break; case SPI_MODE_1: mode_val = CONTROL_SPH; break; case SPI_MODE_2: mode_val = CONTROL_SPO; break; case SPI_MODE_3: mode_val = CONTROL_SPH | CONTROL_SPO; break; } /* * Disable the SPI controller. Writes to the frame size have * no effect when the controller is enabled. */ mchp_corespi_disable(spi); control = mchp_corespi_read(spi, REG_CONTROL); control &= ~(SPI_MODE_X_MASK << MODE_X_MASK_SHIFT); control |= mode_val; mchp_corespi_write(spi, REG_CONTROL, control); control |= CONTROL_ENABLE; mchp_corespi_write(spi, REG_CONTROL, control); } static irqreturn_t mchp_corespi_interrupt(int irq, void *dev_id) { struct spi_master *master = dev_id; struct mchp_corespi *spi = spi_master_get_devdata(master); u32 intfield = mchp_corespi_read(spi, REG_MIS) & 0xf; bool finalise = false; /* Interrupt line may be shared and not for us at all */ if (intfield == 0) return IRQ_NONE; if (intfield & INT_TXDONE) { mchp_corespi_write(spi, REG_INT_CLEAR, INT_TXDONE); if (spi->rx_len) mchp_corespi_read_fifo(spi); if (spi->tx_len) mchp_corespi_write_fifo(spi); if (!spi->rx_len) finalise = true; } if (intfield & INT_RXRDY) mchp_corespi_write(spi, REG_INT_CLEAR, INT_RXRDY); if (intfield & INT_RX_CHANNEL_OVERFLOW) { mchp_corespi_write(spi, REG_INT_CLEAR, INT_RX_CHANNEL_OVERFLOW); finalise = true; dev_err(&master->dev, "%s: RX OVERFLOW: rxlen: %d, txlen: %d\n", __func__, spi->rx_len, spi->tx_len); } if (intfield & INT_TX_CHANNEL_UNDERRUN) { mchp_corespi_write(spi, REG_INT_CLEAR, INT_TX_CHANNEL_UNDERRUN); finalise = true; dev_err(&master->dev, "%s: TX UNDERFLOW: rxlen: %d, txlen: %d\n", __func__, spi->rx_len, spi->tx_len); } if (finalise) spi_finalize_current_transfer(master); return IRQ_HANDLED; } static int mchp_corespi_calculate_clkgen(struct mchp_corespi *spi, unsigned long target_hz) { unsigned long clk_hz, spi_hz, clk_gen; clk_hz = clk_get_rate(spi->clk); if (!clk_hz) return -EINVAL; spi_hz = min(target_hz, clk_hz); /* * There are two possible clock modes for the controller generated * clock's division ratio: * CLK_MODE = 0: 1 / (2^(CLK_GEN + 1)) where CLK_GEN = 0 to 15. * CLK_MODE = 1: 1 / (2 * CLK_GEN + 1) where CLK_GEN = 0 to 255. * First try mode 1, fall back to 0 and if we have tried both modes and * we /still/ can't get a good setting, we then throw the toys out of * the pram and give up * clk_gen is the register name for the clock divider on MPFS. */ clk_gen = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1; if (clk_gen > CLK_GEN_MODE1_MAX || clk_gen <= CLK_GEN_MIN) { clk_gen = DIV_ROUND_UP(clk_hz, spi_hz); clk_gen = fls(clk_gen) - 1; if (clk_gen > CLK_GEN_MODE0_MAX) return -EINVAL; spi->clk_mode = 0; } else { spi->clk_mode = 1; } spi->clk_gen = clk_gen; return 0; } static int mchp_corespi_transfer_one(struct spi_master *master, struct spi_device *spi_dev, struct spi_transfer *xfer) { struct mchp_corespi *spi = spi_master_get_devdata(master); int ret; ret = mchp_corespi_calculate_clkgen(spi, (unsigned long)xfer->speed_hz); if (ret) { dev_err(&master->dev, "failed to set clk_gen for target %u Hz\n", xfer->speed_hz); return ret; } mchp_corespi_set_clk_gen(spi); spi->tx_buf = xfer->tx_buf; spi->rx_buf = xfer->rx_buf; spi->tx_len = xfer->len; spi->rx_len = xfer->len; spi->pending = 0; mchp_corespi_set_xfer_size(spi, (spi->tx_len > FIFO_DEPTH) ? FIFO_DEPTH : spi->tx_len); if (spi->tx_len) mchp_corespi_write_fifo(spi); return 1; } static int mchp_corespi_prepare_message(struct spi_master *master, struct spi_message *msg) { struct spi_device *spi_dev = msg->spi; struct mchp_corespi *spi = spi_master_get_devdata(master); mchp_corespi_set_framesize(spi, DEFAULT_FRAMESIZE); mchp_corespi_set_mode(spi, spi_dev->mode); return 0; } static int mchp_corespi_probe(struct platform_device *pdev) { struct spi_master *master; struct mchp_corespi *spi; struct resource *res; u32 num_cs; int ret = 0; master = devm_spi_alloc_master(&pdev->dev, sizeof(*spi)); if (!master) return dev_err_probe(&pdev->dev, -ENOMEM, "unable to allocate master for SPI controller\n"); platform_set_drvdata(pdev, master); if (of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs)) num_cs = MAX_CS; master->num_chipselect = num_cs; master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; master->setup = mchp_corespi_setup; master->bits_per_word_mask = SPI_BPW_MASK(8); master->transfer_one = mchp_corespi_transfer_one; master->prepare_message = mchp_corespi_prepare_message; master->set_cs = mchp_corespi_set_cs; master->dev.of_node = pdev->dev.of_node; spi = spi_master_get_devdata(master); spi->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(spi->regs)) return PTR_ERR(spi->regs); spi->irq = platform_get_irq(pdev, 0); if (spi->irq <= 0) return dev_err_probe(&pdev->dev, -ENXIO, "invalid IRQ %d for SPI controller\n", spi->irq); ret = devm_request_irq(&pdev->dev, spi->irq, mchp_corespi_interrupt, IRQF_SHARED, dev_name(&pdev->dev), master); if (ret) return dev_err_probe(&pdev->dev, ret, "could not request irq\n"); spi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(spi->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(spi->clk), "could not get clk\n"); ret = clk_prepare_enable(spi->clk); if (ret) return dev_err_probe(&pdev->dev, ret, "failed to enable clock\n"); mchp_corespi_init(master, spi); ret = devm_spi_register_master(&pdev->dev, master); if (ret) { mchp_corespi_disable(spi); clk_disable_unprepare(spi->clk); return dev_err_probe(&pdev->dev, ret, "unable to register master for SPI controller\n"); } dev_info(&pdev->dev, "Registered SPI controller %d\n", master->bus_num); return 0; } static int mchp_corespi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct mchp_corespi *spi = spi_master_get_devdata(master); mchp_corespi_disable_ints(spi); clk_disable_unprepare(spi->clk); mchp_corespi_disable(spi); return 0; } #define MICROCHIP_SPI_PM_OPS (NULL) /* * Platform driver data structure */ #if defined(CONFIG_OF) static const struct of_device_id mchp_corespi_dt_ids[] = { { .compatible = "microchip,mpfs-spi" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mchp_corespi_dt_ids); #endif static struct platform_driver mchp_corespi_driver = { .probe = mchp_corespi_probe, .driver = { .name = "microchip-corespi", .pm = MICROCHIP_SPI_PM_OPS, .of_match_table = of_match_ptr(mchp_corespi_dt_ids), }, .remove = mchp_corespi_remove, }; module_platform_driver(mchp_corespi_driver); MODULE_DESCRIPTION("Microchip coreSPI SPI controller driver"); MODULE_AUTHOR("Daire McNamara <daire.mcnamara@microchip.com>"); MODULE_AUTHOR("Conor Dooley <conor.dooley@microchip.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1