Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Shadi Ammouri | 1301 | 39.06% | 1 | 1.96% |
Stefan Roese | 263 | 7.90% | 1 | 1.96% |
Gregory CLEMENT | 260 | 7.81% | 3 | 5.88% |
Greg Ungerer | 249 | 7.48% | 2 | 3.92% |
Russell King | 203 | 6.09% | 2 | 3.92% |
Marcin Wojtas | 185 | 5.55% | 2 | 3.92% |
Andrew Lunn | 169 | 5.07% | 3 | 5.88% |
Nadav Haklai | 167 | 5.01% | 1 | 1.96% |
Jason Gunthorpe | 101 | 3.03% | 1 | 1.96% |
Ken Wilson | 78 | 2.34% | 2 | 3.92% |
Uwe Kleine-König | 66 | 1.98% | 1 | 1.96% |
Axel Lin | 41 | 1.23% | 2 | 3.92% |
Nathan Rossi | 36 | 1.08% | 1 | 1.96% |
Bastian Stender | 35 | 1.05% | 1 | 1.96% |
Jan Kundrát | 35 | 1.05% | 3 | 5.88% |
Kosta Zertsekel | 24 | 0.72% | 1 | 1.96% |
Mark Brown | 21 | 0.63% | 2 | 3.92% |
Christophe Jaillet | 13 | 0.39% | 1 | 1.96% |
Linus Walleij | 10 | 0.30% | 1 | 1.96% |
Alexandru Ardelean | 10 | 0.30% | 1 | 1.96% |
Wei Yongjun | 9 | 0.27% | 2 | 3.92% |
Thomas Petazzoni | 9 | 0.27% | 1 | 1.96% |
Muhammad Usama Anjum | 6 | 0.18% | 1 | 1.96% |
Ezequiel García | 6 | 0.18% | 1 | 1.96% |
Chris Packham | 6 | 0.18% | 1 | 1.96% |
Wan Jiabing | 5 | 0.15% | 1 | 1.96% |
David Brownell | 5 | 0.15% | 1 | 1.96% |
Jingoo Han | 5 | 0.15% | 3 | 5.88% |
Tian Tao | 4 | 0.12% | 1 | 1.96% |
Paul Gortmaker | 2 | 0.06% | 1 | 1.96% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.96% |
Joe Perches | 1 | 0.03% | 1 | 1.96% |
Rafael J. Wysocki | 1 | 0.03% | 1 | 1.96% |
Tudor-Dan Ambarus | 1 | 0.03% | 1 | 1.96% |
Kay Sievers | 1 | 0.03% | 1 | 1.96% |
Rob Herring | 1 | 0.03% | 1 | 1.96% |
Total | 3331 | 51 |
// SPDX-License-Identifier: GPL-2.0-only /* * Marvell Orion SPI controller driver * * Author: Shadi Ammouri <shadi@marvell.com> * Copyright (C) 2007-2008 Marvell Ltd. */ #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/err.h> #include <linux/io.h> #include <linux/spi/spi.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/clk.h> #include <linux/sizes.h> #include <asm/unaligned.h> #define DRIVER_NAME "orion_spi" /* Runtime PM autosuspend timeout: PM is fairly light on this driver */ #define SPI_AUTOSUSPEND_TIMEOUT 200 /* Some SoCs using this driver support up to 8 chip selects. * It is up to the implementer to only use the chip selects * that are available. */ #define ORION_NUM_CHIPSELECTS 8 #define ORION_SPI_WAIT_RDY_MAX_LOOP 2000 /* in usec */ #define ORION_SPI_IF_CTRL_REG 0x00 #define ORION_SPI_IF_CONFIG_REG 0x04 #define ORION_SPI_IF_RXLSBF BIT(14) #define ORION_SPI_IF_TXLSBF BIT(13) #define ORION_SPI_DATA_OUT_REG 0x08 #define ORION_SPI_DATA_IN_REG 0x0c #define ORION_SPI_INT_CAUSE_REG 0x10 #define ORION_SPI_TIMING_PARAMS_REG 0x18 /* Register for the "Direct Mode" */ #define SPI_DIRECT_WRITE_CONFIG_REG 0x20 #define ORION_SPI_TMISO_SAMPLE_MASK (0x3 << 6) #define ORION_SPI_TMISO_SAMPLE_1 (1 << 6) #define ORION_SPI_TMISO_SAMPLE_2 (2 << 6) #define ORION_SPI_MODE_CPOL (1 << 11) #define ORION_SPI_MODE_CPHA (1 << 12) #define ORION_SPI_IF_8_16_BIT_MODE (1 << 5) #define ORION_SPI_CLK_PRESCALE_MASK 0x1F #define ARMADA_SPI_CLK_PRESCALE_MASK 0xDF #define ORION_SPI_MODE_MASK (ORION_SPI_MODE_CPOL | \ ORION_SPI_MODE_CPHA) #define ORION_SPI_CS_MASK 0x1C #define ORION_SPI_CS_SHIFT 2 #define ORION_SPI_CS(cs) ((cs << ORION_SPI_CS_SHIFT) & \ ORION_SPI_CS_MASK) enum orion_spi_type { ORION_SPI, ARMADA_SPI, }; struct orion_spi_dev { enum orion_spi_type typ; /* * min_divisor and max_hz should be exclusive, the only we can * have both is for managing the armada-370-spi case with old * device tree */ unsigned long max_hz; unsigned int min_divisor; unsigned int max_divisor; u32 prescale_mask; bool is_errata_50mhz_ac; }; struct orion_direct_acc { void __iomem *vaddr; u32 size; }; struct orion_child_options { struct orion_direct_acc direct_access; }; struct orion_spi { struct spi_master *master; void __iomem *base; struct clk *clk; struct clk *axi_clk; const struct orion_spi_dev *devdata; struct device *dev; struct orion_child_options child[ORION_NUM_CHIPSELECTS]; }; #ifdef CONFIG_PM static int orion_spi_runtime_suspend(struct device *dev); static int orion_spi_runtime_resume(struct device *dev); #endif static inline void __iomem *spi_reg(struct orion_spi *orion_spi, u32 reg) { return orion_spi->base + reg; } static inline void orion_spi_setbits(struct orion_spi *orion_spi, u32 reg, u32 mask) { void __iomem *reg_addr = spi_reg(orion_spi, reg); u32 val; val = readl(reg_addr); val |= mask; writel(val, reg_addr); } static inline void orion_spi_clrbits(struct orion_spi *orion_spi, u32 reg, u32 mask) { void __iomem *reg_addr = spi_reg(orion_spi, reg); u32 val; val = readl(reg_addr); val &= ~mask; writel(val, reg_addr); } static int orion_spi_baudrate_set(struct spi_device *spi, unsigned int speed) { u32 tclk_hz; u32 rate; u32 prescale; u32 reg; struct orion_spi *orion_spi; const struct orion_spi_dev *devdata; orion_spi = spi_master_get_devdata(spi->master); devdata = orion_spi->devdata; tclk_hz = clk_get_rate(orion_spi->clk); if (devdata->typ == ARMADA_SPI) { /* * Given the core_clk (tclk_hz) and the target rate (speed) we * determine the best values for SPR (in [0 .. 15]) and SPPR (in * [0..7]) such that * * core_clk / (SPR * 2 ** SPPR) * * is as big as possible but not bigger than speed. */ /* best integer divider: */ unsigned divider = DIV_ROUND_UP(tclk_hz, speed); unsigned spr, sppr; if (divider < 16) { /* This is the easy case, divider is less than 16 */ spr = divider; sppr = 0; } else { unsigned two_pow_sppr; /* * Find the highest bit set in divider. This and the * three next bits define SPR (apart from rounding). * SPPR is then the number of zero bits that must be * appended: */ sppr = fls(divider) - 4; /* * As SPR only has 4 bits, we have to round divider up * to the next multiple of 2 ** sppr. */ two_pow_sppr = 1 << sppr; divider = (divider + two_pow_sppr - 1) & -two_pow_sppr; /* * recalculate sppr as rounding up divider might have * increased it enough to change the position of the * highest set bit. In this case the bit that now * doesn't make it into SPR is 0, so there is no need to * round again. */ sppr = fls(divider) - 4; spr = divider >> sppr; /* * Now do range checking. SPR is constructed to have a * width of 4 bits, so this is fine for sure. So we * still need to check for sppr to fit into 3 bits: */ if (sppr > 7) return -EINVAL; } prescale = ((sppr & 0x6) << 5) | ((sppr & 0x1) << 4) | spr; } else { /* * the supported rates are: 4,6,8...30 * round up as we look for equal or less speed */ rate = DIV_ROUND_UP(tclk_hz, speed); rate = roundup(rate, 2); /* check if requested speed is too small */ if (rate > 30) return -EINVAL; if (rate < 4) rate = 4; /* Convert the rate to SPI clock divisor value. */ prescale = 0x10 + rate/2; } reg = readl(spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG)); reg = ((reg & ~devdata->prescale_mask) | prescale); writel(reg, spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG)); return 0; } static void orion_spi_mode_set(struct spi_device *spi) { u32 reg; struct orion_spi *orion_spi; orion_spi = spi_master_get_devdata(spi->master); reg = readl(spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG)); reg &= ~ORION_SPI_MODE_MASK; if (spi->mode & SPI_CPOL) reg |= ORION_SPI_MODE_CPOL; if (spi->mode & SPI_CPHA) reg |= ORION_SPI_MODE_CPHA; if (spi->mode & SPI_LSB_FIRST) reg |= ORION_SPI_IF_RXLSBF | ORION_SPI_IF_TXLSBF; else reg &= ~(ORION_SPI_IF_RXLSBF | ORION_SPI_IF_TXLSBF); writel(reg, spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG)); } static void orion_spi_50mhz_ac_timing_erratum(struct spi_device *spi, unsigned int speed) { u32 reg; struct orion_spi *orion_spi; orion_spi = spi_master_get_devdata(spi->master); /* * Erratum description: (Erratum NO. FE-9144572) The device * SPI interface supports frequencies of up to 50 MHz. * However, due to this erratum, when the device core clock is * 250 MHz and the SPI interfaces is configured for 50MHz SPI * clock and CPOL=CPHA=1 there might occur data corruption on * reads from the SPI device. * Erratum Workaround: * Work in one of the following configurations: * 1. Set CPOL=CPHA=0 in "SPI Interface Configuration * Register". * 2. Set TMISO_SAMPLE value to 0x2 in "SPI Timing Parameters 1 * Register" before setting the interface. */ reg = readl(spi_reg(orion_spi, ORION_SPI_TIMING_PARAMS_REG)); reg &= ~ORION_SPI_TMISO_SAMPLE_MASK; if (clk_get_rate(orion_spi->clk) == 250000000 && speed == 50000000 && spi->mode & SPI_CPOL && spi->mode & SPI_CPHA) reg |= ORION_SPI_TMISO_SAMPLE_2; else reg |= ORION_SPI_TMISO_SAMPLE_1; /* This is the default value */ writel(reg, spi_reg(orion_spi, ORION_SPI_TIMING_PARAMS_REG)); } /* * called only when no transfer is active on the bus */ static int orion_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct orion_spi *orion_spi; unsigned int speed = spi->max_speed_hz; unsigned int bits_per_word = spi->bits_per_word; int rc; orion_spi = spi_master_get_devdata(spi->master); if ((t != NULL) && t->speed_hz) speed = t->speed_hz; if ((t != NULL) && t->bits_per_word) bits_per_word = t->bits_per_word; orion_spi_mode_set(spi); if (orion_spi->devdata->is_errata_50mhz_ac) orion_spi_50mhz_ac_timing_erratum(spi, speed); rc = orion_spi_baudrate_set(spi, speed); if (rc) return rc; if (bits_per_word == 16) orion_spi_setbits(orion_spi, ORION_SPI_IF_CONFIG_REG, ORION_SPI_IF_8_16_BIT_MODE); else orion_spi_clrbits(orion_spi, ORION_SPI_IF_CONFIG_REG, ORION_SPI_IF_8_16_BIT_MODE); return 0; } static void orion_spi_set_cs(struct spi_device *spi, bool enable) { struct orion_spi *orion_spi; void __iomem *ctrl_reg; u32 val; orion_spi = spi_master_get_devdata(spi->master); ctrl_reg = spi_reg(orion_spi, ORION_SPI_IF_CTRL_REG); val = readl(ctrl_reg); /* Clear existing chip-select and assertion state */ val &= ~(ORION_SPI_CS_MASK | 0x1); /* * If this line is using a GPIO to control chip select, this internal * .set_cs() function will still be called, so we clear any previous * chip select. The CS we activate will not have any elecrical effect, * as it is handled by a GPIO, but that doesn't matter. What we need * is to deassert the old chip select and assert some other chip select. */ val |= ORION_SPI_CS(spi->chip_select); /* * Chip select logic is inverted from spi_set_cs(). For lines using a * GPIO to do chip select SPI_CS_HIGH is enforced and inversion happens * in the GPIO library, but we don't care about that, because in those * cases we are dealing with an unused native CS anyways so the polarity * doesn't matter. */ if (!enable) val |= 0x1; /* * To avoid toggling unwanted chip selects update the register * with a single write. */ writel(val, ctrl_reg); } static inline int orion_spi_wait_till_ready(struct orion_spi *orion_spi) { int i; for (i = 0; i < ORION_SPI_WAIT_RDY_MAX_LOOP; i++) { if (readl(spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG))) return 1; udelay(1); } return -1; } static inline int orion_spi_write_read_8bit(struct spi_device *spi, const u8 **tx_buf, u8 **rx_buf) { void __iomem *tx_reg, *rx_reg, *int_reg; struct orion_spi *orion_spi; bool cs_single_byte; cs_single_byte = spi->mode & SPI_CS_WORD; orion_spi = spi_master_get_devdata(spi->master); if (cs_single_byte) orion_spi_set_cs(spi, 0); tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG); rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG); int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG); /* clear the interrupt cause register */ writel(0x0, int_reg); if (tx_buf && *tx_buf) writel(*(*tx_buf)++, tx_reg); else writel(0, tx_reg); if (orion_spi_wait_till_ready(orion_spi) < 0) { if (cs_single_byte) { orion_spi_set_cs(spi, 1); /* Satisfy some SLIC devices requirements */ udelay(4); } dev_err(&spi->dev, "TXS timed out\n"); return -1; } if (rx_buf && *rx_buf) *(*rx_buf)++ = readl(rx_reg); if (cs_single_byte) { orion_spi_set_cs(spi, 1); /* Satisfy some SLIC devices requirements */ udelay(4); } return 1; } static inline int orion_spi_write_read_16bit(struct spi_device *spi, const u16 **tx_buf, u16 **rx_buf) { void __iomem *tx_reg, *rx_reg, *int_reg; struct orion_spi *orion_spi; if (spi->mode & SPI_CS_WORD) { dev_err(&spi->dev, "SPI_CS_WORD is only supported for 8 bit words\n"); return -1; } orion_spi = spi_master_get_devdata(spi->master); tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG); rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG); int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG); /* clear the interrupt cause register */ writel(0x0, int_reg); if (tx_buf && *tx_buf) writel(__cpu_to_le16(get_unaligned((*tx_buf)++)), tx_reg); else writel(0, tx_reg); if (orion_spi_wait_till_ready(orion_spi) < 0) { dev_err(&spi->dev, "TXS timed out\n"); return -1; } if (rx_buf && *rx_buf) put_unaligned(__le16_to_cpu(readl(rx_reg)), (*rx_buf)++); return 1; } static unsigned int orion_spi_write_read(struct spi_device *spi, struct spi_transfer *xfer) { unsigned int count; int word_len; struct orion_spi *orion_spi; int cs = spi->chip_select; void __iomem *vaddr; word_len = spi->bits_per_word; count = xfer->len; orion_spi = spi_master_get_devdata(spi->master); /* * Use SPI direct write mode if base address is available * and SPI_CS_WORD flag is not set. * Otherwise fall back to PIO mode for this transfer. */ vaddr = orion_spi->child[cs].direct_access.vaddr; if (vaddr && xfer->tx_buf && word_len == 8 && (spi->mode & SPI_CS_WORD) == 0) { unsigned int cnt = count / 4; unsigned int rem = count % 4; /* * Send the TX-data to the SPI device via the direct * mapped address window */ iowrite32_rep(vaddr, xfer->tx_buf, cnt); if (rem) { u32 *buf = (u32 *)xfer->tx_buf; iowrite8_rep(vaddr, &buf[cnt], rem); } return count; } if (word_len == 8) { const u8 *tx = xfer->tx_buf; u8 *rx = xfer->rx_buf; do { if (orion_spi_write_read_8bit(spi, &tx, &rx) < 0) goto out; count--; spi_delay_exec(&xfer->word_delay, xfer); } while (count); } else if (word_len == 16) { const u16 *tx = xfer->tx_buf; u16 *rx = xfer->rx_buf; do { if (orion_spi_write_read_16bit(spi, &tx, &rx) < 0) goto out; count -= 2; spi_delay_exec(&xfer->word_delay, xfer); } while (count); } out: return xfer->len - count; } static int orion_spi_transfer_one(struct spi_master *master, struct spi_device *spi, struct spi_transfer *t) { int status = 0; status = orion_spi_setup_transfer(spi, t); if (status < 0) return status; if (t->len) orion_spi_write_read(spi, t); return status; } static int orion_spi_setup(struct spi_device *spi) { int ret; #ifdef CONFIG_PM struct orion_spi *orion_spi = spi_master_get_devdata(spi->master); struct device *dev = orion_spi->dev; orion_spi_runtime_resume(dev); #endif ret = orion_spi_setup_transfer(spi, NULL); #ifdef CONFIG_PM orion_spi_runtime_suspend(dev); #endif return ret; } static int orion_spi_reset(struct orion_spi *orion_spi) { /* Verify that the CS is deasserted */ orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1); /* Don't deassert CS between the direct mapped SPI transfers */ writel(0, spi_reg(orion_spi, SPI_DIRECT_WRITE_CONFIG_REG)); return 0; } static const struct orion_spi_dev orion_spi_dev_data = { .typ = ORION_SPI, .min_divisor = 4, .max_divisor = 30, .prescale_mask = ORION_SPI_CLK_PRESCALE_MASK, }; static const struct orion_spi_dev armada_370_spi_dev_data = { .typ = ARMADA_SPI, .min_divisor = 4, .max_divisor = 1920, .max_hz = 50000000, .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK, }; static const struct orion_spi_dev armada_xp_spi_dev_data = { .typ = ARMADA_SPI, .max_hz = 50000000, .max_divisor = 1920, .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK, }; static const struct orion_spi_dev armada_375_spi_dev_data = { .typ = ARMADA_SPI, .min_divisor = 15, .max_divisor = 1920, .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK, }; static const struct orion_spi_dev armada_380_spi_dev_data = { .typ = ARMADA_SPI, .max_hz = 50000000, .max_divisor = 1920, .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK, .is_errata_50mhz_ac = true, }; static const struct of_device_id orion_spi_of_match_table[] = { { .compatible = "marvell,orion-spi", .data = &orion_spi_dev_data, }, { .compatible = "marvell,armada-370-spi", .data = &armada_370_spi_dev_data, }, { .compatible = "marvell,armada-375-spi", .data = &armada_375_spi_dev_data, }, { .compatible = "marvell,armada-380-spi", .data = &armada_380_spi_dev_data, }, { .compatible = "marvell,armada-390-spi", .data = &armada_xp_spi_dev_data, }, { .compatible = "marvell,armada-xp-spi", .data = &armada_xp_spi_dev_data, }, {} }; MODULE_DEVICE_TABLE(of, orion_spi_of_match_table); static int orion_spi_probe(struct platform_device *pdev) { const struct orion_spi_dev *devdata; struct spi_master *master; struct orion_spi *spi; struct resource *r; unsigned long tclk_hz; int status = 0; struct device_node *np; master = spi_alloc_master(&pdev->dev, sizeof(*spi)); if (master == NULL) { dev_dbg(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } if (pdev->id != -1) master->bus_num = pdev->id; if (pdev->dev.of_node) { u32 cell_index; if (!of_property_read_u32(pdev->dev.of_node, "cell-index", &cell_index)) master->bus_num = cell_index; } /* we support all 4 SPI modes and LSB first option */ master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_LSB_FIRST | SPI_CS_WORD; master->set_cs = orion_spi_set_cs; master->transfer_one = orion_spi_transfer_one; master->num_chipselect = ORION_NUM_CHIPSELECTS; master->setup = orion_spi_setup; master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16); master->auto_runtime_pm = true; master->use_gpio_descriptors = true; master->flags = SPI_MASTER_GPIO_SS; platform_set_drvdata(pdev, master); spi = spi_master_get_devdata(master); spi->master = master; spi->dev = &pdev->dev; devdata = device_get_match_data(&pdev->dev); devdata = devdata ? devdata : &orion_spi_dev_data; spi->devdata = devdata; spi->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(spi->clk)) { status = PTR_ERR(spi->clk); goto out; } status = clk_prepare_enable(spi->clk); if (status) goto out; /* The following clock is only used by some SoCs */ spi->axi_clk = devm_clk_get(&pdev->dev, "axi"); if (PTR_ERR(spi->axi_clk) == -EPROBE_DEFER) { status = -EPROBE_DEFER; goto out_rel_clk; } if (!IS_ERR(spi->axi_clk)) clk_prepare_enable(spi->axi_clk); tclk_hz = clk_get_rate(spi->clk); /* * With old device tree, armada-370-spi could be used with * Armada XP, however for this SoC the maximum frequency is * 50MHz instead of tclk/4. On Armada 370, tclk cannot be * higher than 200MHz. So, in order to be able to handle both * SoCs, we can take the minimum of 50MHz and tclk/4. */ if (of_device_is_compatible(pdev->dev.of_node, "marvell,armada-370-spi")) master->max_speed_hz = min(devdata->max_hz, DIV_ROUND_UP(tclk_hz, devdata->min_divisor)); else if (devdata->min_divisor) master->max_speed_hz = DIV_ROUND_UP(tclk_hz, devdata->min_divisor); else master->max_speed_hz = devdata->max_hz; master->min_speed_hz = DIV_ROUND_UP(tclk_hz, devdata->max_divisor); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); spi->base = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(spi->base)) { status = PTR_ERR(spi->base); goto out_rel_axi_clk; } for_each_available_child_of_node(pdev->dev.of_node, np) { struct orion_direct_acc *dir_acc; u32 cs; /* Get chip-select number from the "reg" property */ status = of_property_read_u32(np, "reg", &cs); if (status) { dev_err(&pdev->dev, "%pOF has no valid 'reg' property (%d)\n", np, status); continue; } /* * Check if an address is configured for this SPI device. If * not, the MBus mapping via the 'ranges' property in the 'soc' * node is not configured and this device should not use the * direct mode. In this case, just continue with the next * device. */ status = of_address_to_resource(pdev->dev.of_node, cs + 1, r); if (status) continue; /* * Only map one page for direct access. This is enough for the * simple TX transfer which only writes to the first word. * This needs to get extended for the direct SPI NOR / SPI NAND * support, once this gets implemented. */ dir_acc = &spi->child[cs].direct_access; dir_acc->vaddr = devm_ioremap(&pdev->dev, r->start, PAGE_SIZE); if (!dir_acc->vaddr) { status = -ENOMEM; of_node_put(np); goto out_rel_axi_clk; } dir_acc->size = PAGE_SIZE; dev_info(&pdev->dev, "CS%d configured for direct access\n", cs); } pm_runtime_set_active(&pdev->dev); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); pm_runtime_enable(&pdev->dev); status = orion_spi_reset(spi); if (status < 0) goto out_rel_pm; master->dev.of_node = pdev->dev.of_node; status = spi_register_master(master); if (status < 0) goto out_rel_pm; return status; out_rel_pm: pm_runtime_disable(&pdev->dev); out_rel_axi_clk: clk_disable_unprepare(spi->axi_clk); out_rel_clk: clk_disable_unprepare(spi->clk); out: spi_master_put(master); return status; } static int orion_spi_remove(struct platform_device *pdev) { struct spi_master *master = platform_get_drvdata(pdev); struct orion_spi *spi = spi_master_get_devdata(master); pm_runtime_get_sync(&pdev->dev); clk_disable_unprepare(spi->axi_clk); clk_disable_unprepare(spi->clk); spi_unregister_master(master); pm_runtime_disable(&pdev->dev); return 0; } MODULE_ALIAS("platform:" DRIVER_NAME); #ifdef CONFIG_PM static int orion_spi_runtime_suspend(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct orion_spi *spi = spi_master_get_devdata(master); clk_disable_unprepare(spi->axi_clk); clk_disable_unprepare(spi->clk); return 0; } static int orion_spi_runtime_resume(struct device *dev) { struct spi_master *master = dev_get_drvdata(dev); struct orion_spi *spi = spi_master_get_devdata(master); if (!IS_ERR(spi->axi_clk)) clk_prepare_enable(spi->axi_clk); return clk_prepare_enable(spi->clk); } #endif static const struct dev_pm_ops orion_spi_pm_ops = { SET_RUNTIME_PM_OPS(orion_spi_runtime_suspend, orion_spi_runtime_resume, NULL) }; static struct platform_driver orion_spi_driver = { .driver = { .name = DRIVER_NAME, .pm = &orion_spi_pm_ops, .of_match_table = of_match_ptr(orion_spi_of_match_table), }, .probe = orion_spi_probe, .remove = orion_spi_remove, }; module_platform_driver(orion_spi_driver); MODULE_DESCRIPTION("Orion SPI driver"); MODULE_AUTHOR("Shadi Ammouri <shadi@marvell.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1