Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
addy ke | 2286 | 45.76% | 9 | 11.11% |
Jon Lin | 951 | 19.04% | 14 | 17.28% |
Emil Renner Berthing | 825 | 16.51% | 18 | 22.22% |
Chris Ruehl | 294 | 5.88% | 3 | 3.70% |
Jeffy Chen | 145 | 2.90% | 5 | 6.17% |
Shawn Lin | 94 | 1.88% | 6 | 7.41% |
Brian Norris | 64 | 1.28% | 2 | 2.47% |
shengfei Xu | 48 | 0.96% | 1 | 1.23% |
Luca Ceresoli | 46 | 0.92% | 1 | 1.23% |
Arnd Bergmann | 42 | 0.84% | 2 | 2.47% |
Huibin Hong | 36 | 0.72% | 3 | 3.70% |
Julius Werner | 27 | 0.54% | 1 | 1.23% |
Alexander Kochetkov | 26 | 0.52% | 2 | 2.47% |
Johan Jonker | 22 | 0.44% | 1 | 1.23% |
Caesar Wang | 21 | 0.42% | 1 | 1.23% |
Tobias Schramm | 18 | 0.36% | 1 | 1.23% |
Doug Anderson | 11 | 0.22% | 2 | 2.47% |
Andy Shevchenko | 7 | 0.14% | 1 | 1.23% |
Jianqun Xu | 7 | 0.14% | 1 | 1.23% |
Dan Carpenter | 7 | 0.14% | 1 | 1.23% |
Andy Yan | 6 | 0.12% | 1 | 1.23% |
Wei Yongjun | 5 | 0.10% | 1 | 1.23% |
Suren Baghdasaryan | 3 | 0.06% | 1 | 1.23% |
Rafael J. Wysocki | 2 | 0.04% | 1 | 1.23% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.23% |
Vincent Pelletier | 1 | 0.02% | 1 | 1.23% |
Total | 4996 | 81 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd * Author: Addy Ke <addy.ke@rock-chips.com> */ #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/spi/spi.h> #include <linux/pm_runtime.h> #include <linux/scatterlist.h> #define DRIVER_NAME "rockchip-spi" #define ROCKCHIP_SPI_CLR_BITS(reg, bits) \ writel_relaxed(readl_relaxed(reg) & ~(bits), reg) #define ROCKCHIP_SPI_SET_BITS(reg, bits) \ writel_relaxed(readl_relaxed(reg) | (bits), reg) /* SPI register offsets */ #define ROCKCHIP_SPI_CTRLR0 0x0000 #define ROCKCHIP_SPI_CTRLR1 0x0004 #define ROCKCHIP_SPI_SSIENR 0x0008 #define ROCKCHIP_SPI_SER 0x000c #define ROCKCHIP_SPI_BAUDR 0x0010 #define ROCKCHIP_SPI_TXFTLR 0x0014 #define ROCKCHIP_SPI_RXFTLR 0x0018 #define ROCKCHIP_SPI_TXFLR 0x001c #define ROCKCHIP_SPI_RXFLR 0x0020 #define ROCKCHIP_SPI_SR 0x0024 #define ROCKCHIP_SPI_IPR 0x0028 #define ROCKCHIP_SPI_IMR 0x002c #define ROCKCHIP_SPI_ISR 0x0030 #define ROCKCHIP_SPI_RISR 0x0034 #define ROCKCHIP_SPI_ICR 0x0038 #define ROCKCHIP_SPI_DMACR 0x003c #define ROCKCHIP_SPI_DMATDLR 0x0040 #define ROCKCHIP_SPI_DMARDLR 0x0044 #define ROCKCHIP_SPI_VERSION 0x0048 #define ROCKCHIP_SPI_TXDR 0x0400 #define ROCKCHIP_SPI_RXDR 0x0800 /* Bit fields in CTRLR0 */ #define CR0_DFS_OFFSET 0 #define CR0_DFS_4BIT 0x0 #define CR0_DFS_8BIT 0x1 #define CR0_DFS_16BIT 0x2 #define CR0_CFS_OFFSET 2 #define CR0_SCPH_OFFSET 6 #define CR0_SCPOL_OFFSET 7 #define CR0_CSM_OFFSET 8 #define CR0_CSM_KEEP 0x0 /* ss_n be high for half sclk_out cycles */ #define CR0_CSM_HALF 0X1 /* ss_n be high for one sclk_out cycle */ #define CR0_CSM_ONE 0x2 /* ss_n to sclk_out delay */ #define CR0_SSD_OFFSET 10 /* * The period between ss_n active and * sclk_out active is half sclk_out cycles */ #define CR0_SSD_HALF 0x0 /* * The period between ss_n active and * sclk_out active is one sclk_out cycle */ #define CR0_SSD_ONE 0x1 #define CR0_EM_OFFSET 11 #define CR0_EM_LITTLE 0x0 #define CR0_EM_BIG 0x1 #define CR0_FBM_OFFSET 12 #define CR0_FBM_MSB 0x0 #define CR0_FBM_LSB 0x1 #define CR0_BHT_OFFSET 13 #define CR0_BHT_16BIT 0x0 #define CR0_BHT_8BIT 0x1 #define CR0_RSD_OFFSET 14 #define CR0_RSD_MAX 0x3 #define CR0_FRF_OFFSET 16 #define CR0_FRF_SPI 0x0 #define CR0_FRF_SSP 0x1 #define CR0_FRF_MICROWIRE 0x2 #define CR0_XFM_OFFSET 18 #define CR0_XFM_MASK (0x03 << SPI_XFM_OFFSET) #define CR0_XFM_TR 0x0 #define CR0_XFM_TO 0x1 #define CR0_XFM_RO 0x2 #define CR0_OPM_OFFSET 20 #define CR0_OPM_MASTER 0x0 #define CR0_OPM_SLAVE 0x1 #define CR0_SOI_OFFSET 23 #define CR0_MTM_OFFSET 0x21 /* Bit fields in SER, 2bit */ #define SER_MASK 0x3 /* Bit fields in BAUDR */ #define BAUDR_SCKDV_MIN 2 #define BAUDR_SCKDV_MAX 65534 /* Bit fields in SR, 6bit */ #define SR_MASK 0x3f #define SR_BUSY (1 << 0) #define SR_TF_FULL (1 << 1) #define SR_TF_EMPTY (1 << 2) #define SR_RF_EMPTY (1 << 3) #define SR_RF_FULL (1 << 4) #define SR_SLAVE_TX_BUSY (1 << 5) /* Bit fields in ISR, IMR, ISR, RISR, 5bit */ #define INT_MASK 0x1f #define INT_TF_EMPTY (1 << 0) #define INT_TF_OVERFLOW (1 << 1) #define INT_RF_UNDERFLOW (1 << 2) #define INT_RF_OVERFLOW (1 << 3) #define INT_RF_FULL (1 << 4) #define INT_CS_INACTIVE (1 << 6) /* Bit fields in ICR, 4bit */ #define ICR_MASK 0x0f #define ICR_ALL (1 << 0) #define ICR_RF_UNDERFLOW (1 << 1) #define ICR_RF_OVERFLOW (1 << 2) #define ICR_TF_OVERFLOW (1 << 3) /* Bit fields in DMACR */ #define RF_DMA_EN (1 << 0) #define TF_DMA_EN (1 << 1) /* Driver state flags */ #define RXDMA (1 << 0) #define TXDMA (1 << 1) /* sclk_out: spi master internal logic in rk3x can support 50Mhz */ #define MAX_SCLK_OUT 50000000U /* * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However, * the controller seems to hang when given 0x10000, so stick with this for now. */ #define ROCKCHIP_SPI_MAX_TRANLEN 0xffff /* 2 for native cs, 2 for cs-gpio */ #define ROCKCHIP_SPI_MAX_CS_NUM 4 #define ROCKCHIP_SPI_VER2_TYPE1 0x05EC0002 #define ROCKCHIP_SPI_VER2_TYPE2 0x00110002 #define ROCKCHIP_AUTOSUSPEND_TIMEOUT 2000 struct rockchip_spi { struct device *dev; struct clk *spiclk; struct clk *apb_pclk; void __iomem *regs; dma_addr_t dma_addr_rx; dma_addr_t dma_addr_tx; const void *tx; void *rx; unsigned int tx_left; unsigned int rx_left; atomic_t state; /*depth of the FIFO buffer */ u32 fifo_len; /* frequency of spiclk */ u32 freq; u8 n_bytes; u8 rsd; bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM]; bool slave_abort; bool cs_inactive; /* spi slave tansmition stop when cs inactive */ bool cs_high_supported; /* native CS supports active-high polarity */ struct spi_transfer *xfer; /* Store xfer temporarily */ }; static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable) { writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR); } static inline void wait_for_tx_idle(struct rockchip_spi *rs, bool slave_mode) { unsigned long timeout = jiffies + msecs_to_jiffies(5); do { if (slave_mode) { if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_SLAVE_TX_BUSY) && !((readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))) return; } else { if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)) return; } } while (!time_after(jiffies, timeout)); dev_warn(rs->dev, "spi controller is in busy state!\n"); } static u32 get_fifo_len(struct rockchip_spi *rs) { u32 ver; ver = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION); switch (ver) { case ROCKCHIP_SPI_VER2_TYPE1: case ROCKCHIP_SPI_VER2_TYPE2: return 64; default: return 32; } } static void rockchip_spi_set_cs(struct spi_device *spi, bool enable) { struct spi_controller *ctlr = spi->controller; struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); bool cs_asserted = spi->mode & SPI_CS_HIGH ? enable : !enable; /* Return immediately for no-op */ if (cs_asserted == rs->cs_asserted[spi->chip_select]) return; if (cs_asserted) { /* Keep things powered as long as CS is asserted */ pm_runtime_get_sync(rs->dev); if (spi->cs_gpiod) ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, 1); else ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, BIT(spi->chip_select)); } else { if (spi->cs_gpiod) ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, 1); else ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, BIT(spi->chip_select)); /* Drop reference from when we first asserted CS */ pm_runtime_put(rs->dev); } rs->cs_asserted[spi->chip_select] = cs_asserted; } static void rockchip_spi_handle_err(struct spi_controller *ctlr, struct spi_message *msg) { struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); /* stop running spi transfer * this also flushes both rx and tx fifos */ spi_enable_chip(rs, false); /* make sure all interrupts are masked and status cleared */ writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR); if (atomic_read(&rs->state) & TXDMA) dmaengine_terminate_async(ctlr->dma_tx); if (atomic_read(&rs->state) & RXDMA) dmaengine_terminate_async(ctlr->dma_rx); } static void rockchip_spi_pio_writer(struct rockchip_spi *rs) { u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR); u32 words = min(rs->tx_left, tx_free); rs->tx_left -= words; for (; words; words--) { u32 txw; if (rs->n_bytes == 1) txw = *(u8 *)rs->tx; else txw = *(u16 *)rs->tx; writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR); rs->tx += rs->n_bytes; } } static void rockchip_spi_pio_reader(struct rockchip_spi *rs) { u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR); u32 rx_left = (rs->rx_left > words) ? rs->rx_left - words : 0; /* the hardware doesn't allow us to change fifo threshold * level while spi is enabled, so instead make sure to leave * enough words in the rx fifo to get the last interrupt * exactly when all words have been received */ if (rx_left) { u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1; if (rx_left < ftl) { rx_left = ftl; words = rs->rx_left - rx_left; } } rs->rx_left = rx_left; for (; words; words--) { u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR); if (!rs->rx) continue; if (rs->n_bytes == 1) *(u8 *)rs->rx = (u8)rxw; else *(u16 *)rs->rx = (u16)rxw; rs->rx += rs->n_bytes; } } static irqreturn_t rockchip_spi_isr(int irq, void *dev_id) { struct spi_controller *ctlr = dev_id; struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); /* When int_cs_inactive comes, spi slave abort */ if (rs->cs_inactive && readl_relaxed(rs->regs + ROCKCHIP_SPI_IMR) & INT_CS_INACTIVE) { ctlr->slave_abort(ctlr); writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR); return IRQ_HANDLED; } if (rs->tx_left) rockchip_spi_pio_writer(rs); rockchip_spi_pio_reader(rs); if (!rs->rx_left) { spi_enable_chip(rs, false); writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR); spi_finalize_current_transfer(ctlr); } return IRQ_HANDLED; } static int rockchip_spi_prepare_irq(struct rockchip_spi *rs, struct spi_controller *ctlr, struct spi_transfer *xfer) { rs->tx = xfer->tx_buf; rs->rx = xfer->rx_buf; rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0; rs->rx_left = xfer->len / rs->n_bytes; writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR); spi_enable_chip(rs, true); if (rs->tx_left) rockchip_spi_pio_writer(rs); if (rs->cs_inactive) writel_relaxed(INT_RF_FULL | INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR); else writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR); /* 1 means the transfer is in progress */ return 1; } static void rockchip_spi_dma_rxcb(void *data) { struct spi_controller *ctlr = data; struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); int state = atomic_fetch_andnot(RXDMA, &rs->state); if (state & TXDMA && !rs->slave_abort) return; if (rs->cs_inactive) writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); spi_enable_chip(rs, false); spi_finalize_current_transfer(ctlr); } static void rockchip_spi_dma_txcb(void *data) { struct spi_controller *ctlr = data; struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); int state = atomic_fetch_andnot(TXDMA, &rs->state); if (state & RXDMA && !rs->slave_abort) return; /* Wait until the FIFO data completely. */ wait_for_tx_idle(rs, ctlr->slave); spi_enable_chip(rs, false); spi_finalize_current_transfer(ctlr); } static u32 rockchip_spi_calc_burst_size(u32 data_len) { u32 i; /* burst size: 1, 2, 4, 8 */ for (i = 1; i < 8; i <<= 1) { if (data_len & i) break; } return i; } static int rockchip_spi_prepare_dma(struct rockchip_spi *rs, struct spi_controller *ctlr, struct spi_transfer *xfer) { struct dma_async_tx_descriptor *rxdesc, *txdesc; atomic_set(&rs->state, 0); rs->tx = xfer->tx_buf; rs->rx = xfer->rx_buf; rxdesc = NULL; if (xfer->rx_buf) { struct dma_slave_config rxconf = { .direction = DMA_DEV_TO_MEM, .src_addr = rs->dma_addr_rx, .src_addr_width = rs->n_bytes, .src_maxburst = rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes), }; dmaengine_slave_config(ctlr->dma_rx, &rxconf); rxdesc = dmaengine_prep_slave_sg( ctlr->dma_rx, xfer->rx_sg.sgl, xfer->rx_sg.nents, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (!rxdesc) return -EINVAL; rxdesc->callback = rockchip_spi_dma_rxcb; rxdesc->callback_param = ctlr; } txdesc = NULL; if (xfer->tx_buf) { struct dma_slave_config txconf = { .direction = DMA_MEM_TO_DEV, .dst_addr = rs->dma_addr_tx, .dst_addr_width = rs->n_bytes, .dst_maxburst = rs->fifo_len / 4, }; dmaengine_slave_config(ctlr->dma_tx, &txconf); txdesc = dmaengine_prep_slave_sg( ctlr->dma_tx, xfer->tx_sg.sgl, xfer->tx_sg.nents, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); if (!txdesc) { if (rxdesc) dmaengine_terminate_sync(ctlr->dma_rx); return -EINVAL; } txdesc->callback = rockchip_spi_dma_txcb; txdesc->callback_param = ctlr; } /* rx must be started before tx due to spi instinct */ if (rxdesc) { atomic_or(RXDMA, &rs->state); ctlr->dma_rx->cookie = dmaengine_submit(rxdesc); dma_async_issue_pending(ctlr->dma_rx); } if (rs->cs_inactive) writel_relaxed(INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR); spi_enable_chip(rs, true); if (txdesc) { atomic_or(TXDMA, &rs->state); dmaengine_submit(txdesc); dma_async_issue_pending(ctlr->dma_tx); } /* 1 means the transfer is in progress */ return 1; } static int rockchip_spi_config(struct rockchip_spi *rs, struct spi_device *spi, struct spi_transfer *xfer, bool use_dma, bool slave_mode) { u32 cr0 = CR0_FRF_SPI << CR0_FRF_OFFSET | CR0_BHT_8BIT << CR0_BHT_OFFSET | CR0_SSD_ONE << CR0_SSD_OFFSET | CR0_EM_BIG << CR0_EM_OFFSET; u32 cr1; u32 dmacr = 0; if (slave_mode) cr0 |= CR0_OPM_SLAVE << CR0_OPM_OFFSET; rs->slave_abort = false; cr0 |= rs->rsd << CR0_RSD_OFFSET; cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET; if (spi->mode & SPI_LSB_FIRST) cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET; if (spi->mode & SPI_CS_HIGH) cr0 |= BIT(spi->chip_select) << CR0_SOI_OFFSET; if (xfer->rx_buf && xfer->tx_buf) cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET; else if (xfer->rx_buf) cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET; else if (use_dma) cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET; switch (xfer->bits_per_word) { case 4: cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET; cr1 = xfer->len - 1; break; case 8: cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET; cr1 = xfer->len - 1; break; case 16: cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET; cr1 = xfer->len / 2 - 1; break; default: /* we only whitelist 4, 8 and 16 bit words in * ctlr->bits_per_word_mask, so this shouldn't * happen */ dev_err(rs->dev, "unknown bits per word: %d\n", xfer->bits_per_word); return -EINVAL; } if (use_dma) { if (xfer->tx_buf) dmacr |= TF_DMA_EN; if (xfer->rx_buf) dmacr |= RF_DMA_EN; } writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0); writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1); /* unfortunately setting the fifo threshold level to generate an * interrupt exactly when the fifo is full doesn't seem to work, * so we need the strict inequality here */ if ((xfer->len / rs->n_bytes) < rs->fifo_len) writel_relaxed(xfer->len / rs->n_bytes - 1, rs->regs + ROCKCHIP_SPI_RXFTLR); else writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR); writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR); writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) - 1, rs->regs + ROCKCHIP_SPI_DMARDLR); writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR); /* the hardware only supports an even clock divisor, so * round divisor = spiclk / speed up to nearest even number * so that the resulting speed is <= the requested speed */ writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz), rs->regs + ROCKCHIP_SPI_BAUDR); return 0; } static size_t rockchip_spi_max_transfer_size(struct spi_device *spi) { return ROCKCHIP_SPI_MAX_TRANLEN; } static int rockchip_spi_slave_abort(struct spi_controller *ctlr) { struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); u32 rx_fifo_left; struct dma_tx_state state; enum dma_status status; /* Get current dma rx point */ if (atomic_read(&rs->state) & RXDMA) { dmaengine_pause(ctlr->dma_rx); status = dmaengine_tx_status(ctlr->dma_rx, ctlr->dma_rx->cookie, &state); if (status == DMA_ERROR) { rs->rx = rs->xfer->rx_buf; rs->xfer->len = 0; rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR); for (; rx_fifo_left; rx_fifo_left--) readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR); goto out; } else { rs->rx += rs->xfer->len - rs->n_bytes * state.residue; } } /* Get the valid data left in rx fifo and set rs->xfer->len real rx size */ if (rs->rx) { rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR); for (; rx_fifo_left; rx_fifo_left--) { u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR); if (rs->n_bytes == 1) *(u8 *)rs->rx = (u8)rxw; else *(u16 *)rs->rx = (u16)rxw; rs->rx += rs->n_bytes; } rs->xfer->len = (unsigned int)(rs->rx - rs->xfer->rx_buf); } out: if (atomic_read(&rs->state) & RXDMA) dmaengine_terminate_sync(ctlr->dma_rx); if (atomic_read(&rs->state) & TXDMA) dmaengine_terminate_sync(ctlr->dma_tx); atomic_set(&rs->state, 0); spi_enable_chip(rs, false); rs->slave_abort = true; spi_finalize_current_transfer(ctlr); return 0; } static int rockchip_spi_transfer_one( struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); int ret; bool use_dma; /* Zero length transfers won't trigger an interrupt on completion */ if (!xfer->len) { spi_finalize_current_transfer(ctlr); return 1; } WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) && (readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)); if (!xfer->tx_buf && !xfer->rx_buf) { dev_err(rs->dev, "No buffer for transfer\n"); return -EINVAL; } if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) { dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len); return -EINVAL; } rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2; rs->xfer = xfer; use_dma = ctlr->can_dma ? ctlr->can_dma(ctlr, spi, xfer) : false; ret = rockchip_spi_config(rs, spi, xfer, use_dma, ctlr->slave); if (ret) return ret; if (use_dma) return rockchip_spi_prepare_dma(rs, ctlr, xfer); return rockchip_spi_prepare_irq(rs, ctlr, xfer); } static bool rockchip_spi_can_dma(struct spi_controller *ctlr, struct spi_device *spi, struct spi_transfer *xfer) { struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2; /* if the numbor of spi words to transfer is less than the fifo * length we can just fill the fifo and wait for a single irq, * so don't bother setting up dma */ return xfer->len / bytes_per_word >= rs->fifo_len; } static int rockchip_spi_setup(struct spi_device *spi) { struct rockchip_spi *rs = spi_controller_get_devdata(spi->controller); u32 cr0; if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH) && !rs->cs_high_supported) { dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n"); return -EINVAL; } pm_runtime_get_sync(rs->dev); cr0 = readl_relaxed(rs->regs + ROCKCHIP_SPI_CTRLR0); cr0 &= ~(0x3 << CR0_SCPH_OFFSET); cr0 |= ((spi->mode & 0x3) << CR0_SCPH_OFFSET); if (spi->mode & SPI_CS_HIGH && spi->chip_select <= 1) cr0 |= BIT(spi->chip_select) << CR0_SOI_OFFSET; else if (spi->chip_select <= 1) cr0 &= ~(BIT(spi->chip_select) << CR0_SOI_OFFSET); writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0); pm_runtime_put(rs->dev); return 0; } static int rockchip_spi_probe(struct platform_device *pdev) { int ret; struct rockchip_spi *rs; struct spi_controller *ctlr; struct resource *mem; struct device_node *np = pdev->dev.of_node; u32 rsd_nsecs, num_cs; bool slave_mode; slave_mode = of_property_read_bool(np, "spi-slave"); if (slave_mode) ctlr = spi_alloc_slave(&pdev->dev, sizeof(struct rockchip_spi)); else ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rockchip_spi)); if (!ctlr) return -ENOMEM; platform_set_drvdata(pdev, ctlr); rs = spi_controller_get_devdata(ctlr); ctlr->slave = slave_mode; /* Get basic io resource and map it */ mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); rs->regs = devm_ioremap_resource(&pdev->dev, mem); if (IS_ERR(rs->regs)) { ret = PTR_ERR(rs->regs); goto err_put_ctlr; } rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk"); if (IS_ERR(rs->apb_pclk)) { dev_err(&pdev->dev, "Failed to get apb_pclk\n"); ret = PTR_ERR(rs->apb_pclk); goto err_put_ctlr; } rs->spiclk = devm_clk_get(&pdev->dev, "spiclk"); if (IS_ERR(rs->spiclk)) { dev_err(&pdev->dev, "Failed to get spi_pclk\n"); ret = PTR_ERR(rs->spiclk); goto err_put_ctlr; } ret = clk_prepare_enable(rs->apb_pclk); if (ret < 0) { dev_err(&pdev->dev, "Failed to enable apb_pclk\n"); goto err_put_ctlr; } ret = clk_prepare_enable(rs->spiclk); if (ret < 0) { dev_err(&pdev->dev, "Failed to enable spi_clk\n"); goto err_disable_apbclk; } spi_enable_chip(rs, false); ret = platform_get_irq(pdev, 0); if (ret < 0) goto err_disable_spiclk; ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL, IRQF_ONESHOT, dev_name(&pdev->dev), ctlr); if (ret) goto err_disable_spiclk; rs->dev = &pdev->dev; rs->freq = clk_get_rate(rs->spiclk); if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns", &rsd_nsecs)) { /* rx sample delay is expressed in parent clock cycles (max 3) */ u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8), 1000000000 >> 8); if (!rsd) { dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n", rs->freq, rsd_nsecs); } else if (rsd > CR0_RSD_MAX) { rsd = CR0_RSD_MAX; dev_warn(rs->dev, "%u Hz are too fast to express %u ns delay, clamping at %u ns\n", rs->freq, rsd_nsecs, CR0_RSD_MAX * 1000000000U / rs->freq); } rs->rsd = rsd; } rs->fifo_len = get_fifo_len(rs); if (!rs->fifo_len) { dev_err(&pdev->dev, "Failed to get fifo length\n"); ret = -EINVAL; goto err_disable_spiclk; } pm_runtime_set_autosuspend_delay(&pdev->dev, ROCKCHIP_AUTOSUSPEND_TIMEOUT); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); ctlr->auto_runtime_pm = true; ctlr->bus_num = pdev->id; ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST; if (slave_mode) { ctlr->mode_bits |= SPI_NO_CS; ctlr->slave_abort = rockchip_spi_slave_abort; } else { ctlr->flags = SPI_MASTER_GPIO_SS; ctlr->max_native_cs = ROCKCHIP_SPI_MAX_CS_NUM; /* * rk spi0 has two native cs, spi1..5 one cs only * if num-cs is missing in the dts, default to 1 */ if (of_property_read_u32(np, "num-cs", &num_cs)) num_cs = 1; ctlr->num_chipselect = num_cs; ctlr->use_gpio_descriptors = true; } ctlr->dev.of_node = pdev->dev.of_node; ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4); ctlr->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX; ctlr->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT); ctlr->setup = rockchip_spi_setup; ctlr->set_cs = rockchip_spi_set_cs; ctlr->transfer_one = rockchip_spi_transfer_one; ctlr->max_transfer_size = rockchip_spi_max_transfer_size; ctlr->handle_err = rockchip_spi_handle_err; ctlr->dma_tx = dma_request_chan(rs->dev, "tx"); if (IS_ERR(ctlr->dma_tx)) { /* Check tx to see if we need defer probing driver */ if (PTR_ERR(ctlr->dma_tx) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_disable_pm_runtime; } dev_warn(rs->dev, "Failed to request TX DMA channel\n"); ctlr->dma_tx = NULL; } ctlr->dma_rx = dma_request_chan(rs->dev, "rx"); if (IS_ERR(ctlr->dma_rx)) { if (PTR_ERR(ctlr->dma_rx) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_free_dma_tx; } dev_warn(rs->dev, "Failed to request RX DMA channel\n"); ctlr->dma_rx = NULL; } if (ctlr->dma_tx && ctlr->dma_rx) { rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR; rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR; ctlr->can_dma = rockchip_spi_can_dma; } switch (readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION)) { case ROCKCHIP_SPI_VER2_TYPE2: rs->cs_high_supported = true; ctlr->mode_bits |= SPI_CS_HIGH; if (ctlr->can_dma && slave_mode) rs->cs_inactive = true; else rs->cs_inactive = false; break; default: rs->cs_inactive = false; break; } ret = devm_spi_register_controller(&pdev->dev, ctlr); if (ret < 0) { dev_err(&pdev->dev, "Failed to register controller\n"); goto err_free_dma_rx; } return 0; err_free_dma_rx: if (ctlr->dma_rx) dma_release_channel(ctlr->dma_rx); err_free_dma_tx: if (ctlr->dma_tx) dma_release_channel(ctlr->dma_tx); err_disable_pm_runtime: pm_runtime_disable(&pdev->dev); err_disable_spiclk: clk_disable_unprepare(rs->spiclk); err_disable_apbclk: clk_disable_unprepare(rs->apb_pclk); err_put_ctlr: spi_controller_put(ctlr); return ret; } static int rockchip_spi_remove(struct platform_device *pdev) { struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev)); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); pm_runtime_get_sync(&pdev->dev); clk_disable_unprepare(rs->spiclk); clk_disable_unprepare(rs->apb_pclk); pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); if (ctlr->dma_tx) dma_release_channel(ctlr->dma_tx); if (ctlr->dma_rx) dma_release_channel(ctlr->dma_rx); spi_controller_put(ctlr); return 0; } #ifdef CONFIG_PM_SLEEP static int rockchip_spi_suspend(struct device *dev) { int ret; struct spi_controller *ctlr = dev_get_drvdata(dev); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); ret = spi_controller_suspend(ctlr); if (ret < 0) return ret; clk_disable_unprepare(rs->spiclk); clk_disable_unprepare(rs->apb_pclk); pinctrl_pm_select_sleep_state(dev); return 0; } static int rockchip_spi_resume(struct device *dev) { int ret; struct spi_controller *ctlr = dev_get_drvdata(dev); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); pinctrl_pm_select_default_state(dev); ret = clk_prepare_enable(rs->apb_pclk); if (ret < 0) return ret; ret = clk_prepare_enable(rs->spiclk); if (ret < 0) clk_disable_unprepare(rs->apb_pclk); ret = spi_controller_resume(ctlr); if (ret < 0) { clk_disable_unprepare(rs->spiclk); clk_disable_unprepare(rs->apb_pclk); } return 0; } #endif /* CONFIG_PM_SLEEP */ #ifdef CONFIG_PM static int rockchip_spi_runtime_suspend(struct device *dev) { struct spi_controller *ctlr = dev_get_drvdata(dev); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); clk_disable_unprepare(rs->spiclk); clk_disable_unprepare(rs->apb_pclk); return 0; } static int rockchip_spi_runtime_resume(struct device *dev) { int ret; struct spi_controller *ctlr = dev_get_drvdata(dev); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); ret = clk_prepare_enable(rs->apb_pclk); if (ret < 0) return ret; ret = clk_prepare_enable(rs->spiclk); if (ret < 0) clk_disable_unprepare(rs->apb_pclk); return 0; } #endif /* CONFIG_PM */ static const struct dev_pm_ops rockchip_spi_pm = { SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume) SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend, rockchip_spi_runtime_resume, NULL) }; static const struct of_device_id rockchip_spi_dt_match[] = { { .compatible = "rockchip,px30-spi", }, { .compatible = "rockchip,rk3036-spi", }, { .compatible = "rockchip,rk3066-spi", }, { .compatible = "rockchip,rk3188-spi", }, { .compatible = "rockchip,rk3228-spi", }, { .compatible = "rockchip,rk3288-spi", }, { .compatible = "rockchip,rk3308-spi", }, { .compatible = "rockchip,rk3328-spi", }, { .compatible = "rockchip,rk3368-spi", }, { .compatible = "rockchip,rk3399-spi", }, { .compatible = "rockchip,rv1108-spi", }, { .compatible = "rockchip,rv1126-spi", }, { }, }; MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match); static struct platform_driver rockchip_spi_driver = { .driver = { .name = DRIVER_NAME, .pm = &rockchip_spi_pm, .of_match_table = of_match_ptr(rockchip_spi_dt_match), }, .probe = rockchip_spi_probe, .remove = rockchip_spi_remove, }; module_platform_driver(rockchip_spi_driver); MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>"); MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1