Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mauro Carvalho Chehab | 5338 | 95.10% | 13 | 48.15% |
Hans de Goede | 259 | 4.61% | 11 | 40.74% |
Tomi Valkeinen | 11 | 0.20% | 1 | 3.70% |
Deepak R Varma | 4 | 0.07% | 1 | 3.70% |
Uwe Kleine-König | 1 | 0.02% | 1 | 3.70% |
Total | 5613 | 27 |
// SPDX-License-Identifier: GPL-2.0 /* * Support for OmniVision OV2680 1080p HD camera sensor. * * Copyright (c) 2013 Intel Corporation. All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <asm/unaligned.h> #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/kmod.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/moduleparam.h> #include <media/v4l2-device.h> #include <linux/io.h> #include <linux/acpi.h> #include "../include/linux/atomisp_gmin_platform.h" #include "ov2680.h" static int h_flag; static int v_flag; static enum atomisp_bayer_order ov2680_bayer_order_mapping[] = { atomisp_bayer_order_bggr, atomisp_bayer_order_grbg, atomisp_bayer_order_gbrg, atomisp_bayer_order_rggb, }; /* i2c read/write stuff */ static int ov2680_read_reg(struct i2c_client *client, int len, u16 reg, u32 *val) { struct i2c_msg msgs[2]; u8 addr_buf[2] = { reg >> 8, reg & 0xff }; u8 data_buf[4] = { 0, }; int ret; if (len > 4) return -EINVAL; msgs[0].addr = client->addr; msgs[0].flags = 0; msgs[0].len = ARRAY_SIZE(addr_buf); msgs[0].buf = addr_buf; msgs[1].addr = client->addr; msgs[1].flags = I2C_M_RD; msgs[1].len = len; msgs[1].buf = &data_buf[4 - len]; ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret != ARRAY_SIZE(msgs)) { dev_err(&client->dev, "read error: reg=0x%4x: %d\n", reg, ret); return -EIO; } *val = get_unaligned_be32(data_buf); return 0; } static int ov2680_write_reg(struct i2c_client *client, unsigned int len, u16 reg, u16 val) { u8 buf[6]; int ret; if (len == 2) put_unaligned_be16(val, buf + 2); else if (len == 1) buf[2] = val; else return -EINVAL; put_unaligned_be16(reg, buf); ret = i2c_master_send(client, buf, len + 2); if (ret != len + 2) { dev_err(&client->dev, "write error %d reg 0x%04x, val 0x%02x: buf sent: %*ph\n", ret, reg, val, len + 2, &buf); return -EIO; } return 0; } static int ov2680_write_reg_array(struct i2c_client *client, const struct ov2680_reg *reglist) { const struct ov2680_reg *next = reglist; int ret; for (; next->reg != 0; next++) { ret = ov2680_write_reg(client, 1, next->reg, next->val); if (ret) return ret; } return 0; } static int ov2680_g_focal(struct v4l2_subdev *sd, s32 *val) { *val = (OV2680_FOCAL_LENGTH_NUM << 16) | OV2680_FOCAL_LENGTH_DEM; return 0; } static int ov2680_g_fnumber(struct v4l2_subdev *sd, s32 *val) { /* const f number for ov2680 */ *val = (OV2680_F_NUMBER_DEFAULT_NUM << 16) | OV2680_F_NUMBER_DEM; return 0; } static int ov2680_g_fnumber_range(struct v4l2_subdev *sd, s32 *val) { *val = (OV2680_F_NUMBER_DEFAULT_NUM << 24) | (OV2680_F_NUMBER_DEM << 16) | (OV2680_F_NUMBER_DEFAULT_NUM << 8) | OV2680_F_NUMBER_DEM; return 0; } static int ov2680_g_bin_factor_x(struct v4l2_subdev *sd, s32 *val) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); dev_dbg(&client->dev, "++++ov2680_g_bin_factor_x\n"); *val = dev->res->bin_factor_x; return 0; } static int ov2680_g_bin_factor_y(struct v4l2_subdev *sd, s32 *val) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); *val = dev->res->bin_factor_y; dev_dbg(&client->dev, "++++ov2680_g_bin_factor_y\n"); return 0; } static int ov2680_get_intg_factor(struct i2c_client *client, struct camera_mipi_info *info, const struct ov2680_resolution *res) { struct atomisp_sensor_mode_data *buf = &info->data; unsigned int pix_clk_freq_hz; u32 reg_val; int ret; dev_dbg(&client->dev, "++++ov2680_get_intg_factor\n"); if (!info) return -EINVAL; /* pixel clock */ pix_clk_freq_hz = res->pix_clk_freq * 1000000; buf->vt_pix_clk_freq_mhz = pix_clk_freq_hz; /* get integration time */ buf->coarse_integration_time_min = OV2680_COARSE_INTG_TIME_MIN; buf->coarse_integration_time_max_margin = OV2680_COARSE_INTG_TIME_MAX_MARGIN; buf->fine_integration_time_min = OV2680_FINE_INTG_TIME_MIN; buf->fine_integration_time_max_margin = OV2680_FINE_INTG_TIME_MAX_MARGIN; buf->fine_integration_time_def = OV2680_FINE_INTG_TIME_MIN; buf->frame_length_lines = res->lines_per_frame; buf->line_length_pck = res->pixels_per_line; buf->read_mode = res->bin_mode; /* get the cropping and output resolution to ISP for this mode. */ ret = ov2680_read_reg(client, 2, OV2680_HORIZONTAL_START_H, ®_val); if (ret) return ret; buf->crop_horizontal_start = reg_val; ret = ov2680_read_reg(client, 2, OV2680_VERTICAL_START_H, ®_val); if (ret) return ret; buf->crop_vertical_start = reg_val; ret = ov2680_read_reg(client, 2, OV2680_HORIZONTAL_END_H, ®_val); if (ret) return ret; buf->crop_horizontal_end = reg_val; ret = ov2680_read_reg(client, 2, OV2680_VERTICAL_END_H, ®_val); if (ret) return ret; buf->crop_vertical_end = reg_val; ret = ov2680_read_reg(client, 2, OV2680_HORIZONTAL_OUTPUT_SIZE_H, ®_val); if (ret) return ret; buf->output_width = reg_val; ret = ov2680_read_reg(client, 2, OV2680_VERTICAL_OUTPUT_SIZE_H, ®_val); if (ret) return ret; buf->output_height = reg_val; buf->binning_factor_x = res->bin_factor_x ? (res->bin_factor_x * 2) : 1; buf->binning_factor_y = res->bin_factor_y ? (res->bin_factor_y * 2) : 1; return 0; } static long __ov2680_set_exposure(struct v4l2_subdev *sd, int coarse_itg, int gain, int digitgain) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct ov2680_device *dev = to_ov2680_sensor(sd); u16 vts; int ret, exp_val; dev_dbg(&client->dev, "+++++++__ov2680_set_exposure coarse_itg %d, gain %d, digitgain %d++\n", coarse_itg, gain, digitgain); vts = dev->res->lines_per_frame; /* group hold */ ret = ov2680_write_reg(client, 1, OV2680_GROUP_ACCESS, 0x00); if (ret) { dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n", __func__, OV2680_GROUP_ACCESS); return ret; } /* Increase the VTS to match exposure + MARGIN */ if (coarse_itg > vts - OV2680_INTEGRATION_TIME_MARGIN) vts = (u16)coarse_itg + OV2680_INTEGRATION_TIME_MARGIN; ret = ov2680_write_reg(client, 2, OV2680_TIMING_VTS_H, vts); if (ret) { dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n", __func__, OV2680_TIMING_VTS_H); return ret; } /* set exposure */ /* Lower four bit should be 0*/ exp_val = coarse_itg << 4; ret = ov2680_write_reg(client, 1, OV2680_EXPOSURE_L, exp_val & 0xFF); if (ret) { dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n", __func__, OV2680_EXPOSURE_L); return ret; } ret = ov2680_write_reg(client, 1, OV2680_EXPOSURE_M, (exp_val >> 8) & 0xFF); if (ret) { dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n", __func__, OV2680_EXPOSURE_M); return ret; } ret = ov2680_write_reg(client, 1, OV2680_EXPOSURE_H, (exp_val >> 16) & 0x0F); if (ret) { dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n", __func__, OV2680_EXPOSURE_H); return ret; } /* Analog gain */ ret = ov2680_write_reg(client, 2, OV2680_AGC_H, gain); if (ret) { dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n", __func__, OV2680_AGC_H); return ret; } /* Digital gain */ if (digitgain) { ret = ov2680_write_reg(client, 2, OV2680_MWB_RED_GAIN_H, digitgain); if (ret) { dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n", __func__, OV2680_MWB_RED_GAIN_H); return ret; } ret = ov2680_write_reg(client, 2, OV2680_MWB_GREEN_GAIN_H, digitgain); if (ret) { dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n", __func__, OV2680_MWB_RED_GAIN_H); return ret; } ret = ov2680_write_reg(client, 2, OV2680_MWB_BLUE_GAIN_H, digitgain); if (ret) { dev_err(&client->dev, "%s: write 0x%02x: error, aborted\n", __func__, OV2680_MWB_RED_GAIN_H); return ret; } } /* End group */ ret = ov2680_write_reg(client, 1, OV2680_GROUP_ACCESS, 0x10); if (ret) return ret; /* Delay launch group */ ret = ov2680_write_reg(client, 1, OV2680_GROUP_ACCESS, 0xa0); if (ret) return ret; return ret; } static int ov2680_set_exposure(struct v4l2_subdev *sd, int exposure, int gain, int digitgain) { struct ov2680_device *dev = to_ov2680_sensor(sd); int ret = 0; mutex_lock(&dev->input_lock); dev->exposure = exposure; dev->gain = gain; dev->digitgain = digitgain; if (dev->power_on) ret = __ov2680_set_exposure(sd, exposure, gain, digitgain); mutex_unlock(&dev->input_lock); return ret; } static long ov2680_s_exposure(struct v4l2_subdev *sd, struct atomisp_exposure *exposure) { u16 coarse_itg = exposure->integration_time[0]; u16 analog_gain = exposure->gain[0]; u16 digital_gain = exposure->gain[1]; /* we should not accept the invalid value below */ if (analog_gain == 0) { struct i2c_client *client = v4l2_get_subdevdata(sd); v4l2_err(client, "%s: invalid value\n", __func__); return -EINVAL; } return ov2680_set_exposure(sd, coarse_itg, analog_gain, digital_gain); } static long ov2680_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { switch (cmd) { case ATOMISP_IOC_S_EXPOSURE: return ov2680_s_exposure(sd, arg); default: return -EINVAL; } return 0; } /* * This returns the exposure time being used. This should only be used * for filling in EXIF data, not for actual image processing. */ static int ov2680_q_exposure(struct v4l2_subdev *sd, s32 *value) { struct i2c_client *client = v4l2_get_subdevdata(sd); u32 reg_val; int ret; /* get exposure */ ret = ov2680_read_reg(client, 3, OV2680_EXPOSURE_H, ®_val); if (ret) return ret; /* Lower four bits are not part of the exposure val (always 0) */ *value = reg_val >> 4; return 0; } static int ov2680_v_flip(struct v4l2_subdev *sd, s32 value) { struct camera_mipi_info *ov2680_info = NULL; struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; u32 val; u8 index; dev_dbg(&client->dev, "@%s: value:%d\n", __func__, value); ret = ov2680_read_reg(client, 1, OV2680_FLIP_REG, &val); if (ret) return ret; if (value) val |= OV2680_FLIP_MIRROR_BIT_ENABLE; else val &= ~OV2680_FLIP_MIRROR_BIT_ENABLE; ret = ov2680_write_reg(client, 1, OV2680_FLIP_REG, val); if (ret) return ret; index = (v_flag > 0 ? OV2680_FLIP_BIT : 0) | (h_flag > 0 ? OV2680_MIRROR_BIT : 0); ov2680_info = v4l2_get_subdev_hostdata(sd); if (ov2680_info) { ov2680_info->raw_bayer_order = ov2680_bayer_order_mapping[index]; } return ret; } static int ov2680_h_flip(struct v4l2_subdev *sd, s32 value) { struct camera_mipi_info *ov2680_info = NULL; struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; u32 val; u8 index; dev_dbg(&client->dev, "@%s: value:%d\n", __func__, value); ret = ov2680_read_reg(client, 1, OV2680_MIRROR_REG, &val); if (ret) return ret; if (value) val |= OV2680_FLIP_MIRROR_BIT_ENABLE; else val &= ~OV2680_FLIP_MIRROR_BIT_ENABLE; ret = ov2680_write_reg(client, 1, OV2680_MIRROR_REG, val); if (ret) return ret; index = (v_flag > 0 ? OV2680_FLIP_BIT : 0) | (h_flag > 0 ? OV2680_MIRROR_BIT : 0); ov2680_info = v4l2_get_subdev_hostdata(sd); if (ov2680_info) { ov2680_info->raw_bayer_order = ov2680_bayer_order_mapping[index]; } return ret; } static int ov2680_s_ctrl(struct v4l2_ctrl *ctrl) { struct ov2680_device *dev = container_of(ctrl->handler, struct ov2680_device, ctrl_handler); struct i2c_client *client = v4l2_get_subdevdata(&dev->sd); int ret = 0; switch (ctrl->id) { case V4L2_CID_VFLIP: dev_dbg(&client->dev, "%s: CID_VFLIP:%d.\n", __func__, ctrl->val); ret = ov2680_v_flip(&dev->sd, ctrl->val); break; case V4L2_CID_HFLIP: dev_dbg(&client->dev, "%s: CID_HFLIP:%d.\n", __func__, ctrl->val); ret = ov2680_h_flip(&dev->sd, ctrl->val); break; default: ret = -EINVAL; } return ret; } static int ov2680_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct ov2680_device *dev = container_of(ctrl->handler, struct ov2680_device, ctrl_handler); int ret = 0; switch (ctrl->id) { case V4L2_CID_EXPOSURE_ABSOLUTE: ret = ov2680_q_exposure(&dev->sd, &ctrl->val); break; case V4L2_CID_FOCAL_ABSOLUTE: ret = ov2680_g_focal(&dev->sd, &ctrl->val); break; case V4L2_CID_FNUMBER_ABSOLUTE: ret = ov2680_g_fnumber(&dev->sd, &ctrl->val); break; case V4L2_CID_FNUMBER_RANGE: ret = ov2680_g_fnumber_range(&dev->sd, &ctrl->val); break; case V4L2_CID_BIN_FACTOR_HORZ: ret = ov2680_g_bin_factor_x(&dev->sd, &ctrl->val); break; case V4L2_CID_BIN_FACTOR_VERT: ret = ov2680_g_bin_factor_y(&dev->sd, &ctrl->val); break; default: ret = -EINVAL; } return ret; } static const struct v4l2_ctrl_ops ctrl_ops = { .s_ctrl = ov2680_s_ctrl, .g_volatile_ctrl = ov2680_g_volatile_ctrl }; static const struct v4l2_ctrl_config ov2680_controls[] = { { .ops = &ctrl_ops, .id = V4L2_CID_EXPOSURE_ABSOLUTE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "exposure", .min = 0x0, .max = 0xffff, .step = 0x01, .def = 0x00, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_FOCAL_ABSOLUTE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "focal length", .min = OV2680_FOCAL_LENGTH_DEFAULT, .max = OV2680_FOCAL_LENGTH_DEFAULT, .step = 0x01, .def = OV2680_FOCAL_LENGTH_DEFAULT, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_FNUMBER_ABSOLUTE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "f-number", .min = OV2680_F_NUMBER_DEFAULT, .max = OV2680_F_NUMBER_DEFAULT, .step = 0x01, .def = OV2680_F_NUMBER_DEFAULT, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_FNUMBER_RANGE, .type = V4L2_CTRL_TYPE_INTEGER, .name = "f-number range", .min = OV2680_F_NUMBER_RANGE, .max = OV2680_F_NUMBER_RANGE, .step = 0x01, .def = OV2680_F_NUMBER_RANGE, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_BIN_FACTOR_HORZ, .type = V4L2_CTRL_TYPE_INTEGER, .name = "horizontal binning factor", .min = 0, .max = OV2680_BIN_FACTOR_MAX, .step = 1, .def = 0, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_BIN_FACTOR_VERT, .type = V4L2_CTRL_TYPE_INTEGER, .name = "vertical binning factor", .min = 0, .max = OV2680_BIN_FACTOR_MAX, .step = 1, .def = 0, .flags = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_VFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Flip", .min = 0, .max = 1, .step = 1, .def = 0, }, { .ops = &ctrl_ops, .id = V4L2_CID_HFLIP, .type = V4L2_CTRL_TYPE_BOOLEAN, .name = "Mirror", .min = 0, .max = 1, .step = 1, .def = 0, }, }; static int ov2680_init_registers(struct v4l2_subdev *sd) { struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; ret = ov2680_write_reg(client, 1, OV2680_SW_RESET, 0x01); ret |= ov2680_write_reg_array(client, ov2680_global_setting); return ret; } static int power_ctrl(struct v4l2_subdev *sd, bool flag) { int ret = 0; struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (!dev || !dev->platform_data) return -ENODEV; dev_dbg(&client->dev, "%s: %s", __func__, flag ? "on" : "off"); if (flag) { ret |= dev->platform_data->v1p8_ctrl(sd, 1); ret |= dev->platform_data->v2p8_ctrl(sd, 1); usleep_range(10000, 15000); } if (!flag || ret) { ret |= dev->platform_data->v1p8_ctrl(sd, 0); ret |= dev->platform_data->v2p8_ctrl(sd, 0); } return ret; } static int gpio_ctrl(struct v4l2_subdev *sd, bool flag) { int ret; struct ov2680_device *dev = to_ov2680_sensor(sd); if (!dev || !dev->platform_data) return -ENODEV; /* * The OV2680 documents only one GPIO input (#XSHUTDN), but * existing integrations often wire two (reset/power_down) * because that is the way other sensors work. There is no * way to tell how it is wired internally, so existing * firmwares expose both and we drive them symmetrically. */ if (flag) { ret = dev->platform_data->gpio0_ctrl(sd, 1); usleep_range(10000, 15000); /* Ignore return from second gpio, it may not be there */ dev->platform_data->gpio1_ctrl(sd, 1); usleep_range(10000, 15000); } else { dev->platform_data->gpio1_ctrl(sd, 0); ret = dev->platform_data->gpio0_ctrl(sd, 0); } return ret; } static int power_up(struct v4l2_subdev *sd) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; if (!dev->platform_data) { dev_err(&client->dev, "no camera_sensor_platform_data"); return -ENODEV; } if (dev->power_on) return 0; /* Already on */ /* power control */ ret = power_ctrl(sd, 1); if (ret) goto fail_power; /* according to DS, at least 5ms is needed between DOVDD and PWDN */ usleep_range(5000, 6000); /* gpio ctrl */ ret = gpio_ctrl(sd, 1); if (ret) { ret = gpio_ctrl(sd, 1); if (ret) goto fail_power; } /* flis clock control */ ret = dev->platform_data->flisclk_ctrl(sd, 1); if (ret) goto fail_clk; /* according to DS, 20ms is needed between PWDN and i2c access */ msleep(20); ret = ov2680_init_registers(sd); if (ret) goto fail_init_registers; ret = __ov2680_set_exposure(sd, dev->exposure, dev->gain, dev->digitgain); if (ret) goto fail_init_registers; dev->power_on = true; return 0; fail_init_registers: dev->platform_data->flisclk_ctrl(sd, 0); fail_clk: gpio_ctrl(sd, 0); fail_power: power_ctrl(sd, 0); dev_err(&client->dev, "sensor power-up failed\n"); return ret; } static int power_down(struct v4l2_subdev *sd) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret = 0; h_flag = 0; v_flag = 0; if (!dev->platform_data) { dev_err(&client->dev, "no camera_sensor_platform_data"); return -ENODEV; } if (!dev->power_on) return 0; /* Already off */ ret = dev->platform_data->flisclk_ctrl(sd, 0); if (ret) dev_err(&client->dev, "flisclk failed\n"); /* gpio ctrl */ ret = gpio_ctrl(sd, 0); if (ret) { ret = gpio_ctrl(sd, 0); if (ret) dev_err(&client->dev, "gpio failed 2\n"); } /* power control */ ret = power_ctrl(sd, 0); if (ret) { dev_err(&client->dev, "vprog failed.\n"); return ret; } dev->power_on = false; return 0; } static int ov2680_s_power(struct v4l2_subdev *sd, int on) { struct ov2680_device *dev = to_ov2680_sensor(sd); int ret; mutex_lock(&dev->input_lock); if (on == 0) { ret = power_down(sd); } else { ret = power_up(sd); } mutex_unlock(&dev->input_lock); return ret; } static int ov2680_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct v4l2_mbus_framefmt *fmt = &format->format; struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); struct camera_mipi_info *ov2680_info = NULL; struct ov2680_resolution *res; int vts, ret = 0; dev_dbg(&client->dev, "%s: %s: pad: %d, fmt: %p\n", __func__, (format->which == V4L2_SUBDEV_FORMAT_TRY) ? "try" : "set", format->pad, fmt); if (format->pad) return -EINVAL; if (!fmt) return -EINVAL; ov2680_info = v4l2_get_subdev_hostdata(sd); if (!ov2680_info) return -EINVAL; res = v4l2_find_nearest_size(ov2680_res_preview, ARRAY_SIZE(ov2680_res_preview), width, height, fmt->width, fmt->height); if (!res) res = &ov2680_res_preview[N_RES_PREVIEW - 1]; fmt->width = res->width; fmt->height = res->height; fmt->code = MEDIA_BUS_FMT_SBGGR10_1X10; if (format->which == V4L2_SUBDEV_FORMAT_TRY) { sd_state->pads->try_fmt = *fmt; return 0; } dev_dbg(&client->dev, "%s: %dx%d\n", __func__, fmt->width, fmt->height); mutex_lock(&dev->input_lock); /* s_power has not been called yet for std v4l2 clients (camorama) */ power_up(sd); ret = ov2680_write_reg_array(client, dev->res->regs); if (ret) { dev_err(&client->dev, "ov2680 write resolution register err: %d\n", ret); goto err; } vts = dev->res->lines_per_frame; /* If necessary increase the VTS to match exposure + MARGIN */ if (dev->exposure > vts - OV2680_INTEGRATION_TIME_MARGIN) vts = dev->exposure + OV2680_INTEGRATION_TIME_MARGIN; ret = ov2680_write_reg(client, 2, OV2680_TIMING_VTS_H, vts); if (ret) { dev_err(&client->dev, "ov2680 write vts err: %d\n", ret); goto err; } ret = ov2680_get_intg_factor(client, ov2680_info, res); if (ret) { dev_err(&client->dev, "failed to get integration factor\n"); goto err; } /* * recall flip functions to avoid flip registers * were overridden by default setting */ if (h_flag) ov2680_h_flip(sd, h_flag); if (v_flag) ov2680_v_flip(sd, v_flag); dev->res = res; err: mutex_unlock(&dev->input_lock); return ret; } static int ov2680_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct v4l2_mbus_framefmt *fmt = &format->format; struct ov2680_device *dev = to_ov2680_sensor(sd); if (format->pad) return -EINVAL; if (!fmt) return -EINVAL; fmt->width = dev->res->width; fmt->height = dev->res->height; fmt->code = MEDIA_BUS_FMT_SBGGR10_1X10; return 0; } static int ov2680_detect(struct i2c_client *client) { struct i2c_adapter *adapter = client->adapter; u32 high, low; int ret; u16 id; u8 revision; if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) return -ENODEV; ret = ov2680_read_reg(client, 1, OV2680_SC_CMMN_CHIP_ID_H, &high); if (ret) { dev_err(&client->dev, "sensor_id_high = 0x%x\n", high); return -ENODEV; } ret = ov2680_read_reg(client, 1, OV2680_SC_CMMN_CHIP_ID_L, &low); id = ((((u16)high) << 8) | (u16)low); if (id != OV2680_ID) { dev_err(&client->dev, "sensor ID error 0x%x\n", id); return -ENODEV; } ret = ov2680_read_reg(client, 1, OV2680_SC_CMMN_SUB_ID, &high); revision = (u8)high & 0x0f; dev_info(&client->dev, "sensor_revision id = 0x%x, rev= %d\n", id, revision); return 0; } static int ov2680_s_stream(struct v4l2_subdev *sd, int enable) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret; mutex_lock(&dev->input_lock); if (enable) dev_dbg(&client->dev, "ov2680_s_stream one\n"); else dev_dbg(&client->dev, "ov2680_s_stream off\n"); ret = ov2680_write_reg(client, 1, OV2680_SW_STREAM, enable ? OV2680_START_STREAMING : OV2680_STOP_STREAMING); //otp valid at stream on state //if(!dev->otp_data) // dev->otp_data = ov2680_otp_read(sd); mutex_unlock(&dev->input_lock); return ret; } static int ov2680_s_config(struct v4l2_subdev *sd, int irq, void *platform_data) { struct ov2680_device *dev = to_ov2680_sensor(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret = 0; if (!platform_data) return -ENODEV; dev->platform_data = (struct camera_sensor_platform_data *)platform_data; mutex_lock(&dev->input_lock); ret = power_up(sd); if (ret) { dev_err(&client->dev, "ov2680 power-up err.\n"); goto fail_power_on; } ret = dev->platform_data->csi_cfg(sd, 1); if (ret) goto fail_csi_cfg; /* config & detect sensor */ ret = ov2680_detect(client); if (ret) { dev_err(&client->dev, "ov2680_detect err s_config.\n"); goto fail_csi_cfg; } /* turn off sensor, after probed */ ret = power_down(sd); if (ret) { dev_err(&client->dev, "ov2680 power-off err.\n"); goto fail_csi_cfg; } mutex_unlock(&dev->input_lock); return 0; fail_csi_cfg: dev->platform_data->csi_cfg(sd, 0); fail_power_on: power_down(sd); dev_err(&client->dev, "sensor power-gating failed\n"); mutex_unlock(&dev->input_lock); return ret; } static int ov2680_g_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *interval) { struct ov2680_device *dev = to_ov2680_sensor(sd); interval->interval.numerator = 1; interval->interval.denominator = dev->res->fps; return 0; } static int ov2680_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->index >= MAX_FMTS) return -EINVAL; code->code = MEDIA_BUS_FMT_SBGGR10_1X10; return 0; } static int ov2680_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { int index = fse->index; if (index >= N_RES_PREVIEW) return -EINVAL; fse->min_width = ov2680_res_preview[index].width; fse->min_height = ov2680_res_preview[index].height; fse->max_width = ov2680_res_preview[index].width; fse->max_height = ov2680_res_preview[index].height; return 0; } static int ov2680_enum_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval_enum *fie) { struct v4l2_fract fract; if (fie->index >= N_RES_PREVIEW || fie->width > ov2680_res_preview[0].width || fie->height > ov2680_res_preview[0].height || fie->which > V4L2_SUBDEV_FORMAT_ACTIVE) return -EINVAL; fract.denominator = ov2680_res_preview[fie->index].fps; fract.numerator = 1; fie->interval = fract; return 0; } static int ov2680_g_skip_frames(struct v4l2_subdev *sd, u32 *frames) { struct ov2680_device *dev = to_ov2680_sensor(sd); mutex_lock(&dev->input_lock); *frames = dev->res->skip_frames; mutex_unlock(&dev->input_lock); return 0; } static const struct v4l2_subdev_video_ops ov2680_video_ops = { .s_stream = ov2680_s_stream, .g_frame_interval = ov2680_g_frame_interval, }; static const struct v4l2_subdev_sensor_ops ov2680_sensor_ops = { .g_skip_frames = ov2680_g_skip_frames, }; static const struct v4l2_subdev_core_ops ov2680_core_ops = { .s_power = ov2680_s_power, .ioctl = ov2680_ioctl, }; static const struct v4l2_subdev_pad_ops ov2680_pad_ops = { .enum_mbus_code = ov2680_enum_mbus_code, .enum_frame_size = ov2680_enum_frame_size, .enum_frame_interval = ov2680_enum_frame_interval, .get_fmt = ov2680_get_fmt, .set_fmt = ov2680_set_fmt, }; static const struct v4l2_subdev_ops ov2680_ops = { .core = &ov2680_core_ops, .video = &ov2680_video_ops, .pad = &ov2680_pad_ops, .sensor = &ov2680_sensor_ops, }; static void ov2680_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov2680_device *dev = to_ov2680_sensor(sd); dev_dbg(&client->dev, "ov2680_remove...\n"); dev->platform_data->csi_cfg(sd, 0); v4l2_device_unregister_subdev(sd); media_entity_cleanup(&dev->sd.entity); v4l2_ctrl_handler_free(&dev->ctrl_handler); kfree(dev); } static int ov2680_probe(struct i2c_client *client) { struct ov2680_device *dev; int ret; void *pdata; unsigned int i; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; mutex_init(&dev->input_lock); dev->res = &ov2680_res_preview[0]; dev->exposure = dev->res->lines_per_frame - OV2680_INTEGRATION_TIME_MARGIN; dev->gain = 250; /* 0-2047 */ v4l2_i2c_subdev_init(&dev->sd, client, &ov2680_ops); pdata = gmin_camera_platform_data(&dev->sd, ATOMISP_INPUT_FORMAT_RAW_10, atomisp_bayer_order_bggr); if (!pdata) { ret = -EINVAL; goto out_free; } ret = ov2680_s_config(&dev->sd, client->irq, pdata); if (ret) goto out_free; ret = atomisp_register_i2c_module(&dev->sd, pdata, RAW_CAMERA); if (ret) goto out_free; dev->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; dev->pad.flags = MEDIA_PAD_FL_SOURCE; dev->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = v4l2_ctrl_handler_init(&dev->ctrl_handler, ARRAY_SIZE(ov2680_controls)); if (ret) { ov2680_remove(client); return ret; } for (i = 0; i < ARRAY_SIZE(ov2680_controls); i++) v4l2_ctrl_new_custom(&dev->ctrl_handler, &ov2680_controls[i], NULL); if (dev->ctrl_handler.error) { ov2680_remove(client); return dev->ctrl_handler.error; } /* Use same lock for controls as for everything else. */ dev->ctrl_handler.lock = &dev->input_lock; dev->sd.ctrl_handler = &dev->ctrl_handler; ret = media_entity_pads_init(&dev->sd.entity, 1, &dev->pad); if (ret) { ov2680_remove(client); dev_dbg(&client->dev, "+++ remove ov2680\n"); } return ret; out_free: dev_dbg(&client->dev, "+++ out free\n"); v4l2_device_unregister_subdev(&dev->sd); kfree(dev); return ret; } static const struct acpi_device_id ov2680_acpi_match[] = { {"XXOV2680"}, {"OVTI2680"}, {}, }; MODULE_DEVICE_TABLE(acpi, ov2680_acpi_match); static struct i2c_driver ov2680_driver = { .driver = { .name = "ov2680", .acpi_match_table = ov2680_acpi_match, }, .probe_new = ov2680_probe, .remove = ov2680_remove, }; module_i2c_driver(ov2680_driver); MODULE_AUTHOR("Jacky Wang <Jacky_wang@ovt.com>"); MODULE_DESCRIPTION("A low-level driver for OmniVision 2680 sensors"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1