Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ørjan Eide | 920 | 48.12% | 1 | 4.00% |
Lukasz Luba | 796 | 41.63% | 11 | 44.00% |
Matthias Kaehlcke | 69 | 3.61% | 1 | 4.00% |
Javi Merino | 42 | 2.20% | 2 | 8.00% |
Viresh Kumar | 36 | 1.88% | 3 | 12.00% |
Daniel Lezcano | 29 | 1.52% | 3 | 12.00% |
Kant Fan | 16 | 0.84% | 1 | 4.00% |
Matthew Wilcox | 2 | 0.10% | 1 | 4.00% |
Linus Torvalds | 1 | 0.05% | 1 | 4.00% |
Li Yang | 1 | 0.05% | 1 | 4.00% |
Total | 1912 | 25 |
// SPDX-License-Identifier: GPL-2.0 /* * devfreq_cooling: Thermal cooling device implementation for devices using * devfreq * * Copyright (C) 2014-2015 ARM Limited * * TODO: * - If OPPs are added or removed after devfreq cooling has * registered, the devfreq cooling won't react to it. */ #include <linux/devfreq.h> #include <linux/devfreq_cooling.h> #include <linux/energy_model.h> #include <linux/export.h> #include <linux/slab.h> #include <linux/pm_opp.h> #include <linux/pm_qos.h> #include <linux/thermal.h> #include <linux/units.h> #include <trace/events/thermal.h> #define SCALE_ERROR_MITIGATION 100 /** * struct devfreq_cooling_device - Devfreq cooling device * devfreq_cooling_device registered. * @cdev: Pointer to associated thermal cooling device. * @cooling_ops: devfreq callbacks to thermal cooling device ops * @devfreq: Pointer to associated devfreq device. * @cooling_state: Current cooling state. * @freq_table: Pointer to a table with the frequencies sorted in descending * order. You can index the table by cooling device state * @max_state: It is the last index, that is, one less than the number of the * OPPs * @power_ops: Pointer to devfreq_cooling_power, a more precised model. * @res_util: Resource utilization scaling factor for the power. * It is multiplied by 100 to minimize the error. It is used * for estimation of the power budget instead of using * 'utilization' (which is 'busy_time' / 'total_time'). * The 'res_util' range is from 100 to power * 100 for the * corresponding 'state'. * @capped_state: index to cooling state with in dynamic power budget * @req_max_freq: PM QoS request for limiting the maximum frequency * of the devfreq device. * @em_pd: Energy Model for the associated Devfreq device */ struct devfreq_cooling_device { struct thermal_cooling_device *cdev; struct thermal_cooling_device_ops cooling_ops; struct devfreq *devfreq; unsigned long cooling_state; u32 *freq_table; size_t max_state; struct devfreq_cooling_power *power_ops; u32 res_util; int capped_state; struct dev_pm_qos_request req_max_freq; struct em_perf_domain *em_pd; }; static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct devfreq_cooling_device *dfc = cdev->devdata; *state = dfc->max_state; return 0; } static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct devfreq_cooling_device *dfc = cdev->devdata; *state = dfc->cooling_state; return 0; } static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev, unsigned long state) { struct devfreq_cooling_device *dfc = cdev->devdata; struct devfreq *df = dfc->devfreq; struct device *dev = df->dev.parent; unsigned long freq; int perf_idx; if (state == dfc->cooling_state) return 0; dev_dbg(dev, "Setting cooling state %lu\n", state); if (state > dfc->max_state) return -EINVAL; if (dfc->em_pd) { perf_idx = dfc->max_state - state; freq = dfc->em_pd->table[perf_idx].frequency * 1000; } else { freq = dfc->freq_table[state]; } dev_pm_qos_update_request(&dfc->req_max_freq, DIV_ROUND_UP(freq, HZ_PER_KHZ)); dfc->cooling_state = state; return 0; } /** * get_perf_idx() - get the performance index corresponding to a frequency * @em_pd: Pointer to device's Energy Model * @freq: frequency in kHz * * Return: the performance index associated with the @freq, or * -EINVAL if it wasn't found. */ static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq) { int i; for (i = 0; i < em_pd->nr_perf_states; i++) { if (em_pd->table[i].frequency == freq) return i; } return -EINVAL; } static unsigned long get_voltage(struct devfreq *df, unsigned long freq) { struct device *dev = df->dev.parent; unsigned long voltage; struct dev_pm_opp *opp; opp = dev_pm_opp_find_freq_exact(dev, freq, true); if (PTR_ERR(opp) == -ERANGE) opp = dev_pm_opp_find_freq_exact(dev, freq, false); if (IS_ERR(opp)) { dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n", freq, PTR_ERR(opp)); return 0; } voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */ dev_pm_opp_put(opp); if (voltage == 0) { dev_err_ratelimited(dev, "Failed to get voltage for frequency %lu\n", freq); } return voltage; } static void _normalize_load(struct devfreq_dev_status *status) { if (status->total_time > 0xfffff) { status->total_time >>= 10; status->busy_time >>= 10; } status->busy_time <<= 10; status->busy_time /= status->total_time ? : 1; status->busy_time = status->busy_time ? : 1; status->total_time = 1024; } static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev, u32 *power) { struct devfreq_cooling_device *dfc = cdev->devdata; struct devfreq *df = dfc->devfreq; struct devfreq_dev_status status; unsigned long state; unsigned long freq; unsigned long voltage; int res, perf_idx; mutex_lock(&df->lock); status = df->last_status; mutex_unlock(&df->lock); freq = status.current_frequency; if (dfc->power_ops && dfc->power_ops->get_real_power) { voltage = get_voltage(df, freq); if (voltage == 0) { res = -EINVAL; goto fail; } res = dfc->power_ops->get_real_power(df, power, freq, voltage); if (!res) { state = dfc->capped_state; /* Convert EM power into milli-Watts first */ dfc->res_util = dfc->em_pd->table[state].power; dfc->res_util /= MICROWATT_PER_MILLIWATT; dfc->res_util *= SCALE_ERROR_MITIGATION; if (*power > 1) dfc->res_util /= *power; } else { goto fail; } } else { /* Energy Model frequencies are in kHz */ perf_idx = get_perf_idx(dfc->em_pd, freq / 1000); if (perf_idx < 0) { res = -EAGAIN; goto fail; } _normalize_load(&status); /* Convert EM power into milli-Watts first */ *power = dfc->em_pd->table[perf_idx].power; *power /= MICROWATT_PER_MILLIWATT; /* Scale power for utilization */ *power *= status.busy_time; *power >>= 10; } trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power); return 0; fail: /* It is safe to set max in this case */ dfc->res_util = SCALE_ERROR_MITIGATION; return res; } static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev, unsigned long state, u32 *power) { struct devfreq_cooling_device *dfc = cdev->devdata; int perf_idx; if (state > dfc->max_state) return -EINVAL; perf_idx = dfc->max_state - state; *power = dfc->em_pd->table[perf_idx].power; *power /= MICROWATT_PER_MILLIWATT; return 0; } static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev, u32 power, unsigned long *state) { struct devfreq_cooling_device *dfc = cdev->devdata; struct devfreq *df = dfc->devfreq; struct devfreq_dev_status status; unsigned long freq, em_power_mw; s32 est_power; int i; mutex_lock(&df->lock); status = df->last_status; mutex_unlock(&df->lock); freq = status.current_frequency; if (dfc->power_ops && dfc->power_ops->get_real_power) { /* Scale for resource utilization */ est_power = power * dfc->res_util; est_power /= SCALE_ERROR_MITIGATION; } else { /* Scale dynamic power for utilization */ _normalize_load(&status); est_power = power << 10; est_power /= status.busy_time; } /* * Find the first cooling state that is within the power * budget. The EM power table is sorted ascending. */ for (i = dfc->max_state; i > 0; i--) { /* Convert EM power to milli-Watts to make safe comparison */ em_power_mw = dfc->em_pd->table[i].power; em_power_mw /= MICROWATT_PER_MILLIWATT; if (est_power >= em_power_mw) break; } *state = dfc->max_state - i; dfc->capped_state = *state; trace_thermal_power_devfreq_limit(cdev, freq, *state, power); return 0; } /** * devfreq_cooling_gen_tables() - Generate frequency table. * @dfc: Pointer to devfreq cooling device. * @num_opps: Number of OPPs * * Generate frequency table which holds the frequencies in descending * order. That way its indexed by cooling device state. This is for * compatibility with drivers which do not register Energy Model. * * Return: 0 on success, negative error code on failure. */ static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc, int num_opps) { struct devfreq *df = dfc->devfreq; struct device *dev = df->dev.parent; unsigned long freq; int i; dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table), GFP_KERNEL); if (!dfc->freq_table) return -ENOMEM; for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) { struct dev_pm_opp *opp; opp = dev_pm_opp_find_freq_floor(dev, &freq); if (IS_ERR(opp)) { kfree(dfc->freq_table); return PTR_ERR(opp); } dev_pm_opp_put(opp); dfc->freq_table[i] = freq; } return 0; } /** * of_devfreq_cooling_register_power() - Register devfreq cooling device, * with OF and power information. * @np: Pointer to OF device_node. * @df: Pointer to devfreq device. * @dfc_power: Pointer to devfreq_cooling_power. * * Register a devfreq cooling device. The available OPPs must be * registered on the device. * * If @dfc_power is provided, the cooling device is registered with the * power extensions. For the power extensions to work correctly, * devfreq should use the simple_ondemand governor, other governors * are not currently supported. */ struct thermal_cooling_device * of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df, struct devfreq_cooling_power *dfc_power) { struct thermal_cooling_device *cdev; struct device *dev = df->dev.parent; struct devfreq_cooling_device *dfc; struct em_perf_domain *em; struct thermal_cooling_device_ops *ops; char *name; int err, num_opps; dfc = kzalloc(sizeof(*dfc), GFP_KERNEL); if (!dfc) return ERR_PTR(-ENOMEM); dfc->devfreq = df; ops = &dfc->cooling_ops; ops->get_max_state = devfreq_cooling_get_max_state; ops->get_cur_state = devfreq_cooling_get_cur_state; ops->set_cur_state = devfreq_cooling_set_cur_state; em = em_pd_get(dev); if (em && !em_is_artificial(em)) { dfc->em_pd = em; ops->get_requested_power = devfreq_cooling_get_requested_power; ops->state2power = devfreq_cooling_state2power; ops->power2state = devfreq_cooling_power2state; dfc->power_ops = dfc_power; num_opps = em_pd_nr_perf_states(dfc->em_pd); } else { /* Backward compatibility for drivers which do not use IPA */ dev_dbg(dev, "missing proper EM for cooling device\n"); num_opps = dev_pm_opp_get_opp_count(dev); err = devfreq_cooling_gen_tables(dfc, num_opps); if (err) goto free_dfc; } if (num_opps <= 0) { err = -EINVAL; goto free_dfc; } /* max_state is an index, not a counter */ dfc->max_state = num_opps - 1; err = dev_pm_qos_add_request(dev, &dfc->req_max_freq, DEV_PM_QOS_MAX_FREQUENCY, PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE); if (err < 0) goto free_table; err = -ENOMEM; name = kasprintf(GFP_KERNEL, "devfreq-%s", dev_name(dev)); if (!name) goto remove_qos_req; cdev = thermal_of_cooling_device_register(np, name, dfc, ops); kfree(name); if (IS_ERR(cdev)) { err = PTR_ERR(cdev); dev_err(dev, "Failed to register devfreq cooling device (%d)\n", err); goto remove_qos_req; } dfc->cdev = cdev; return cdev; remove_qos_req: dev_pm_qos_remove_request(&dfc->req_max_freq); free_table: kfree(dfc->freq_table); free_dfc: kfree(dfc); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power); /** * of_devfreq_cooling_register() - Register devfreq cooling device, * with OF information. * @np: Pointer to OF device_node. * @df: Pointer to devfreq device. */ struct thermal_cooling_device * of_devfreq_cooling_register(struct device_node *np, struct devfreq *df) { return of_devfreq_cooling_register_power(np, df, NULL); } EXPORT_SYMBOL_GPL(of_devfreq_cooling_register); /** * devfreq_cooling_register() - Register devfreq cooling device. * @df: Pointer to devfreq device. */ struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df) { return of_devfreq_cooling_register(NULL, df); } EXPORT_SYMBOL_GPL(devfreq_cooling_register); /** * devfreq_cooling_em_register() - Register devfreq cooling device with * power information and automatically register Energy Model (EM) * @df: Pointer to devfreq device. * @dfc_power: Pointer to devfreq_cooling_power. * * Register a devfreq cooling device and automatically register EM. The * available OPPs must be registered for the device. * * If @dfc_power is provided, the cooling device is registered with the * power extensions. It is using the simple Energy Model which requires * "dynamic-power-coefficient" a devicetree property. To not break drivers * which miss that DT property, the function won't bail out when the EM * registration failed. The cooling device will be registered if everything * else is OK. */ struct thermal_cooling_device * devfreq_cooling_em_register(struct devfreq *df, struct devfreq_cooling_power *dfc_power) { struct thermal_cooling_device *cdev; struct device *dev; int ret; if (IS_ERR_OR_NULL(df)) return ERR_PTR(-EINVAL); dev = df->dev.parent; ret = dev_pm_opp_of_register_em(dev, NULL); if (ret) dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n", ret); cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power); if (IS_ERR_OR_NULL(cdev)) em_dev_unregister_perf_domain(dev); return cdev; } EXPORT_SYMBOL_GPL(devfreq_cooling_em_register); /** * devfreq_cooling_unregister() - Unregister devfreq cooling device. * @cdev: Pointer to devfreq cooling device to unregister. * * Unregisters devfreq cooling device and related Energy Model if it was * present. */ void devfreq_cooling_unregister(struct thermal_cooling_device *cdev) { struct devfreq_cooling_device *dfc; struct device *dev; if (IS_ERR_OR_NULL(cdev)) return; dfc = cdev->devdata; dev = dfc->devfreq->dev.parent; thermal_cooling_device_unregister(dfc->cdev); dev_pm_qos_remove_request(&dfc->req_max_freq); em_dev_unregister_perf_domain(dev); kfree(dfc->freq_table); kfree(dfc); } EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1