Contributors: 31
Author Tokens Token Proportion Commits Commit Proportion
Srinivas Pandruvada 1075 40.57% 5 9.26%
Fenghua Yu 547 20.64% 4 7.41%
Hidetoshi Seto 229 8.64% 4 7.41%
Dmitriy Zavin 188 7.09% 3 5.56%
Durgadoss R 162 6.11% 1 1.85%
Bartlomiej Zolnierkiewicz 65 2.45% 1 1.85%
Ingo Molnar 64 2.42% 3 5.56%
Ricardo Neri 62 2.34% 3 5.56%
Borislav Petkov 59 2.23% 6 11.11%
Thomas Gleixner 37 1.40% 3 5.56%
Kay Sievers 28 1.06% 1 1.85%
Sebastian Andrzej Siewior 26 0.98% 1 1.85%
Yong Wang 24 0.91% 1 1.85%
Chuansheng Liu 21 0.79% 1 1.85%
Youquan Song 15 0.57% 1 1.85%
Dmitry Torokhov 9 0.34% 1 1.85%
Sergey Senozhatsky 8 0.30% 1 1.85%
Rakib Mullick 6 0.23% 1 1.85%
Stephen Hemminger 5 0.19% 1 1.85%
Christoph Lameter 3 0.11% 1 1.85%
Paul Gortmaker 3 0.11% 1 1.85%
Jin Dongming 2 0.08% 1 1.85%
Chen Yucong 2 0.08% 1 1.85%
Seiji Aguchi 2 0.08% 1 1.85%
Srivatsa S. Bhat 2 0.08% 1 1.85%
Arnd Bergmann 1 0.04% 1 1.85%
Hugh Dickins 1 0.04% 1 1.85%
Mike Travis 1 0.04% 1 1.85%
Akinobu Mita 1 0.04% 1 1.85%
Harvey Harrison 1 0.04% 1 1.85%
Arvind Yadav 1 0.04% 1 1.85%
Total 2650 54


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Thermal throttle event support code (such as syslog messaging and rate
 * limiting) that was factored out from x86_64 (mce_intel.c) and i386 (p4.c).
 *
 * This allows consistent reporting of CPU thermal throttle events.
 *
 * Maintains a counter in /sys that keeps track of the number of thermal
 * events, such that the user knows how bad the thermal problem might be
 * (since the logging to syslog is rate limited).
 *
 * Author: Dmitriy Zavin (dmitriyz@google.com)
 *
 * Credits: Adapted from Zwane Mwaikambo's original code in mce_intel.c.
 *          Inspired by Ross Biro's and Al Borchers' counter code.
 */
#include <linux/interrupt.h>
#include <linux/notifier.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/cpu.h>

#include <asm/processor.h>
#include <asm/thermal.h>
#include <asm/traps.h>
#include <asm/apic.h>
#include <asm/irq.h>
#include <asm/msr.h>

#include "intel_hfi.h"
#include "thermal_interrupt.h"

/* How long to wait between reporting thermal events */
#define CHECK_INTERVAL		(300 * HZ)

#define THERMAL_THROTTLING_EVENT	0
#define POWER_LIMIT_EVENT		1

/**
 * struct _thermal_state - Represent the current thermal event state
 * @next_check:			Stores the next timestamp, when it is allowed
 *				to log the next warning message.
 * @last_interrupt_time:	Stores the timestamp for the last threshold
 *				high event.
 * @therm_work:			Delayed workqueue structure
 * @count:			Stores the current running count for thermal
 *				or power threshold interrupts.
 * @last_count:			Stores the previous running count for thermal
 *				or power threshold interrupts.
 * @max_time_ms:		This shows the maximum amount of time CPU was
 *				in throttled state for a single thermal
 *				threshold high to low state.
 * @total_time_ms:		This is a cumulative time during which CPU was
 *				in the throttled state.
 * @rate_control_active:	Set when a throttling message is logged.
 *				This is used for the purpose of rate-control.
 * @new_event:			Stores the last high/low status of the
 *				THERM_STATUS_PROCHOT or
 *				THERM_STATUS_POWER_LIMIT.
 * @level:			Stores whether this _thermal_state instance is
 *				for a CORE level or for PACKAGE level.
 * @sample_index:		Index for storing the next sample in the buffer
 *				temp_samples[].
 * @sample_count:		Total number of samples collected in the buffer
 *				temp_samples[].
 * @average:			The last moving average of temperature samples
 * @baseline_temp:		Temperature at which thermal threshold high
 *				interrupt was generated.
 * @temp_samples:		Storage for temperature samples to calculate
 *				moving average.
 *
 * This structure is used to represent data related to thermal state for a CPU.
 * There is a separate storage for core and package level for each CPU.
 */
struct _thermal_state {
	u64			next_check;
	u64			last_interrupt_time;
	struct delayed_work	therm_work;
	unsigned long		count;
	unsigned long		last_count;
	unsigned long		max_time_ms;
	unsigned long		total_time_ms;
	bool			rate_control_active;
	bool			new_event;
	u8			level;
	u8			sample_index;
	u8			sample_count;
	u8			average;
	u8			baseline_temp;
	u8			temp_samples[3];
};

struct thermal_state {
	struct _thermal_state core_throttle;
	struct _thermal_state core_power_limit;
	struct _thermal_state package_throttle;
	struct _thermal_state package_power_limit;
	struct _thermal_state core_thresh0;
	struct _thermal_state core_thresh1;
	struct _thermal_state pkg_thresh0;
	struct _thermal_state pkg_thresh1;
};

/* Callback to handle core threshold interrupts */
int (*platform_thermal_notify)(__u64 msr_val);
EXPORT_SYMBOL(platform_thermal_notify);

/* Callback to handle core package threshold_interrupts */
int (*platform_thermal_package_notify)(__u64 msr_val);
EXPORT_SYMBOL_GPL(platform_thermal_package_notify);

/* Callback support of rate control, return true, if
 * callback has rate control */
bool (*platform_thermal_package_rate_control)(void);
EXPORT_SYMBOL_GPL(platform_thermal_package_rate_control);


static DEFINE_PER_CPU(struct thermal_state, thermal_state);

static atomic_t therm_throt_en	= ATOMIC_INIT(0);

static u32 lvtthmr_init __read_mostly;

#ifdef CONFIG_SYSFS
#define define_therm_throt_device_one_ro(_name)				\
	static DEVICE_ATTR(_name, 0444,					\
			   therm_throt_device_show_##_name,		\
				   NULL)				\

#define define_therm_throt_device_show_func(event, name)		\
									\
static ssize_t therm_throt_device_show_##event##_##name(		\
			struct device *dev,				\
			struct device_attribute *attr,			\
			char *buf)					\
{									\
	unsigned int cpu = dev->id;					\
	ssize_t ret;							\
									\
	preempt_disable();	/* CPU hotplug */			\
	if (cpu_online(cpu)) {						\
		ret = sprintf(buf, "%lu\n",				\
			      per_cpu(thermal_state, cpu).event.name);	\
	} else								\
		ret = 0;						\
	preempt_enable();						\
									\
	return ret;							\
}

define_therm_throt_device_show_func(core_throttle, count);
define_therm_throt_device_one_ro(core_throttle_count);

define_therm_throt_device_show_func(core_power_limit, count);
define_therm_throt_device_one_ro(core_power_limit_count);

define_therm_throt_device_show_func(package_throttle, count);
define_therm_throt_device_one_ro(package_throttle_count);

define_therm_throt_device_show_func(package_power_limit, count);
define_therm_throt_device_one_ro(package_power_limit_count);

define_therm_throt_device_show_func(core_throttle, max_time_ms);
define_therm_throt_device_one_ro(core_throttle_max_time_ms);

define_therm_throt_device_show_func(package_throttle, max_time_ms);
define_therm_throt_device_one_ro(package_throttle_max_time_ms);

define_therm_throt_device_show_func(core_throttle, total_time_ms);
define_therm_throt_device_one_ro(core_throttle_total_time_ms);

define_therm_throt_device_show_func(package_throttle, total_time_ms);
define_therm_throt_device_one_ro(package_throttle_total_time_ms);

static struct attribute *thermal_throttle_attrs[] = {
	&dev_attr_core_throttle_count.attr,
	&dev_attr_core_throttle_max_time_ms.attr,
	&dev_attr_core_throttle_total_time_ms.attr,
	NULL
};

static const struct attribute_group thermal_attr_group = {
	.attrs	= thermal_throttle_attrs,
	.name	= "thermal_throttle"
};
#endif /* CONFIG_SYSFS */

#define CORE_LEVEL	0
#define PACKAGE_LEVEL	1

#define THERM_THROT_POLL_INTERVAL	HZ
#define THERM_STATUS_PROCHOT_LOG	BIT(1)

#define THERM_STATUS_CLEAR_CORE_MASK (BIT(1) | BIT(3) | BIT(5) | BIT(7) | BIT(9) | BIT(11) | BIT(13) | BIT(15))
#define THERM_STATUS_CLEAR_PKG_MASK  (BIT(1) | BIT(3) | BIT(5) | BIT(7) | BIT(9) | BIT(11))

static void clear_therm_status_log(int level)
{
	int msr;
	u64 mask, msr_val;

	if (level == CORE_LEVEL) {
		msr  = MSR_IA32_THERM_STATUS;
		mask = THERM_STATUS_CLEAR_CORE_MASK;
	} else {
		msr  = MSR_IA32_PACKAGE_THERM_STATUS;
		mask = THERM_STATUS_CLEAR_PKG_MASK;
	}

	rdmsrl(msr, msr_val);
	msr_val &= mask;
	wrmsrl(msr, msr_val & ~THERM_STATUS_PROCHOT_LOG);
}

static void get_therm_status(int level, bool *proc_hot, u8 *temp)
{
	int msr;
	u64 msr_val;

	if (level == CORE_LEVEL)
		msr = MSR_IA32_THERM_STATUS;
	else
		msr = MSR_IA32_PACKAGE_THERM_STATUS;

	rdmsrl(msr, msr_val);
	if (msr_val & THERM_STATUS_PROCHOT_LOG)
		*proc_hot = true;
	else
		*proc_hot = false;

	*temp = (msr_val >> 16) & 0x7F;
}

static void __maybe_unused throttle_active_work(struct work_struct *work)
{
	struct _thermal_state *state = container_of(to_delayed_work(work),
						struct _thermal_state, therm_work);
	unsigned int i, avg, this_cpu = smp_processor_id();
	u64 now = get_jiffies_64();
	bool hot;
	u8 temp;

	get_therm_status(state->level, &hot, &temp);
	/* temperature value is offset from the max so lesser means hotter */
	if (!hot && temp > state->baseline_temp) {
		if (state->rate_control_active)
			pr_info("CPU%d: %s temperature/speed normal (total events = %lu)\n",
				this_cpu,
				state->level == CORE_LEVEL ? "Core" : "Package",
				state->count);

		state->rate_control_active = false;
		return;
	}

	if (time_before64(now, state->next_check) &&
			  state->rate_control_active)
		goto re_arm;

	state->next_check = now + CHECK_INTERVAL;

	if (state->count != state->last_count) {
		/* There was one new thermal interrupt */
		state->last_count = state->count;
		state->average = 0;
		state->sample_count = 0;
		state->sample_index = 0;
	}

	state->temp_samples[state->sample_index] = temp;
	state->sample_count++;
	state->sample_index = (state->sample_index + 1) % ARRAY_SIZE(state->temp_samples);
	if (state->sample_count < ARRAY_SIZE(state->temp_samples))
		goto re_arm;

	avg = 0;
	for (i = 0; i < ARRAY_SIZE(state->temp_samples); ++i)
		avg += state->temp_samples[i];

	avg /= ARRAY_SIZE(state->temp_samples);

	if (state->average > avg) {
		pr_warn("CPU%d: %s temperature is above threshold, cpu clock is throttled (total events = %lu)\n",
			this_cpu,
			state->level == CORE_LEVEL ? "Core" : "Package",
			state->count);
		state->rate_control_active = true;
	}

	state->average = avg;

re_arm:
	clear_therm_status_log(state->level);
	schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL);
}

/***
 * therm_throt_process - Process thermal throttling event from interrupt
 * @curr: Whether the condition is current or not (boolean), since the
 *        thermal interrupt normally gets called both when the thermal
 *        event begins and once the event has ended.
 *
 * This function is called by the thermal interrupt after the
 * IRQ has been acknowledged.
 *
 * It will take care of rate limiting and printing messages to the syslog.
 */
static void therm_throt_process(bool new_event, int event, int level)
{
	struct _thermal_state *state;
	unsigned int this_cpu = smp_processor_id();
	bool old_event;
	u64 now;
	struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu);

	now = get_jiffies_64();
	if (level == CORE_LEVEL) {
		if (event == THERMAL_THROTTLING_EVENT)
			state = &pstate->core_throttle;
		else if (event == POWER_LIMIT_EVENT)
			state = &pstate->core_power_limit;
		else
			return;
	} else if (level == PACKAGE_LEVEL) {
		if (event == THERMAL_THROTTLING_EVENT)
			state = &pstate->package_throttle;
		else if (event == POWER_LIMIT_EVENT)
			state = &pstate->package_power_limit;
		else
			return;
	} else
		return;

	old_event = state->new_event;
	state->new_event = new_event;

	if (new_event)
		state->count++;

	if (event != THERMAL_THROTTLING_EVENT)
		return;

	if (new_event && !state->last_interrupt_time) {
		bool hot;
		u8 temp;

		get_therm_status(state->level, &hot, &temp);
		/*
		 * Ignore short temperature spike as the system is not close
		 * to PROCHOT. 10C offset is large enough to ignore. It is
		 * already dropped from the high threshold temperature.
		 */
		if (temp > 10)
			return;

		state->baseline_temp = temp;
		state->last_interrupt_time = now;
		schedule_delayed_work_on(this_cpu, &state->therm_work, THERM_THROT_POLL_INTERVAL);
	} else if (old_event && state->last_interrupt_time) {
		unsigned long throttle_time;

		throttle_time = jiffies_delta_to_msecs(now - state->last_interrupt_time);
		if (throttle_time > state->max_time_ms)
			state->max_time_ms = throttle_time;
		state->total_time_ms += throttle_time;
		state->last_interrupt_time = 0;
	}
}

static int thresh_event_valid(int level, int event)
{
	struct _thermal_state *state;
	unsigned int this_cpu = smp_processor_id();
	struct thermal_state *pstate = &per_cpu(thermal_state, this_cpu);
	u64 now = get_jiffies_64();

	if (level == PACKAGE_LEVEL)
		state = (event == 0) ? &pstate->pkg_thresh0 :
						&pstate->pkg_thresh1;
	else
		state = (event == 0) ? &pstate->core_thresh0 :
						&pstate->core_thresh1;

	if (time_before64(now, state->next_check))
		return 0;

	state->next_check = now + CHECK_INTERVAL;

	return 1;
}

static bool int_pln_enable;
static int __init int_pln_enable_setup(char *s)
{
	int_pln_enable = true;

	return 1;
}
__setup("int_pln_enable", int_pln_enable_setup);

#ifdef CONFIG_SYSFS
/* Add/Remove thermal_throttle interface for CPU device: */
static int thermal_throttle_add_dev(struct device *dev, unsigned int cpu)
{
	int err;
	struct cpuinfo_x86 *c = &cpu_data(cpu);

	err = sysfs_create_group(&dev->kobj, &thermal_attr_group);
	if (err)
		return err;

	if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) {
		err = sysfs_add_file_to_group(&dev->kobj,
					      &dev_attr_core_power_limit_count.attr,
					      thermal_attr_group.name);
		if (err)
			goto del_group;
	}

	if (cpu_has(c, X86_FEATURE_PTS)) {
		err = sysfs_add_file_to_group(&dev->kobj,
					      &dev_attr_package_throttle_count.attr,
					      thermal_attr_group.name);
		if (err)
			goto del_group;

		err = sysfs_add_file_to_group(&dev->kobj,
					      &dev_attr_package_throttle_max_time_ms.attr,
					      thermal_attr_group.name);
		if (err)
			goto del_group;

		err = sysfs_add_file_to_group(&dev->kobj,
					      &dev_attr_package_throttle_total_time_ms.attr,
					      thermal_attr_group.name);
		if (err)
			goto del_group;

		if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable) {
			err = sysfs_add_file_to_group(&dev->kobj,
					&dev_attr_package_power_limit_count.attr,
					thermal_attr_group.name);
			if (err)
				goto del_group;
		}
	}

	return 0;

del_group:
	sysfs_remove_group(&dev->kobj, &thermal_attr_group);

	return err;
}

static void thermal_throttle_remove_dev(struct device *dev)
{
	sysfs_remove_group(&dev->kobj, &thermal_attr_group);
}

/* Get notified when a cpu comes on/off. Be hotplug friendly. */
static int thermal_throttle_online(unsigned int cpu)
{
	struct thermal_state *state = &per_cpu(thermal_state, cpu);
	struct device *dev = get_cpu_device(cpu);
	u32 l;

	state->package_throttle.level = PACKAGE_LEVEL;
	state->core_throttle.level = CORE_LEVEL;

	INIT_DELAYED_WORK(&state->package_throttle.therm_work, throttle_active_work);
	INIT_DELAYED_WORK(&state->core_throttle.therm_work, throttle_active_work);

	/*
	 * The first CPU coming online will enable the HFI. Usually this causes
	 * hardware to issue an HFI thermal interrupt. Such interrupt will reach
	 * the CPU once we enable the thermal vector in the local APIC.
	 */
	intel_hfi_online(cpu);

	/* Unmask the thermal vector after the above workqueues are initialized. */
	l = apic_read(APIC_LVTTHMR);
	apic_write(APIC_LVTTHMR, l & ~APIC_LVT_MASKED);

	return thermal_throttle_add_dev(dev, cpu);
}

static int thermal_throttle_offline(unsigned int cpu)
{
	struct thermal_state *state = &per_cpu(thermal_state, cpu);
	struct device *dev = get_cpu_device(cpu);
	u32 l;

	/* Mask the thermal vector before draining evtl. pending work */
	l = apic_read(APIC_LVTTHMR);
	apic_write(APIC_LVTTHMR, l | APIC_LVT_MASKED);

	intel_hfi_offline(cpu);

	cancel_delayed_work_sync(&state->package_throttle.therm_work);
	cancel_delayed_work_sync(&state->core_throttle.therm_work);

	state->package_throttle.rate_control_active = false;
	state->core_throttle.rate_control_active = false;

	thermal_throttle_remove_dev(dev);
	return 0;
}

static __init int thermal_throttle_init_device(void)
{
	int ret;

	if (!atomic_read(&therm_throt_en))
		return 0;

	intel_hfi_init();

	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/therm:online",
				thermal_throttle_online,
				thermal_throttle_offline);
	return ret < 0 ? ret : 0;
}
device_initcall(thermal_throttle_init_device);

#endif /* CONFIG_SYSFS */

static void notify_package_thresholds(__u64 msr_val)
{
	bool notify_thres_0 = false;
	bool notify_thres_1 = false;

	if (!platform_thermal_package_notify)
		return;

	/* lower threshold check */
	if (msr_val & THERM_LOG_THRESHOLD0)
		notify_thres_0 = true;
	/* higher threshold check */
	if (msr_val & THERM_LOG_THRESHOLD1)
		notify_thres_1 = true;

	if (!notify_thres_0 && !notify_thres_1)
		return;

	if (platform_thermal_package_rate_control &&
		platform_thermal_package_rate_control()) {
		/* Rate control is implemented in callback */
		platform_thermal_package_notify(msr_val);
		return;
	}

	/* lower threshold reached */
	if (notify_thres_0 && thresh_event_valid(PACKAGE_LEVEL, 0))
		platform_thermal_package_notify(msr_val);
	/* higher threshold reached */
	if (notify_thres_1 && thresh_event_valid(PACKAGE_LEVEL, 1))
		platform_thermal_package_notify(msr_val);
}

static void notify_thresholds(__u64 msr_val)
{
	/* check whether the interrupt handler is defined;
	 * otherwise simply return
	 */
	if (!platform_thermal_notify)
		return;

	/* lower threshold reached */
	if ((msr_val & THERM_LOG_THRESHOLD0) &&
			thresh_event_valid(CORE_LEVEL, 0))
		platform_thermal_notify(msr_val);
	/* higher threshold reached */
	if ((msr_val & THERM_LOG_THRESHOLD1) &&
			thresh_event_valid(CORE_LEVEL, 1))
		platform_thermal_notify(msr_val);
}

void __weak notify_hwp_interrupt(void)
{
	wrmsrl_safe(MSR_HWP_STATUS, 0);
}

/* Thermal transition interrupt handler */
void intel_thermal_interrupt(void)
{
	__u64 msr_val;

	if (static_cpu_has(X86_FEATURE_HWP))
		notify_hwp_interrupt();

	rdmsrl(MSR_IA32_THERM_STATUS, msr_val);

	/* Check for violation of core thermal thresholds*/
	notify_thresholds(msr_val);

	therm_throt_process(msr_val & THERM_STATUS_PROCHOT,
			    THERMAL_THROTTLING_EVENT,
			    CORE_LEVEL);

	if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable)
		therm_throt_process(msr_val & THERM_STATUS_POWER_LIMIT,
					POWER_LIMIT_EVENT,
					CORE_LEVEL);

	if (this_cpu_has(X86_FEATURE_PTS)) {
		rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val);
		/* check violations of package thermal thresholds */
		notify_package_thresholds(msr_val);
		therm_throt_process(msr_val & PACKAGE_THERM_STATUS_PROCHOT,
					THERMAL_THROTTLING_EVENT,
					PACKAGE_LEVEL);
		if (this_cpu_has(X86_FEATURE_PLN) && int_pln_enable)
			therm_throt_process(msr_val &
					PACKAGE_THERM_STATUS_POWER_LIMIT,
					POWER_LIMIT_EVENT,
					PACKAGE_LEVEL);

		if (this_cpu_has(X86_FEATURE_HFI))
			intel_hfi_process_event(msr_val &
						PACKAGE_THERM_STATUS_HFI_UPDATED);
	}
}

/* Thermal monitoring depends on APIC, ACPI and clock modulation */
static int intel_thermal_supported(struct cpuinfo_x86 *c)
{
	if (!boot_cpu_has(X86_FEATURE_APIC))
		return 0;
	if (!cpu_has(c, X86_FEATURE_ACPI) || !cpu_has(c, X86_FEATURE_ACC))
		return 0;
	return 1;
}

bool x86_thermal_enabled(void)
{
	return atomic_read(&therm_throt_en);
}

void __init therm_lvt_init(void)
{
	/*
	 * This function is only called on boot CPU. Save the init thermal
	 * LVT value on BSP and use that value to restore APs' thermal LVT
	 * entry BIOS programmed later
	 */
	if (intel_thermal_supported(&boot_cpu_data))
		lvtthmr_init = apic_read(APIC_LVTTHMR);
}

void intel_init_thermal(struct cpuinfo_x86 *c)
{
	unsigned int cpu = smp_processor_id();
	int tm2 = 0;
	u32 l, h;

	if (!intel_thermal_supported(c))
		return;

	/*
	 * First check if its enabled already, in which case there might
	 * be some SMM goo which handles it, so we can't even put a handler
	 * since it might be delivered via SMI already:
	 */
	rdmsr(MSR_IA32_MISC_ENABLE, l, h);

	h = lvtthmr_init;
	/*
	 * The initial value of thermal LVT entries on all APs always reads
	 * 0x10000 because APs are woken up by BSP issuing INIT-SIPI-SIPI
	 * sequence to them and LVT registers are reset to 0s except for
	 * the mask bits which are set to 1s when APs receive INIT IPI.
	 * If BIOS takes over the thermal interrupt and sets its interrupt
	 * delivery mode to SMI (not fixed), it restores the value that the
	 * BIOS has programmed on AP based on BSP's info we saved since BIOS
	 * is always setting the same value for all threads/cores.
	 */
	if ((h & APIC_DM_FIXED_MASK) != APIC_DM_FIXED)
		apic_write(APIC_LVTTHMR, lvtthmr_init);


	if ((l & MSR_IA32_MISC_ENABLE_TM1) && (h & APIC_DM_SMI)) {
		if (system_state == SYSTEM_BOOTING)
			pr_debug("CPU%d: Thermal monitoring handled by SMI\n", cpu);
		return;
	}

	/* early Pentium M models use different method for enabling TM2 */
	if (cpu_has(c, X86_FEATURE_TM2)) {
		if (c->x86 == 6 && (c->x86_model == 9 || c->x86_model == 13)) {
			rdmsr(MSR_THERM2_CTL, l, h);
			if (l & MSR_THERM2_CTL_TM_SELECT)
				tm2 = 1;
		} else if (l & MSR_IA32_MISC_ENABLE_TM2)
			tm2 = 1;
	}

	/* We'll mask the thermal vector in the lapic till we're ready: */
	h = THERMAL_APIC_VECTOR | APIC_DM_FIXED | APIC_LVT_MASKED;
	apic_write(APIC_LVTTHMR, h);

	rdmsr(MSR_IA32_THERM_INTERRUPT, l, h);
	if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable)
		wrmsr(MSR_IA32_THERM_INTERRUPT,
			(l | (THERM_INT_LOW_ENABLE
			| THERM_INT_HIGH_ENABLE)) & ~THERM_INT_PLN_ENABLE, h);
	else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable)
		wrmsr(MSR_IA32_THERM_INTERRUPT,
			l | (THERM_INT_LOW_ENABLE
			| THERM_INT_HIGH_ENABLE | THERM_INT_PLN_ENABLE), h);
	else
		wrmsr(MSR_IA32_THERM_INTERRUPT,
		      l | (THERM_INT_LOW_ENABLE | THERM_INT_HIGH_ENABLE), h);

	if (cpu_has(c, X86_FEATURE_PTS)) {
		rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
		if (cpu_has(c, X86_FEATURE_PLN) && !int_pln_enable)
			wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
				(l | (PACKAGE_THERM_INT_LOW_ENABLE
				| PACKAGE_THERM_INT_HIGH_ENABLE))
				& ~PACKAGE_THERM_INT_PLN_ENABLE, h);
		else if (cpu_has(c, X86_FEATURE_PLN) && int_pln_enable)
			wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
				l | (PACKAGE_THERM_INT_LOW_ENABLE
				| PACKAGE_THERM_INT_HIGH_ENABLE
				| PACKAGE_THERM_INT_PLN_ENABLE), h);
		else
			wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
			      l | (PACKAGE_THERM_INT_LOW_ENABLE
				| PACKAGE_THERM_INT_HIGH_ENABLE), h);

		if (cpu_has(c, X86_FEATURE_HFI)) {
			rdmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
			wrmsr(MSR_IA32_PACKAGE_THERM_INTERRUPT,
			      l | PACKAGE_THERM_INT_HFI_ENABLE, h);
		}
	}

	rdmsr(MSR_IA32_MISC_ENABLE, l, h);
	wrmsr(MSR_IA32_MISC_ENABLE, l | MSR_IA32_MISC_ENABLE_TM1, h);

	pr_info_once("CPU0: Thermal monitoring enabled (%s)\n",
		      tm2 ? "TM2" : "TM1");

	/* enable thermal throttle processing */
	atomic_set(&therm_throt_en, 1);
}