Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tomoya Morinaga | 6281 | 72.00% | 24 | 27.91% |
Alexander Stein | 774 | 8.87% | 4 | 4.65% |
Feng Tang | 487 | 5.58% | 3 | 3.49% |
Liang Li | 438 | 5.02% | 3 | 3.49% |
Darren Hart | 314 | 3.60% | 9 | 10.47% |
Jiri Slaby | 142 | 1.63% | 8 | 9.30% |
Greg Kroah-Hartman | 35 | 0.40% | 3 | 3.49% |
Sebastian Andrzej Siewior | 27 | 0.31% | 1 | 1.16% |
Zubair Lutfullah Kakakhel | 25 | 0.29% | 1 | 1.16% |
Fengguang Wu | 25 | 0.29% | 1 | 1.16% |
Andy Shevchenko | 24 | 0.28% | 2 | 2.33% |
Vaibhav Gupta | 24 | 0.28% | 1 | 1.16% |
Michael Brunner | 20 | 0.23% | 1 | 1.16% |
Peng Fan | 16 | 0.18% | 1 | 1.16% |
Luis Henriques | 14 | 0.16% | 1 | 1.16% |
Dmitry Safonov | 11 | 0.13% | 1 | 1.16% |
Takashi Iwai | 11 | 0.13% | 1 | 1.16% |
Ben Hutchings | 7 | 0.08% | 1 | 1.16% |
Jingoo Han | 6 | 0.07% | 1 | 1.16% |
Johan Hovold | 6 | 0.07% | 2 | 2.33% |
Ilpo Järvinen | 6 | 0.07% | 2 | 2.33% |
Denis Turischev | 5 | 0.06% | 1 | 1.16% |
Uwe Kleine-König | 4 | 0.05% | 1 | 1.16% |
Andrew Morton | 3 | 0.03% | 1 | 1.16% |
Wei Yongjun | 3 | 0.03% | 1 | 1.16% |
Geliang Tang | 3 | 0.03% | 1 | 1.16% |
Kees Cook | 2 | 0.02% | 1 | 1.16% |
Vinod Koul | 2 | 0.02% | 1 | 1.16% |
Julia Lawall | 2 | 0.02% | 2 | 2.33% |
Alex Bounine | 2 | 0.02% | 1 | 1.16% |
Christoph Hellwig | 1 | 0.01% | 1 | 1.16% |
Alan Cox | 1 | 0.01% | 1 | 1.16% |
Doug Anderson | 1 | 0.01% | 1 | 1.16% |
Stephen Boyd | 1 | 0.01% | 1 | 1.16% |
Geert Uytterhoeven | 1 | 0.01% | 1 | 1.16% |
Total | 8724 | 86 |
// SPDX-License-Identifier: GPL-2.0 /* *Copyright (C) 2011 LAPIS Semiconductor Co., Ltd. */ #include <linux/kernel.h> #include <linux/serial.h> #include <linux/serial_reg.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/console.h> #include <linux/serial_core.h> #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/dmi.h> #include <linux/nmi.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/debugfs.h> #include <linux/dmaengine.h> #include <linux/pch_dma.h> enum { PCH_UART_HANDLED_RX_INT_SHIFT, PCH_UART_HANDLED_TX_INT_SHIFT, PCH_UART_HANDLED_RX_ERR_INT_SHIFT, PCH_UART_HANDLED_RX_TRG_INT_SHIFT, PCH_UART_HANDLED_MS_INT_SHIFT, PCH_UART_HANDLED_LS_INT_SHIFT, }; #define PCH_UART_DRIVER_DEVICE "ttyPCH" /* Set the max number of UART port * Intel EG20T PCH: 4 port * LAPIS Semiconductor ML7213 IOH: 3 port * LAPIS Semiconductor ML7223 IOH: 2 port */ #define PCH_UART_NR 4 #define PCH_UART_HANDLED_RX_INT (1<<((PCH_UART_HANDLED_RX_INT_SHIFT)<<1)) #define PCH_UART_HANDLED_TX_INT (1<<((PCH_UART_HANDLED_TX_INT_SHIFT)<<1)) #define PCH_UART_HANDLED_RX_ERR_INT (1<<((\ PCH_UART_HANDLED_RX_ERR_INT_SHIFT)<<1)) #define PCH_UART_HANDLED_RX_TRG_INT (1<<((\ PCH_UART_HANDLED_RX_TRG_INT_SHIFT)<<1)) #define PCH_UART_HANDLED_MS_INT (1<<((PCH_UART_HANDLED_MS_INT_SHIFT)<<1)) #define PCH_UART_HANDLED_LS_INT (1<<((PCH_UART_HANDLED_LS_INT_SHIFT)<<1)) #define PCH_UART_RBR 0x00 #define PCH_UART_THR 0x00 #define PCH_UART_IER_MASK (PCH_UART_IER_ERBFI|PCH_UART_IER_ETBEI|\ PCH_UART_IER_ELSI|PCH_UART_IER_EDSSI) #define PCH_UART_IER_ERBFI 0x00000001 #define PCH_UART_IER_ETBEI 0x00000002 #define PCH_UART_IER_ELSI 0x00000004 #define PCH_UART_IER_EDSSI 0x00000008 #define PCH_UART_IIR_IP 0x00000001 #define PCH_UART_IIR_IID 0x00000006 #define PCH_UART_IIR_MSI 0x00000000 #define PCH_UART_IIR_TRI 0x00000002 #define PCH_UART_IIR_RRI 0x00000004 #define PCH_UART_IIR_REI 0x00000006 #define PCH_UART_IIR_TOI 0x00000008 #define PCH_UART_IIR_FIFO256 0x00000020 #define PCH_UART_IIR_FIFO64 PCH_UART_IIR_FIFO256 #define PCH_UART_IIR_FE 0x000000C0 #define PCH_UART_FCR_FIFOE 0x00000001 #define PCH_UART_FCR_RFR 0x00000002 #define PCH_UART_FCR_TFR 0x00000004 #define PCH_UART_FCR_DMS 0x00000008 #define PCH_UART_FCR_FIFO256 0x00000020 #define PCH_UART_FCR_RFTL 0x000000C0 #define PCH_UART_FCR_RFTL1 0x00000000 #define PCH_UART_FCR_RFTL64 0x00000040 #define PCH_UART_FCR_RFTL128 0x00000080 #define PCH_UART_FCR_RFTL224 0x000000C0 #define PCH_UART_FCR_RFTL16 PCH_UART_FCR_RFTL64 #define PCH_UART_FCR_RFTL32 PCH_UART_FCR_RFTL128 #define PCH_UART_FCR_RFTL56 PCH_UART_FCR_RFTL224 #define PCH_UART_FCR_RFTL4 PCH_UART_FCR_RFTL64 #define PCH_UART_FCR_RFTL8 PCH_UART_FCR_RFTL128 #define PCH_UART_FCR_RFTL14 PCH_UART_FCR_RFTL224 #define PCH_UART_FCR_RFTL_SHIFT 6 #define PCH_UART_LCR_WLS 0x00000003 #define PCH_UART_LCR_STB 0x00000004 #define PCH_UART_LCR_PEN 0x00000008 #define PCH_UART_LCR_EPS 0x00000010 #define PCH_UART_LCR_SP 0x00000020 #define PCH_UART_LCR_SB 0x00000040 #define PCH_UART_LCR_DLAB 0x00000080 #define PCH_UART_LCR_NP 0x00000000 #define PCH_UART_LCR_OP PCH_UART_LCR_PEN #define PCH_UART_LCR_EP (PCH_UART_LCR_PEN | PCH_UART_LCR_EPS) #define PCH_UART_LCR_1P (PCH_UART_LCR_PEN | PCH_UART_LCR_SP) #define PCH_UART_LCR_0P (PCH_UART_LCR_PEN | PCH_UART_LCR_EPS |\ PCH_UART_LCR_SP) #define PCH_UART_LCR_5BIT 0x00000000 #define PCH_UART_LCR_6BIT 0x00000001 #define PCH_UART_LCR_7BIT 0x00000002 #define PCH_UART_LCR_8BIT 0x00000003 #define PCH_UART_MCR_DTR 0x00000001 #define PCH_UART_MCR_RTS 0x00000002 #define PCH_UART_MCR_OUT 0x0000000C #define PCH_UART_MCR_LOOP 0x00000010 #define PCH_UART_MCR_AFE 0x00000020 #define PCH_UART_LSR_DR 0x00000001 #define PCH_UART_LSR_ERR (1<<7) #define PCH_UART_MSR_DCTS 0x00000001 #define PCH_UART_MSR_DDSR 0x00000002 #define PCH_UART_MSR_TERI 0x00000004 #define PCH_UART_MSR_DDCD 0x00000008 #define PCH_UART_MSR_CTS 0x00000010 #define PCH_UART_MSR_DSR 0x00000020 #define PCH_UART_MSR_RI 0x00000040 #define PCH_UART_MSR_DCD 0x00000080 #define PCH_UART_MSR_DELTA (PCH_UART_MSR_DCTS | PCH_UART_MSR_DDSR |\ PCH_UART_MSR_TERI | PCH_UART_MSR_DDCD) #define PCH_UART_DLL 0x00 #define PCH_UART_DLM 0x01 #define PCH_UART_BRCSR 0x0E #define PCH_UART_IID_RLS (PCH_UART_IIR_REI) #define PCH_UART_IID_RDR (PCH_UART_IIR_RRI) #define PCH_UART_IID_RDR_TO (PCH_UART_IIR_RRI | PCH_UART_IIR_TOI) #define PCH_UART_IID_THRE (PCH_UART_IIR_TRI) #define PCH_UART_IID_MS (PCH_UART_IIR_MSI) #define PCH_UART_HAL_PARITY_NONE (PCH_UART_LCR_NP) #define PCH_UART_HAL_PARITY_ODD (PCH_UART_LCR_OP) #define PCH_UART_HAL_PARITY_EVEN (PCH_UART_LCR_EP) #define PCH_UART_HAL_PARITY_FIX1 (PCH_UART_LCR_1P) #define PCH_UART_HAL_PARITY_FIX0 (PCH_UART_LCR_0P) #define PCH_UART_HAL_5BIT (PCH_UART_LCR_5BIT) #define PCH_UART_HAL_6BIT (PCH_UART_LCR_6BIT) #define PCH_UART_HAL_7BIT (PCH_UART_LCR_7BIT) #define PCH_UART_HAL_8BIT (PCH_UART_LCR_8BIT) #define PCH_UART_HAL_STB1 0 #define PCH_UART_HAL_STB2 (PCH_UART_LCR_STB) #define PCH_UART_HAL_CLR_TX_FIFO (PCH_UART_FCR_TFR) #define PCH_UART_HAL_CLR_RX_FIFO (PCH_UART_FCR_RFR) #define PCH_UART_HAL_CLR_ALL_FIFO (PCH_UART_HAL_CLR_TX_FIFO | \ PCH_UART_HAL_CLR_RX_FIFO) #define PCH_UART_HAL_DMA_MODE0 0 #define PCH_UART_HAL_FIFO_DIS 0 #define PCH_UART_HAL_FIFO16 (PCH_UART_FCR_FIFOE) #define PCH_UART_HAL_FIFO256 (PCH_UART_FCR_FIFOE | \ PCH_UART_FCR_FIFO256) #define PCH_UART_HAL_FIFO64 (PCH_UART_HAL_FIFO256) #define PCH_UART_HAL_TRIGGER1 (PCH_UART_FCR_RFTL1) #define PCH_UART_HAL_TRIGGER64 (PCH_UART_FCR_RFTL64) #define PCH_UART_HAL_TRIGGER128 (PCH_UART_FCR_RFTL128) #define PCH_UART_HAL_TRIGGER224 (PCH_UART_FCR_RFTL224) #define PCH_UART_HAL_TRIGGER16 (PCH_UART_FCR_RFTL16) #define PCH_UART_HAL_TRIGGER32 (PCH_UART_FCR_RFTL32) #define PCH_UART_HAL_TRIGGER56 (PCH_UART_FCR_RFTL56) #define PCH_UART_HAL_TRIGGER4 (PCH_UART_FCR_RFTL4) #define PCH_UART_HAL_TRIGGER8 (PCH_UART_FCR_RFTL8) #define PCH_UART_HAL_TRIGGER14 (PCH_UART_FCR_RFTL14) #define PCH_UART_HAL_TRIGGER_L (PCH_UART_FCR_RFTL64) #define PCH_UART_HAL_TRIGGER_M (PCH_UART_FCR_RFTL128) #define PCH_UART_HAL_TRIGGER_H (PCH_UART_FCR_RFTL224) #define PCH_UART_HAL_RX_INT (PCH_UART_IER_ERBFI) #define PCH_UART_HAL_TX_INT (PCH_UART_IER_ETBEI) #define PCH_UART_HAL_RX_ERR_INT (PCH_UART_IER_ELSI) #define PCH_UART_HAL_MS_INT (PCH_UART_IER_EDSSI) #define PCH_UART_HAL_ALL_INT (PCH_UART_IER_MASK) #define PCH_UART_HAL_DTR (PCH_UART_MCR_DTR) #define PCH_UART_HAL_RTS (PCH_UART_MCR_RTS) #define PCH_UART_HAL_OUT (PCH_UART_MCR_OUT) #define PCH_UART_HAL_LOOP (PCH_UART_MCR_LOOP) #define PCH_UART_HAL_AFE (PCH_UART_MCR_AFE) #define DEFAULT_UARTCLK 1843200 /* 1.8432 MHz */ #define CMITC_UARTCLK 192000000 /* 192.0000 MHz */ #define FRI2_64_UARTCLK 64000000 /* 64.0000 MHz */ #define FRI2_48_UARTCLK 48000000 /* 48.0000 MHz */ #define NTC1_UARTCLK 64000000 /* 64.0000 MHz */ #define MINNOW_UARTCLK 50000000 /* 50.0000 MHz */ struct pch_uart_buffer { unsigned char *buf; int size; }; struct eg20t_port { struct uart_port port; int port_type; void __iomem *membase; resource_size_t mapbase; unsigned int iobase; struct pci_dev *pdev; int fifo_size; unsigned int uartclk; int start_tx; int start_rx; int tx_empty; int trigger; int trigger_level; struct pch_uart_buffer rxbuf; unsigned int dmsr; unsigned int fcr; unsigned int mcr; unsigned int use_dma; struct dma_async_tx_descriptor *desc_tx; struct dma_async_tx_descriptor *desc_rx; struct pch_dma_slave param_tx; struct pch_dma_slave param_rx; struct dma_chan *chan_tx; struct dma_chan *chan_rx; struct scatterlist *sg_tx_p; int nent; int orig_nent; struct scatterlist sg_rx; int tx_dma_use; void *rx_buf_virt; dma_addr_t rx_buf_dma; #define IRQ_NAME_SIZE 17 char irq_name[IRQ_NAME_SIZE]; /* protect the eg20t_port private structure and io access to membase */ spinlock_t lock; }; /** * struct pch_uart_driver_data - private data structure for UART-DMA * @port_type: The type of UART port * @line_no: UART port line number (0, 1, 2...) */ struct pch_uart_driver_data { int port_type; int line_no; }; enum pch_uart_num_t { pch_et20t_uart0 = 0, pch_et20t_uart1, pch_et20t_uart2, pch_et20t_uart3, pch_ml7213_uart0, pch_ml7213_uart1, pch_ml7213_uart2, pch_ml7223_uart0, pch_ml7223_uart1, pch_ml7831_uart0, pch_ml7831_uart1, }; static struct pch_uart_driver_data drv_dat[] = { [pch_et20t_uart0] = {PORT_PCH_8LINE, 0}, [pch_et20t_uart1] = {PORT_PCH_2LINE, 1}, [pch_et20t_uart2] = {PORT_PCH_2LINE, 2}, [pch_et20t_uart3] = {PORT_PCH_2LINE, 3}, [pch_ml7213_uart0] = {PORT_PCH_8LINE, 0}, [pch_ml7213_uart1] = {PORT_PCH_2LINE, 1}, [pch_ml7213_uart2] = {PORT_PCH_2LINE, 2}, [pch_ml7223_uart0] = {PORT_PCH_8LINE, 0}, [pch_ml7223_uart1] = {PORT_PCH_2LINE, 1}, [pch_ml7831_uart0] = {PORT_PCH_8LINE, 0}, [pch_ml7831_uart1] = {PORT_PCH_2LINE, 1}, }; #ifdef CONFIG_SERIAL_PCH_UART_CONSOLE static struct eg20t_port *pch_uart_ports[PCH_UART_NR]; #endif static unsigned int default_baud = 9600; static unsigned int user_uartclk = 0; static const int trigger_level_256[4] = { 1, 64, 128, 224 }; static const int trigger_level_64[4] = { 1, 16, 32, 56 }; static const int trigger_level_16[4] = { 1, 4, 8, 14 }; static const int trigger_level_1[4] = { 1, 1, 1, 1 }; #define PCH_REGS_BUFSIZE 1024 static ssize_t port_show_regs(struct file *file, char __user *user_buf, size_t count, loff_t *ppos) { struct eg20t_port *priv = file->private_data; char *buf; u32 len = 0; ssize_t ret; unsigned char lcr; buf = kzalloc(PCH_REGS_BUFSIZE, GFP_KERNEL); if (!buf) return 0; len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "PCH EG20T port[%d] regs:\n", priv->port.line); len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "=================================\n"); len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "IER: \t0x%02x\n", ioread8(priv->membase + UART_IER)); len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "IIR: \t0x%02x\n", ioread8(priv->membase + UART_IIR)); len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "LCR: \t0x%02x\n", ioread8(priv->membase + UART_LCR)); len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "MCR: \t0x%02x\n", ioread8(priv->membase + UART_MCR)); len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "LSR: \t0x%02x\n", ioread8(priv->membase + UART_LSR)); len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "MSR: \t0x%02x\n", ioread8(priv->membase + UART_MSR)); len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "BRCSR: \t0x%02x\n", ioread8(priv->membase + PCH_UART_BRCSR)); lcr = ioread8(priv->membase + UART_LCR); iowrite8(PCH_UART_LCR_DLAB, priv->membase + UART_LCR); len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "DLL: \t0x%02x\n", ioread8(priv->membase + UART_DLL)); len += scnprintf(buf + len, PCH_REGS_BUFSIZE - len, "DLM: \t0x%02x\n", ioread8(priv->membase + UART_DLM)); iowrite8(lcr, priv->membase + UART_LCR); if (len > PCH_REGS_BUFSIZE) len = PCH_REGS_BUFSIZE; ret = simple_read_from_buffer(user_buf, count, ppos, buf, len); kfree(buf); return ret; } static const struct file_operations port_regs_ops = { .owner = THIS_MODULE, .open = simple_open, .read = port_show_regs, .llseek = default_llseek, }; static const struct dmi_system_id pch_uart_dmi_table[] = { { .ident = "CM-iTC", { DMI_MATCH(DMI_BOARD_NAME, "CM-iTC"), }, (void *)CMITC_UARTCLK, }, { .ident = "FRI2", { DMI_MATCH(DMI_BIOS_VERSION, "FRI2"), }, (void *)FRI2_64_UARTCLK, }, { .ident = "Fish River Island II", { DMI_MATCH(DMI_PRODUCT_NAME, "Fish River Island II"), }, (void *)FRI2_48_UARTCLK, }, { .ident = "COMe-mTT", { DMI_MATCH(DMI_BOARD_NAME, "COMe-mTT"), }, (void *)NTC1_UARTCLK, }, { .ident = "nanoETXexpress-TT", { DMI_MATCH(DMI_BOARD_NAME, "nanoETXexpress-TT"), }, (void *)NTC1_UARTCLK, }, { .ident = "MinnowBoard", { DMI_MATCH(DMI_BOARD_NAME, "MinnowBoard"), }, (void *)MINNOW_UARTCLK, }, { } }; /* Return UART clock, checking for board specific clocks. */ static unsigned int pch_uart_get_uartclk(void) { const struct dmi_system_id *d; if (user_uartclk) return user_uartclk; d = dmi_first_match(pch_uart_dmi_table); if (d) return (unsigned long)d->driver_data; return DEFAULT_UARTCLK; } static void pch_uart_hal_enable_interrupt(struct eg20t_port *priv, unsigned int flag) { u8 ier = ioread8(priv->membase + UART_IER); ier |= flag & PCH_UART_IER_MASK; iowrite8(ier, priv->membase + UART_IER); } static void pch_uart_hal_disable_interrupt(struct eg20t_port *priv, unsigned int flag) { u8 ier = ioread8(priv->membase + UART_IER); ier &= ~(flag & PCH_UART_IER_MASK); iowrite8(ier, priv->membase + UART_IER); } static int pch_uart_hal_set_line(struct eg20t_port *priv, unsigned int baud, unsigned int parity, unsigned int bits, unsigned int stb) { unsigned int dll, dlm, lcr; int div; div = DIV_ROUND_CLOSEST(priv->uartclk / 16, baud); if (div < 0 || USHRT_MAX <= div) { dev_err(priv->port.dev, "Invalid Baud(div=0x%x)\n", div); return -EINVAL; } dll = (unsigned int)div & 0x00FFU; dlm = ((unsigned int)div >> 8) & 0x00FFU; if (parity & ~(PCH_UART_LCR_PEN | PCH_UART_LCR_EPS | PCH_UART_LCR_SP)) { dev_err(priv->port.dev, "Invalid parity(0x%x)\n", parity); return -EINVAL; } if (bits & ~PCH_UART_LCR_WLS) { dev_err(priv->port.dev, "Invalid bits(0x%x)\n", bits); return -EINVAL; } if (stb & ~PCH_UART_LCR_STB) { dev_err(priv->port.dev, "Invalid STB(0x%x)\n", stb); return -EINVAL; } lcr = parity; lcr |= bits; lcr |= stb; dev_dbg(priv->port.dev, "%s:baud = %u, div = %04x, lcr = %02x (%lu)\n", __func__, baud, div, lcr, jiffies); iowrite8(PCH_UART_LCR_DLAB, priv->membase + UART_LCR); iowrite8(dll, priv->membase + PCH_UART_DLL); iowrite8(dlm, priv->membase + PCH_UART_DLM); iowrite8(lcr, priv->membase + UART_LCR); return 0; } static int pch_uart_hal_fifo_reset(struct eg20t_port *priv, unsigned int flag) { if (flag & ~(PCH_UART_FCR_TFR | PCH_UART_FCR_RFR)) { dev_err(priv->port.dev, "%s:Invalid flag(0x%x)\n", __func__, flag); return -EINVAL; } iowrite8(PCH_UART_FCR_FIFOE | priv->fcr, priv->membase + UART_FCR); iowrite8(PCH_UART_FCR_FIFOE | priv->fcr | flag, priv->membase + UART_FCR); iowrite8(priv->fcr, priv->membase + UART_FCR); return 0; } static int pch_uart_hal_set_fifo(struct eg20t_port *priv, unsigned int dmamode, unsigned int fifo_size, unsigned int trigger) { u8 fcr; if (dmamode & ~PCH_UART_FCR_DMS) { dev_err(priv->port.dev, "%s:Invalid DMA Mode(0x%x)\n", __func__, dmamode); return -EINVAL; } if (fifo_size & ~(PCH_UART_FCR_FIFOE | PCH_UART_FCR_FIFO256)) { dev_err(priv->port.dev, "%s:Invalid FIFO SIZE(0x%x)\n", __func__, fifo_size); return -EINVAL; } if (trigger & ~PCH_UART_FCR_RFTL) { dev_err(priv->port.dev, "%s:Invalid TRIGGER(0x%x)\n", __func__, trigger); return -EINVAL; } switch (priv->fifo_size) { case 256: priv->trigger_level = trigger_level_256[trigger >> PCH_UART_FCR_RFTL_SHIFT]; break; case 64: priv->trigger_level = trigger_level_64[trigger >> PCH_UART_FCR_RFTL_SHIFT]; break; case 16: priv->trigger_level = trigger_level_16[trigger >> PCH_UART_FCR_RFTL_SHIFT]; break; default: priv->trigger_level = trigger_level_1[trigger >> PCH_UART_FCR_RFTL_SHIFT]; break; } fcr = dmamode | fifo_size | trigger | PCH_UART_FCR_RFR | PCH_UART_FCR_TFR; iowrite8(PCH_UART_FCR_FIFOE, priv->membase + UART_FCR); iowrite8(PCH_UART_FCR_FIFOE | PCH_UART_FCR_RFR | PCH_UART_FCR_TFR, priv->membase + UART_FCR); iowrite8(fcr, priv->membase + UART_FCR); priv->fcr = fcr; return 0; } static u8 pch_uart_hal_get_modem(struct eg20t_port *priv) { unsigned int msr = ioread8(priv->membase + UART_MSR); priv->dmsr = msr & PCH_UART_MSR_DELTA; return (u8)msr; } static int pch_uart_hal_read(struct eg20t_port *priv, unsigned char *buf, int rx_size) { int i; u8 rbr, lsr; struct uart_port *port = &priv->port; lsr = ioread8(priv->membase + UART_LSR); for (i = 0, lsr = ioread8(priv->membase + UART_LSR); i < rx_size && lsr & (UART_LSR_DR | UART_LSR_BI); lsr = ioread8(priv->membase + UART_LSR)) { rbr = ioread8(priv->membase + PCH_UART_RBR); if (lsr & UART_LSR_BI) { port->icount.brk++; if (uart_handle_break(port)) continue; } if (uart_handle_sysrq_char(port, rbr)) continue; buf[i++] = rbr; } return i; } static unsigned char pch_uart_hal_get_iid(struct eg20t_port *priv) { return ioread8(priv->membase + UART_IIR) &\ (PCH_UART_IIR_IID | PCH_UART_IIR_TOI | PCH_UART_IIR_IP); } static u8 pch_uart_hal_get_line_status(struct eg20t_port *priv) { return ioread8(priv->membase + UART_LSR); } static void pch_uart_hal_set_break(struct eg20t_port *priv, int on) { unsigned int lcr; lcr = ioread8(priv->membase + UART_LCR); if (on) lcr |= PCH_UART_LCR_SB; else lcr &= ~PCH_UART_LCR_SB; iowrite8(lcr, priv->membase + UART_LCR); } static int push_rx(struct eg20t_port *priv, const unsigned char *buf, int size) { struct uart_port *port = &priv->port; struct tty_port *tport = &port->state->port; tty_insert_flip_string(tport, buf, size); tty_flip_buffer_push(tport); return 0; } static int dma_push_rx(struct eg20t_port *priv, int size) { int room; struct uart_port *port = &priv->port; struct tty_port *tport = &port->state->port; room = tty_buffer_request_room(tport, size); if (room < size) dev_warn(port->dev, "Rx overrun: dropping %u bytes\n", size - room); if (!room) return 0; tty_insert_flip_string(tport, sg_virt(&priv->sg_rx), size); port->icount.rx += room; return room; } static void pch_free_dma(struct uart_port *port) { struct eg20t_port *priv; priv = container_of(port, struct eg20t_port, port); if (priv->chan_tx) { dma_release_channel(priv->chan_tx); priv->chan_tx = NULL; } if (priv->chan_rx) { dma_release_channel(priv->chan_rx); priv->chan_rx = NULL; } if (priv->rx_buf_dma) { dma_free_coherent(port->dev, port->fifosize, priv->rx_buf_virt, priv->rx_buf_dma); priv->rx_buf_virt = NULL; priv->rx_buf_dma = 0; } return; } static bool filter(struct dma_chan *chan, void *slave) { struct pch_dma_slave *param = slave; if ((chan->chan_id == param->chan_id) && (param->dma_dev == chan->device->dev)) { chan->private = param; return true; } else { return false; } } static void pch_request_dma(struct uart_port *port) { dma_cap_mask_t mask; struct dma_chan *chan; struct pci_dev *dma_dev; struct pch_dma_slave *param; struct eg20t_port *priv = container_of(port, struct eg20t_port, port); dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); /* Get DMA's dev information */ dma_dev = pci_get_slot(priv->pdev->bus, PCI_DEVFN(PCI_SLOT(priv->pdev->devfn), 0)); /* Set Tx DMA */ param = &priv->param_tx; param->dma_dev = &dma_dev->dev; param->chan_id = priv->port.line * 2; /* Tx = 0, 2, 4, ... */ param->tx_reg = port->mapbase + UART_TX; chan = dma_request_channel(mask, filter, param); if (!chan) { dev_err(priv->port.dev, "%s:dma_request_channel FAILS(Tx)\n", __func__); return; } priv->chan_tx = chan; /* Set Rx DMA */ param = &priv->param_rx; param->dma_dev = &dma_dev->dev; param->chan_id = priv->port.line * 2 + 1; /* Rx = Tx + 1 */ param->rx_reg = port->mapbase + UART_RX; chan = dma_request_channel(mask, filter, param); if (!chan) { dev_err(priv->port.dev, "%s:dma_request_channel FAILS(Rx)\n", __func__); dma_release_channel(priv->chan_tx); priv->chan_tx = NULL; return; } /* Get Consistent memory for DMA */ priv->rx_buf_virt = dma_alloc_coherent(port->dev, port->fifosize, &priv->rx_buf_dma, GFP_KERNEL); priv->chan_rx = chan; } static void pch_dma_rx_complete(void *arg) { struct eg20t_port *priv = arg; struct uart_port *port = &priv->port; int count; dma_sync_sg_for_cpu(port->dev, &priv->sg_rx, 1, DMA_FROM_DEVICE); count = dma_push_rx(priv, priv->trigger_level); if (count) tty_flip_buffer_push(&port->state->port); async_tx_ack(priv->desc_rx); pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_RX_INT | PCH_UART_HAL_RX_ERR_INT); } static void pch_dma_tx_complete(void *arg) { struct eg20t_port *priv = arg; struct uart_port *port = &priv->port; struct circ_buf *xmit = &port->state->xmit; struct scatterlist *sg = priv->sg_tx_p; int i; for (i = 0; i < priv->nent; i++, sg++) { xmit->tail += sg_dma_len(sg); port->icount.tx += sg_dma_len(sg); } xmit->tail &= UART_XMIT_SIZE - 1; async_tx_ack(priv->desc_tx); dma_unmap_sg(port->dev, sg, priv->orig_nent, DMA_TO_DEVICE); priv->tx_dma_use = 0; priv->nent = 0; priv->orig_nent = 0; kfree(priv->sg_tx_p); pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_TX_INT); } static int handle_rx_to(struct eg20t_port *priv) { struct pch_uart_buffer *buf; int rx_size; int ret; if (!priv->start_rx) { pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_RX_INT | PCH_UART_HAL_RX_ERR_INT); return 0; } buf = &priv->rxbuf; do { rx_size = pch_uart_hal_read(priv, buf->buf, buf->size); ret = push_rx(priv, buf->buf, rx_size); if (ret) return 0; } while (rx_size == buf->size); return PCH_UART_HANDLED_RX_INT; } static int handle_rx(struct eg20t_port *priv) { return handle_rx_to(priv); } static int dma_handle_rx(struct eg20t_port *priv) { struct uart_port *port = &priv->port; struct dma_async_tx_descriptor *desc; struct scatterlist *sg; priv = container_of(port, struct eg20t_port, port); sg = &priv->sg_rx; sg_init_table(&priv->sg_rx, 1); /* Initialize SG table */ sg_dma_len(sg) = priv->trigger_level; sg_set_page(&priv->sg_rx, virt_to_page(priv->rx_buf_virt), sg_dma_len(sg), offset_in_page(priv->rx_buf_virt)); sg_dma_address(sg) = priv->rx_buf_dma; desc = dmaengine_prep_slave_sg(priv->chan_rx, sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) return 0; priv->desc_rx = desc; desc->callback = pch_dma_rx_complete; desc->callback_param = priv; desc->tx_submit(desc); dma_async_issue_pending(priv->chan_rx); return PCH_UART_HANDLED_RX_INT; } static unsigned int handle_tx(struct eg20t_port *priv) { struct uart_port *port = &priv->port; struct circ_buf *xmit = &port->state->xmit; int fifo_size; int tx_empty; if (!priv->start_tx) { dev_info(priv->port.dev, "%s:Tx isn't started. (%lu)\n", __func__, jiffies); pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_TX_INT); priv->tx_empty = 1; return 0; } fifo_size = max(priv->fifo_size, 1); tx_empty = 1; if (port->x_char) { iowrite8(port->x_char, priv->membase + PCH_UART_THR); port->icount.tx++; port->x_char = 0; tx_empty = 0; fifo_size--; } while (!uart_tx_stopped(port) && !uart_circ_empty(xmit) && fifo_size) { iowrite8(xmit->buf[xmit->tail], priv->membase + PCH_UART_THR); xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); port->icount.tx++; fifo_size--; tx_empty = 0; } priv->tx_empty = tx_empty; if (tx_empty) { pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_TX_INT); uart_write_wakeup(port); } return PCH_UART_HANDLED_TX_INT; } static unsigned int dma_handle_tx(struct eg20t_port *priv) { struct uart_port *port = &priv->port; struct circ_buf *xmit = &port->state->xmit; struct scatterlist *sg; int nent; int fifo_size; struct dma_async_tx_descriptor *desc; int num; int i; int bytes; int size; int rem; if (!priv->start_tx) { dev_info(priv->port.dev, "%s:Tx isn't started. (%lu)\n", __func__, jiffies); pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_TX_INT); priv->tx_empty = 1; return 0; } if (priv->tx_dma_use) { dev_dbg(priv->port.dev, "%s:Tx is not completed. (%lu)\n", __func__, jiffies); pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_TX_INT); priv->tx_empty = 1; return 0; } fifo_size = max(priv->fifo_size, 1); if (port->x_char) { iowrite8(port->x_char, priv->membase + PCH_UART_THR); port->icount.tx++; port->x_char = 0; fifo_size--; } bytes = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE); if (!bytes) { dev_dbg(priv->port.dev, "%s 0 bytes return\n", __func__); pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_TX_INT); uart_write_wakeup(port); return 0; } if (bytes > fifo_size) { num = bytes / fifo_size + 1; size = fifo_size; rem = bytes % fifo_size; } else { num = 1; size = bytes; rem = bytes; } dev_dbg(priv->port.dev, "%s num=%d size=%d rem=%d\n", __func__, num, size, rem); priv->tx_dma_use = 1; priv->sg_tx_p = kmalloc_array(num, sizeof(struct scatterlist), GFP_ATOMIC); if (!priv->sg_tx_p) { dev_err(priv->port.dev, "%s:kzalloc Failed\n", __func__); return 0; } sg_init_table(priv->sg_tx_p, num); /* Initialize SG table */ sg = priv->sg_tx_p; for (i = 0; i < num; i++, sg++) { if (i == (num - 1)) sg_set_page(sg, virt_to_page(xmit->buf), rem, fifo_size * i); else sg_set_page(sg, virt_to_page(xmit->buf), size, fifo_size * i); } sg = priv->sg_tx_p; nent = dma_map_sg(port->dev, sg, num, DMA_TO_DEVICE); if (!nent) { dev_err(priv->port.dev, "%s:dma_map_sg Failed\n", __func__); return 0; } priv->orig_nent = num; priv->nent = nent; for (i = 0; i < nent; i++, sg++) { sg->offset = (xmit->tail & (UART_XMIT_SIZE - 1)) + fifo_size * i; sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) + sg->offset; if (i == (nent - 1)) sg_dma_len(sg) = rem; else sg_dma_len(sg) = size; } desc = dmaengine_prep_slave_sg(priv->chan_tx, priv->sg_tx_p, nent, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(priv->port.dev, "%s:dmaengine_prep_slave_sg Failed\n", __func__); return 0; } dma_sync_sg_for_device(port->dev, priv->sg_tx_p, nent, DMA_TO_DEVICE); priv->desc_tx = desc; desc->callback = pch_dma_tx_complete; desc->callback_param = priv; desc->tx_submit(desc); dma_async_issue_pending(priv->chan_tx); return PCH_UART_HANDLED_TX_INT; } static void pch_uart_err_ir(struct eg20t_port *priv, unsigned int lsr) { struct uart_port *port = &priv->port; struct tty_struct *tty = tty_port_tty_get(&port->state->port); char *error_msg[5] = {}; int i = 0; if (lsr & PCH_UART_LSR_ERR) error_msg[i++] = "Error data in FIFO\n"; if (lsr & UART_LSR_FE) { port->icount.frame++; error_msg[i++] = " Framing Error\n"; } if (lsr & UART_LSR_PE) { port->icount.parity++; error_msg[i++] = " Parity Error\n"; } if (lsr & UART_LSR_OE) { port->icount.overrun++; error_msg[i++] = " Overrun Error\n"; } if (tty == NULL) { for (i = 0; error_msg[i] != NULL; i++) dev_err(&priv->pdev->dev, error_msg[i]); } else { tty_kref_put(tty); } } static irqreturn_t pch_uart_interrupt(int irq, void *dev_id) { struct eg20t_port *priv = dev_id; unsigned int handled; u8 lsr; int ret = 0; unsigned char iid; unsigned long flags; int next = 1; u8 msr; spin_lock_irqsave(&priv->lock, flags); handled = 0; while (next) { iid = pch_uart_hal_get_iid(priv); if (iid & PCH_UART_IIR_IP) /* No Interrupt */ break; switch (iid) { case PCH_UART_IID_RLS: /* Receiver Line Status */ lsr = pch_uart_hal_get_line_status(priv); if (lsr & (PCH_UART_LSR_ERR | UART_LSR_FE | UART_LSR_PE | UART_LSR_OE)) { pch_uart_err_ir(priv, lsr); ret = PCH_UART_HANDLED_RX_ERR_INT; } else { ret = PCH_UART_HANDLED_LS_INT; } break; case PCH_UART_IID_RDR: /* Received Data Ready */ if (priv->use_dma) { pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_RX_INT | PCH_UART_HAL_RX_ERR_INT); ret = dma_handle_rx(priv); if (!ret) pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_RX_INT | PCH_UART_HAL_RX_ERR_INT); } else { ret = handle_rx(priv); } break; case PCH_UART_IID_RDR_TO: /* Received Data Ready (FIFO Timeout) */ ret = handle_rx_to(priv); break; case PCH_UART_IID_THRE: /* Transmitter Holding Register Empty */ if (priv->use_dma) ret = dma_handle_tx(priv); else ret = handle_tx(priv); break; case PCH_UART_IID_MS: /* Modem Status */ msr = pch_uart_hal_get_modem(priv); next = 0; /* MS ir prioirty is the lowest. So, MS ir means final interrupt */ if ((msr & UART_MSR_ANY_DELTA) == 0) break; ret |= PCH_UART_HANDLED_MS_INT; break; default: /* Never junp to this label */ dev_err(priv->port.dev, "%s:iid=%02x (%lu)\n", __func__, iid, jiffies); ret = -1; next = 0; break; } handled |= (unsigned int)ret; } spin_unlock_irqrestore(&priv->lock, flags); return IRQ_RETVAL(handled); } /* This function tests whether the transmitter fifo and shifter for the port described by 'port' is empty. */ static unsigned int pch_uart_tx_empty(struct uart_port *port) { struct eg20t_port *priv; priv = container_of(port, struct eg20t_port, port); if (priv->tx_empty) return TIOCSER_TEMT; else return 0; } /* Returns the current state of modem control inputs. */ static unsigned int pch_uart_get_mctrl(struct uart_port *port) { struct eg20t_port *priv; u8 modem; unsigned int ret = 0; priv = container_of(port, struct eg20t_port, port); modem = pch_uart_hal_get_modem(priv); if (modem & UART_MSR_DCD) ret |= TIOCM_CAR; if (modem & UART_MSR_RI) ret |= TIOCM_RNG; if (modem & UART_MSR_DSR) ret |= TIOCM_DSR; if (modem & UART_MSR_CTS) ret |= TIOCM_CTS; return ret; } static void pch_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) { u32 mcr = 0; struct eg20t_port *priv = container_of(port, struct eg20t_port, port); if (mctrl & TIOCM_DTR) mcr |= UART_MCR_DTR; if (mctrl & TIOCM_RTS) mcr |= UART_MCR_RTS; if (mctrl & TIOCM_LOOP) mcr |= UART_MCR_LOOP; if (priv->mcr & UART_MCR_AFE) mcr |= UART_MCR_AFE; if (mctrl) iowrite8(mcr, priv->membase + UART_MCR); } static void pch_uart_stop_tx(struct uart_port *port) { struct eg20t_port *priv; priv = container_of(port, struct eg20t_port, port); priv->start_tx = 0; priv->tx_dma_use = 0; } static void pch_uart_start_tx(struct uart_port *port) { struct eg20t_port *priv; priv = container_of(port, struct eg20t_port, port); if (priv->use_dma) { if (priv->tx_dma_use) { dev_dbg(priv->port.dev, "%s : Tx DMA is NOT empty.\n", __func__); return; } } priv->start_tx = 1; pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_TX_INT); } static void pch_uart_stop_rx(struct uart_port *port) { struct eg20t_port *priv; priv = container_of(port, struct eg20t_port, port); priv->start_rx = 0; pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_RX_INT | PCH_UART_HAL_RX_ERR_INT); } /* Enable the modem status interrupts. */ static void pch_uart_enable_ms(struct uart_port *port) { struct eg20t_port *priv; priv = container_of(port, struct eg20t_port, port); pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_MS_INT); } /* Control the transmission of a break signal. */ static void pch_uart_break_ctl(struct uart_port *port, int ctl) { struct eg20t_port *priv; unsigned long flags; priv = container_of(port, struct eg20t_port, port); spin_lock_irqsave(&priv->lock, flags); pch_uart_hal_set_break(priv, ctl); spin_unlock_irqrestore(&priv->lock, flags); } /* Grab any interrupt resources and initialise any low level driver state. */ static int pch_uart_startup(struct uart_port *port) { struct eg20t_port *priv; int ret; int fifo_size; int trigger_level; priv = container_of(port, struct eg20t_port, port); priv->tx_empty = 1; if (port->uartclk) priv->uartclk = port->uartclk; else port->uartclk = priv->uartclk; pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_ALL_INT); ret = pch_uart_hal_set_line(priv, default_baud, PCH_UART_HAL_PARITY_NONE, PCH_UART_HAL_8BIT, PCH_UART_HAL_STB1); if (ret) return ret; switch (priv->fifo_size) { case 256: fifo_size = PCH_UART_HAL_FIFO256; break; case 64: fifo_size = PCH_UART_HAL_FIFO64; break; case 16: fifo_size = PCH_UART_HAL_FIFO16; break; case 1: default: fifo_size = PCH_UART_HAL_FIFO_DIS; break; } switch (priv->trigger) { case PCH_UART_HAL_TRIGGER1: trigger_level = 1; break; case PCH_UART_HAL_TRIGGER_L: trigger_level = priv->fifo_size / 4; break; case PCH_UART_HAL_TRIGGER_M: trigger_level = priv->fifo_size / 2; break; case PCH_UART_HAL_TRIGGER_H: default: trigger_level = priv->fifo_size - (priv->fifo_size / 8); break; } priv->trigger_level = trigger_level; ret = pch_uart_hal_set_fifo(priv, PCH_UART_HAL_DMA_MODE0, fifo_size, priv->trigger); if (ret < 0) return ret; ret = request_irq(priv->port.irq, pch_uart_interrupt, IRQF_SHARED, priv->irq_name, priv); if (ret < 0) return ret; if (priv->use_dma) pch_request_dma(port); priv->start_rx = 1; pch_uart_hal_enable_interrupt(priv, PCH_UART_HAL_RX_INT | PCH_UART_HAL_RX_ERR_INT); uart_update_timeout(port, CS8, default_baud); return 0; } static void pch_uart_shutdown(struct uart_port *port) { struct eg20t_port *priv; int ret; priv = container_of(port, struct eg20t_port, port); pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_ALL_INT); pch_uart_hal_fifo_reset(priv, PCH_UART_HAL_CLR_ALL_FIFO); ret = pch_uart_hal_set_fifo(priv, PCH_UART_HAL_DMA_MODE0, PCH_UART_HAL_FIFO_DIS, PCH_UART_HAL_TRIGGER1); if (ret) dev_err(priv->port.dev, "pch_uart_hal_set_fifo Failed(ret=%d)\n", ret); pch_free_dma(port); free_irq(priv->port.irq, priv); } /* Change the port parameters, including word length, parity, stop *bits. Update read_status_mask and ignore_status_mask to indicate *the types of events we are interested in receiving. */ static void pch_uart_set_termios(struct uart_port *port, struct ktermios *termios, const struct ktermios *old) { int rtn; unsigned int baud, parity, bits, stb; struct eg20t_port *priv; unsigned long flags; priv = container_of(port, struct eg20t_port, port); switch (termios->c_cflag & CSIZE) { case CS5: bits = PCH_UART_HAL_5BIT; break; case CS6: bits = PCH_UART_HAL_6BIT; break; case CS7: bits = PCH_UART_HAL_7BIT; break; default: /* CS8 */ bits = PCH_UART_HAL_8BIT; break; } if (termios->c_cflag & CSTOPB) stb = PCH_UART_HAL_STB2; else stb = PCH_UART_HAL_STB1; if (termios->c_cflag & PARENB) { if (termios->c_cflag & PARODD) parity = PCH_UART_HAL_PARITY_ODD; else parity = PCH_UART_HAL_PARITY_EVEN; } else parity = PCH_UART_HAL_PARITY_NONE; /* Only UART0 has auto hardware flow function */ if ((termios->c_cflag & CRTSCTS) && (priv->fifo_size == 256)) priv->mcr |= UART_MCR_AFE; else priv->mcr &= ~UART_MCR_AFE; termios->c_cflag &= ~CMSPAR; /* Mark/Space parity is not supported */ baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16); spin_lock_irqsave(&priv->lock, flags); spin_lock(&port->lock); uart_update_timeout(port, termios->c_cflag, baud); rtn = pch_uart_hal_set_line(priv, baud, parity, bits, stb); if (rtn) goto out; pch_uart_set_mctrl(&priv->port, priv->port.mctrl); /* Don't rewrite B0 */ if (tty_termios_baud_rate(termios)) tty_termios_encode_baud_rate(termios, baud, baud); out: spin_unlock(&port->lock); spin_unlock_irqrestore(&priv->lock, flags); } static const char *pch_uart_type(struct uart_port *port) { return KBUILD_MODNAME; } static void pch_uart_release_port(struct uart_port *port) { struct eg20t_port *priv; priv = container_of(port, struct eg20t_port, port); pci_iounmap(priv->pdev, priv->membase); pci_release_regions(priv->pdev); } static int pch_uart_request_port(struct uart_port *port) { struct eg20t_port *priv; int ret; void __iomem *membase; priv = container_of(port, struct eg20t_port, port); ret = pci_request_regions(priv->pdev, KBUILD_MODNAME); if (ret < 0) return -EBUSY; membase = pci_iomap(priv->pdev, 1, 0); if (!membase) { pci_release_regions(priv->pdev); return -EBUSY; } priv->membase = port->membase = membase; return 0; } static void pch_uart_config_port(struct uart_port *port, int type) { struct eg20t_port *priv; priv = container_of(port, struct eg20t_port, port); if (type & UART_CONFIG_TYPE) { port->type = priv->port_type; pch_uart_request_port(port); } } static int pch_uart_verify_port(struct uart_port *port, struct serial_struct *serinfo) { struct eg20t_port *priv; priv = container_of(port, struct eg20t_port, port); if (serinfo->flags & UPF_LOW_LATENCY) { dev_info(priv->port.dev, "PCH UART : Use PIO Mode (without DMA)\n"); priv->use_dma = 0; serinfo->flags &= ~UPF_LOW_LATENCY; } else { #ifndef CONFIG_PCH_DMA dev_err(priv->port.dev, "%s : PCH DMA is not Loaded.\n", __func__); return -EOPNOTSUPP; #endif if (!priv->use_dma) { pch_request_dma(port); if (priv->chan_rx) priv->use_dma = 1; } dev_info(priv->port.dev, "PCH UART: %s\n", priv->use_dma ? "Use DMA Mode" : "No DMA"); } return 0; } #if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_PCH_UART_CONSOLE) /* * Wait for transmitter & holding register to empty */ static void wait_for_xmitr(struct eg20t_port *up, int bits) { unsigned int status, tmout = 10000; /* Wait up to 10ms for the character(s) to be sent. */ for (;;) { status = ioread8(up->membase + UART_LSR); if ((status & bits) == bits) break; if (--tmout == 0) break; udelay(1); } /* Wait up to 1s for flow control if necessary */ if (up->port.flags & UPF_CONS_FLOW) { unsigned int tmout; for (tmout = 1000000; tmout; tmout--) { unsigned int msr = ioread8(up->membase + UART_MSR); if (msr & UART_MSR_CTS) break; udelay(1); touch_nmi_watchdog(); } } } #endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_PCH_UART_CONSOLE */ #ifdef CONFIG_CONSOLE_POLL /* * Console polling routines for communicate via uart while * in an interrupt or debug context. */ static int pch_uart_get_poll_char(struct uart_port *port) { struct eg20t_port *priv = container_of(port, struct eg20t_port, port); u8 lsr = ioread8(priv->membase + UART_LSR); if (!(lsr & UART_LSR_DR)) return NO_POLL_CHAR; return ioread8(priv->membase + PCH_UART_RBR); } static void pch_uart_put_poll_char(struct uart_port *port, unsigned char c) { unsigned int ier; struct eg20t_port *priv = container_of(port, struct eg20t_port, port); /* * First save the IER then disable the interrupts */ ier = ioread8(priv->membase + UART_IER); pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_ALL_INT); wait_for_xmitr(priv, UART_LSR_THRE); /* * Send the character out. */ iowrite8(c, priv->membase + PCH_UART_THR); /* * Finally, wait for transmitter to become empty * and restore the IER */ wait_for_xmitr(priv, UART_LSR_BOTH_EMPTY); iowrite8(ier, priv->membase + UART_IER); } #endif /* CONFIG_CONSOLE_POLL */ static const struct uart_ops pch_uart_ops = { .tx_empty = pch_uart_tx_empty, .set_mctrl = pch_uart_set_mctrl, .get_mctrl = pch_uart_get_mctrl, .stop_tx = pch_uart_stop_tx, .start_tx = pch_uart_start_tx, .stop_rx = pch_uart_stop_rx, .enable_ms = pch_uart_enable_ms, .break_ctl = pch_uart_break_ctl, .startup = pch_uart_startup, .shutdown = pch_uart_shutdown, .set_termios = pch_uart_set_termios, /* .pm = pch_uart_pm, Not supported yet */ .type = pch_uart_type, .release_port = pch_uart_release_port, .request_port = pch_uart_request_port, .config_port = pch_uart_config_port, .verify_port = pch_uart_verify_port, #ifdef CONFIG_CONSOLE_POLL .poll_get_char = pch_uart_get_poll_char, .poll_put_char = pch_uart_put_poll_char, #endif }; #ifdef CONFIG_SERIAL_PCH_UART_CONSOLE static void pch_console_putchar(struct uart_port *port, unsigned char ch) { struct eg20t_port *priv = container_of(port, struct eg20t_port, port); wait_for_xmitr(priv, UART_LSR_THRE); iowrite8(ch, priv->membase + PCH_UART_THR); } /* * Print a string to the serial port trying not to disturb * any possible real use of the port... * * The console_lock must be held when we get here. */ static void pch_console_write(struct console *co, const char *s, unsigned int count) { struct eg20t_port *priv; unsigned long flags; int priv_locked = 1; int port_locked = 1; u8 ier; priv = pch_uart_ports[co->index]; touch_nmi_watchdog(); local_irq_save(flags); if (priv->port.sysrq) { /* call to uart_handle_sysrq_char already took the priv lock */ priv_locked = 0; /* serial8250_handle_port() already took the port lock */ port_locked = 0; } else if (oops_in_progress) { priv_locked = spin_trylock(&priv->lock); port_locked = spin_trylock(&priv->port.lock); } else { spin_lock(&priv->lock); spin_lock(&priv->port.lock); } /* * First save the IER then disable the interrupts */ ier = ioread8(priv->membase + UART_IER); pch_uart_hal_disable_interrupt(priv, PCH_UART_HAL_ALL_INT); uart_console_write(&priv->port, s, count, pch_console_putchar); /* * Finally, wait for transmitter to become empty * and restore the IER */ wait_for_xmitr(priv, UART_LSR_BOTH_EMPTY); iowrite8(ier, priv->membase + UART_IER); if (port_locked) spin_unlock(&priv->port.lock); if (priv_locked) spin_unlock(&priv->lock); local_irq_restore(flags); } static int __init pch_console_setup(struct console *co, char *options) { struct uart_port *port; int baud = default_baud; int bits = 8; int parity = 'n'; int flow = 'n'; /* * Check whether an invalid uart number has been specified, and * if so, search for the first available port that does have * console support. */ if (co->index >= PCH_UART_NR) co->index = 0; port = &pch_uart_ports[co->index]->port; if (!port || (!port->iobase && !port->membase)) return -ENODEV; port->uartclk = pch_uart_get_uartclk(); if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(port, co, baud, parity, bits, flow); } static struct uart_driver pch_uart_driver; static struct console pch_console = { .name = PCH_UART_DRIVER_DEVICE, .write = pch_console_write, .device = uart_console_device, .setup = pch_console_setup, .flags = CON_PRINTBUFFER | CON_ANYTIME, .index = -1, .data = &pch_uart_driver, }; #define PCH_CONSOLE (&pch_console) #else #define PCH_CONSOLE NULL #endif /* CONFIG_SERIAL_PCH_UART_CONSOLE */ static struct uart_driver pch_uart_driver = { .owner = THIS_MODULE, .driver_name = KBUILD_MODNAME, .dev_name = PCH_UART_DRIVER_DEVICE, .major = 0, .minor = 0, .nr = PCH_UART_NR, .cons = PCH_CONSOLE, }; static struct eg20t_port *pch_uart_init_port(struct pci_dev *pdev, const struct pci_device_id *id) { struct eg20t_port *priv; int ret; unsigned int iobase; unsigned int mapbase; unsigned char *rxbuf; int fifosize; int port_type; struct pch_uart_driver_data *board; char name[32]; board = &drv_dat[id->driver_data]; port_type = board->port_type; priv = kzalloc(sizeof(struct eg20t_port), GFP_KERNEL); if (priv == NULL) goto init_port_alloc_err; rxbuf = (unsigned char *)__get_free_page(GFP_KERNEL); if (!rxbuf) goto init_port_free_txbuf; switch (port_type) { case PORT_PCH_8LINE: fifosize = 256; /* EG20T/ML7213: UART0 */ break; case PORT_PCH_2LINE: fifosize = 64; /* EG20T:UART1~3 ML7213: UART1~2*/ break; default: dev_err(&pdev->dev, "Invalid Port Type(=%d)\n", port_type); goto init_port_hal_free; } pci_enable_msi(pdev); pci_set_master(pdev); spin_lock_init(&priv->lock); iobase = pci_resource_start(pdev, 0); mapbase = pci_resource_start(pdev, 1); priv->mapbase = mapbase; priv->iobase = iobase; priv->pdev = pdev; priv->tx_empty = 1; priv->rxbuf.buf = rxbuf; priv->rxbuf.size = PAGE_SIZE; priv->fifo_size = fifosize; priv->uartclk = pch_uart_get_uartclk(); priv->port_type = port_type; priv->port.dev = &pdev->dev; priv->port.iobase = iobase; priv->port.membase = NULL; priv->port.mapbase = mapbase; priv->port.irq = pdev->irq; priv->port.iotype = UPIO_PORT; priv->port.ops = &pch_uart_ops; priv->port.flags = UPF_BOOT_AUTOCONF; priv->port.fifosize = fifosize; priv->port.line = board->line_no; priv->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_PCH_UART_CONSOLE); priv->trigger = PCH_UART_HAL_TRIGGER_M; snprintf(priv->irq_name, IRQ_NAME_SIZE, KBUILD_MODNAME ":" PCH_UART_DRIVER_DEVICE "%d", priv->port.line); spin_lock_init(&priv->port.lock); pci_set_drvdata(pdev, priv); priv->trigger_level = 1; priv->fcr = 0; if (pdev->dev.of_node) of_property_read_u32(pdev->dev.of_node, "clock-frequency" , &user_uartclk); #ifdef CONFIG_SERIAL_PCH_UART_CONSOLE pch_uart_ports[board->line_no] = priv; #endif ret = uart_add_one_port(&pch_uart_driver, &priv->port); if (ret < 0) goto init_port_hal_free; snprintf(name, sizeof(name), "uart%d_regs", priv->port.line); debugfs_create_file(name, S_IFREG | S_IRUGO, NULL, priv, &port_regs_ops); return priv; init_port_hal_free: #ifdef CONFIG_SERIAL_PCH_UART_CONSOLE pch_uart_ports[board->line_no] = NULL; #endif free_page((unsigned long)rxbuf); init_port_free_txbuf: kfree(priv); init_port_alloc_err: return NULL; } static void pch_uart_exit_port(struct eg20t_port *priv) { char name[32]; snprintf(name, sizeof(name), "uart%d_regs", priv->port.line); debugfs_remove(debugfs_lookup(name, NULL)); uart_remove_one_port(&pch_uart_driver, &priv->port); free_page((unsigned long)priv->rxbuf.buf); } static void pch_uart_pci_remove(struct pci_dev *pdev) { struct eg20t_port *priv = pci_get_drvdata(pdev); pci_disable_msi(pdev); #ifdef CONFIG_SERIAL_PCH_UART_CONSOLE pch_uart_ports[priv->port.line] = NULL; #endif pch_uart_exit_port(priv); pci_disable_device(pdev); kfree(priv); return; } static int __maybe_unused pch_uart_pci_suspend(struct device *dev) { struct eg20t_port *priv = dev_get_drvdata(dev); uart_suspend_port(&pch_uart_driver, &priv->port); return 0; } static int __maybe_unused pch_uart_pci_resume(struct device *dev) { struct eg20t_port *priv = dev_get_drvdata(dev); uart_resume_port(&pch_uart_driver, &priv->port); return 0; } static const struct pci_device_id pch_uart_pci_id[] = { {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x8811), .driver_data = pch_et20t_uart0}, {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x8812), .driver_data = pch_et20t_uart1}, {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x8813), .driver_data = pch_et20t_uart2}, {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x8814), .driver_data = pch_et20t_uart3}, {PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8027), .driver_data = pch_ml7213_uart0}, {PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8028), .driver_data = pch_ml7213_uart1}, {PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8029), .driver_data = pch_ml7213_uart2}, {PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x800C), .driver_data = pch_ml7223_uart0}, {PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x800D), .driver_data = pch_ml7223_uart1}, {PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8811), .driver_data = pch_ml7831_uart0}, {PCI_DEVICE(PCI_VENDOR_ID_ROHM, 0x8812), .driver_data = pch_ml7831_uart1}, {0,}, }; static int pch_uart_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int ret; struct eg20t_port *priv; ret = pci_enable_device(pdev); if (ret < 0) goto probe_error; priv = pch_uart_init_port(pdev, id); if (!priv) { ret = -EBUSY; goto probe_disable_device; } pci_set_drvdata(pdev, priv); return ret; probe_disable_device: pci_disable_msi(pdev); pci_disable_device(pdev); probe_error: return ret; } static SIMPLE_DEV_PM_OPS(pch_uart_pci_pm_ops, pch_uart_pci_suspend, pch_uart_pci_resume); static struct pci_driver pch_uart_pci_driver = { .name = "pch_uart", .id_table = pch_uart_pci_id, .probe = pch_uart_pci_probe, .remove = pch_uart_pci_remove, .driver.pm = &pch_uart_pci_pm_ops, }; static int __init pch_uart_module_init(void) { int ret; /* register as UART driver */ ret = uart_register_driver(&pch_uart_driver); if (ret < 0) return ret; /* register as PCI driver */ ret = pci_register_driver(&pch_uart_pci_driver); if (ret < 0) uart_unregister_driver(&pch_uart_driver); return ret; } module_init(pch_uart_module_init); static void __exit pch_uart_module_exit(void) { pci_unregister_driver(&pch_uart_pci_driver); uart_unregister_driver(&pch_uart_driver); } module_exit(pch_uart_module_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Intel EG20T PCH UART PCI Driver"); MODULE_DEVICE_TABLE(pci, pch_uart_pci_id); module_param(default_baud, uint, S_IRUGO); MODULE_PARM_DESC(default_baud, "Default BAUD for initial driver state and console (default 9600)"); module_param(user_uartclk, uint, S_IRUGO); MODULE_PARM_DESC(user_uartclk, "Override UART default or board specific UART clock");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1