Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jan Andersson | 947 | 40.56% | 6 | 10.53% |
Alan Stern | 555 | 23.77% | 38 | 66.67% |
Johannes Erdfelt | 549 | 23.51% | 2 | 3.51% |
Benjamin Herrenschmidt | 260 | 11.13% | 2 | 3.51% |
David Brownell | 15 | 0.64% | 2 | 3.51% |
Greg Kroah-Hartman | 2 | 0.09% | 2 | 3.51% |
Mark Rutland | 2 | 0.09% | 1 | 1.75% |
Deepak Saxena | 2 | 0.09% | 1 | 1.75% |
David S. Miller | 1 | 0.04% | 1 | 1.75% |
Jilin Yuan | 1 | 0.04% | 1 | 1.75% |
yuan linyu | 1 | 0.04% | 1 | 1.75% |
Total | 2335 | 57 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __LINUX_UHCI_HCD_H #define __LINUX_UHCI_HCD_H #include <linux/list.h> #include <linux/usb.h> #include <linux/clk.h> #define usb_packetid(pipe) (usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT) #define PIPE_DEVEP_MASK 0x0007ff00 /* * Universal Host Controller Interface data structures and defines */ /* Command register */ #define USBCMD 0 #define USBCMD_RS 0x0001 /* Run/Stop */ #define USBCMD_HCRESET 0x0002 /* Host reset */ #define USBCMD_GRESET 0x0004 /* Global reset */ #define USBCMD_EGSM 0x0008 /* Global Suspend Mode */ #define USBCMD_FGR 0x0010 /* Force Global Resume */ #define USBCMD_SWDBG 0x0020 /* SW Debug mode */ #define USBCMD_CF 0x0040 /* Config Flag (sw only) */ #define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) */ /* Status register */ #define USBSTS 2 #define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */ #define USBSTS_ERROR 0x0002 /* Interrupt due to error */ #define USBSTS_RD 0x0004 /* Resume Detect */ #define USBSTS_HSE 0x0008 /* Host System Error: PCI problems */ #define USBSTS_HCPE 0x0010 /* Host Controller Process Error: * the schedule is buggy */ #define USBSTS_HCH 0x0020 /* HC Halted */ /* Interrupt enable register */ #define USBINTR 4 #define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */ #define USBINTR_RESUME 0x0002 /* Resume interrupt enable */ #define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */ #define USBINTR_SP 0x0008 /* Short packet interrupt enable */ #define USBFRNUM 6 #define USBFLBASEADD 8 #define USBSOF 12 #define USBSOF_DEFAULT 64 /* Frame length is exactly 1 ms */ /* USB port status and control registers */ #define USBPORTSC1 16 #define USBPORTSC2 18 #define USBPORTSC3 20 #define USBPORTSC4 22 #define USBPORTSC_CCS 0x0001 /* Current Connect Status * ("device present") */ #define USBPORTSC_CSC 0x0002 /* Connect Status Change */ #define USBPORTSC_PE 0x0004 /* Port Enable */ #define USBPORTSC_PEC 0x0008 /* Port Enable Change */ #define USBPORTSC_DPLUS 0x0010 /* D+ high (line status) */ #define USBPORTSC_DMINUS 0x0020 /* D- high (line status) */ #define USBPORTSC_RD 0x0040 /* Resume Detect */ #define USBPORTSC_RES1 0x0080 /* reserved, always 1 */ #define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */ #define USBPORTSC_PR 0x0200 /* Port Reset */ /* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */ #define USBPORTSC_OC 0x0400 /* Over Current condition */ #define USBPORTSC_OCC 0x0800 /* Over Current Change R/WC */ #define USBPORTSC_SUSP 0x1000 /* Suspend */ #define USBPORTSC_RES2 0x2000 /* reserved, write zeroes */ #define USBPORTSC_RES3 0x4000 /* reserved, write zeroes */ #define USBPORTSC_RES4 0x8000 /* reserved, write zeroes */ /* PCI legacy support register */ #define USBLEGSUP 0xc0 #define USBLEGSUP_DEFAULT 0x2000 /* only PIRQ enable set */ #define USBLEGSUP_RWC 0x8f00 /* the R/WC bits */ #define USBLEGSUP_RO 0x5040 /* R/O and reserved bits */ /* PCI Intel-specific resume-enable register */ #define USBRES_INTEL 0xc4 #define USBPORT1EN 0x01 #define USBPORT2EN 0x02 #define UHCI_PTR_BITS(uhci) cpu_to_hc32((uhci), 0x000F) #define UHCI_PTR_TERM(uhci) cpu_to_hc32((uhci), 0x0001) #define UHCI_PTR_QH(uhci) cpu_to_hc32((uhci), 0x0002) #define UHCI_PTR_DEPTH(uhci) cpu_to_hc32((uhci), 0x0004) #define UHCI_PTR_BREADTH(uhci) cpu_to_hc32((uhci), 0x0000) #define UHCI_NUMFRAMES 1024 /* in the frame list [array] */ #define UHCI_MAX_SOF_NUMBER 2047 /* in an SOF packet */ #define CAN_SCHEDULE_FRAMES 1000 /* how far in the future frames * can be scheduled */ #define MAX_PHASE 32 /* Periodic scheduling length */ /* When no queues need Full-Speed Bandwidth Reclamation, * delay this long before turning FSBR off */ #define FSBR_OFF_DELAY msecs_to_jiffies(10) /* If a queue hasn't advanced after this much time, assume it is stuck */ #define QH_WAIT_TIMEOUT msecs_to_jiffies(200) /* * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to * __leXX (normally) or __beXX (given UHCI_BIG_ENDIAN_DESC), depending on * the host controller implementation. * * To facilitate the strongest possible byte-order checking from "sparse" * and so on, we use __leXX unless that's not practical. */ #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC typedef __u32 __bitwise __hc32; typedef __u16 __bitwise __hc16; #else #define __hc32 __le32 #define __hc16 __le16 #endif /* * Queue Headers */ /* * One role of a QH is to hold a queue of TDs for some endpoint. One QH goes * with each endpoint, and qh->element (updated by the HC) is either: * - the next unprocessed TD in the endpoint's queue, or * - UHCI_PTR_TERM (when there's no more traffic for this endpoint). * * The other role of a QH is to serve as a "skeleton" framelist entry, so we * can easily splice a QH for some endpoint into the schedule at the right * place. Then qh->element is UHCI_PTR_TERM. * * In the schedule, qh->link maintains a list of QHs seen by the HC: * skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ... * * qh->node is the software equivalent of qh->link. The differences * are that the software list is doubly-linked and QHs in the UNLINKING * state are on the software list but not the hardware schedule. * * For bookkeeping purposes we maintain QHs even for Isochronous endpoints, * but they never get added to the hardware schedule. */ #define QH_STATE_IDLE 1 /* QH is not being used */ #define QH_STATE_UNLINKING 2 /* QH has been removed from the * schedule but the hardware may * still be using it */ #define QH_STATE_ACTIVE 3 /* QH is on the schedule */ struct uhci_qh { /* Hardware fields */ __hc32 link; /* Next QH in the schedule */ __hc32 element; /* Queue element (TD) pointer */ /* Software fields */ dma_addr_t dma_handle; struct list_head node; /* Node in the list of QHs */ struct usb_host_endpoint *hep; /* Endpoint information */ struct usb_device *udev; struct list_head queue; /* Queue of urbps for this QH */ struct uhci_td *dummy_td; /* Dummy TD to end the queue */ struct uhci_td *post_td; /* Last TD completed */ struct usb_iso_packet_descriptor *iso_packet_desc; /* Next urb->iso_frame_desc entry */ unsigned long advance_jiffies; /* Time of last queue advance */ unsigned int unlink_frame; /* When the QH was unlinked */ unsigned int period; /* For Interrupt and Isochronous QHs */ short phase; /* Between 0 and period-1 */ short load; /* Periodic time requirement, in us */ unsigned int iso_frame; /* Frame # for iso_packet_desc */ int state; /* QH_STATE_xxx; see above */ int type; /* Queue type (control, bulk, etc) */ int skel; /* Skeleton queue number */ unsigned int initial_toggle:1; /* Endpoint's current toggle value */ unsigned int needs_fixup:1; /* Must fix the TD toggle values */ unsigned int is_stopped:1; /* Queue was stopped by error/unlink */ unsigned int wait_expired:1; /* QH_WAIT_TIMEOUT has expired */ unsigned int bandwidth_reserved:1; /* Periodic bandwidth has * been allocated */ } __attribute__((aligned(16))); /* * We need a special accessor for the element pointer because it is * subject to asynchronous updates by the controller. */ #define qh_element(qh) READ_ONCE((qh)->element) #define LINK_TO_QH(uhci, qh) (UHCI_PTR_QH((uhci)) | \ cpu_to_hc32((uhci), (qh)->dma_handle)) /* * Transfer Descriptors */ /* * for TD <status>: */ #define TD_CTRL_SPD (1 << 29) /* Short Packet Detect */ #define TD_CTRL_C_ERR_MASK (3 << 27) /* Error Counter bits */ #define TD_CTRL_C_ERR_SHIFT 27 #define TD_CTRL_LS (1 << 26) /* Low Speed Device */ #define TD_CTRL_IOS (1 << 25) /* Isochronous Select */ #define TD_CTRL_IOC (1 << 24) /* Interrupt on Complete */ #define TD_CTRL_ACTIVE (1 << 23) /* TD Active */ #define TD_CTRL_STALLED (1 << 22) /* TD Stalled */ #define TD_CTRL_DBUFERR (1 << 21) /* Data Buffer Error */ #define TD_CTRL_BABBLE (1 << 20) /* Babble Detected */ #define TD_CTRL_NAK (1 << 19) /* NAK Received */ #define TD_CTRL_CRCTIMEO (1 << 18) /* CRC/Time Out Error */ #define TD_CTRL_BITSTUFF (1 << 17) /* Bit Stuff Error */ #define TD_CTRL_ACTLEN_MASK 0x7FF /* actual length, encoded as n - 1 */ #define uhci_maxerr(err) ((err) << TD_CTRL_C_ERR_SHIFT) #define uhci_status_bits(ctrl_sts) ((ctrl_sts) & 0xF60000) #define uhci_actual_length(ctrl_sts) (((ctrl_sts) + 1) & \ TD_CTRL_ACTLEN_MASK) /* 1-based */ /* * for TD <info>: (a.k.a. Token) */ #define td_token(uhci, td) hc32_to_cpu((uhci), (td)->token) #define TD_TOKEN_DEVADDR_SHIFT 8 #define TD_TOKEN_TOGGLE_SHIFT 19 #define TD_TOKEN_TOGGLE (1 << 19) #define TD_TOKEN_EXPLEN_SHIFT 21 #define TD_TOKEN_EXPLEN_MASK 0x7FF /* expected length, encoded as n-1 */ #define TD_TOKEN_PID_MASK 0xFF #define uhci_explen(len) ((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \ TD_TOKEN_EXPLEN_SHIFT) #define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \ 1) & TD_TOKEN_EXPLEN_MASK) #define uhci_toggle(token) (((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1) #define uhci_endpoint(token) (((token) >> 15) & 0xf) #define uhci_devaddr(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f) #define uhci_devep(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff) #define uhci_packetid(token) ((token) & TD_TOKEN_PID_MASK) #define uhci_packetout(token) (uhci_packetid(token) != USB_PID_IN) #define uhci_packetin(token) (uhci_packetid(token) == USB_PID_IN) /* * The documentation says "4 words for hardware, 4 words for software". * * That's silly, the hardware doesn't care. The hardware only cares that * the hardware words are 16-byte aligned, and we can have any amount of * sw space after the TD entry. * * td->link points to either another TD (not necessarily for the same urb or * even the same endpoint), or nothing (PTR_TERM), or a QH. */ struct uhci_td { /* Hardware fields */ __hc32 link; __hc32 status; __hc32 token; __hc32 buffer; /* Software fields */ dma_addr_t dma_handle; struct list_head list; int frame; /* for iso: what frame? */ struct list_head fl_list; } __attribute__((aligned(16))); /* * We need a special accessor for the control/status word because it is * subject to asynchronous updates by the controller. */ #define td_status(uhci, td) hc32_to_cpu((uhci), \ READ_ONCE((td)->status)) #define LINK_TO_TD(uhci, td) (cpu_to_hc32((uhci), (td)->dma_handle)) /* * Skeleton Queue Headers */ /* * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for * automatic queuing. To make it easy to insert entries into the schedule, * we have a skeleton of QHs for each predefined Interrupt latency. * Asynchronous QHs (low-speed control, full-speed control, and bulk) * go onto the period-1 interrupt list, since they all get accessed on * every frame. * * When we want to add a new QH, we add it to the list starting from the * appropriate skeleton QH. For instance, the schedule can look like this: * * skel int128 QH * dev 1 interrupt QH * dev 5 interrupt QH * skel int64 QH * skel int32 QH * ... * skel int1 + async QH * dev 5 low-speed control QH * dev 1 bulk QH * dev 2 bulk QH * * There is a special terminating QH used to keep full-speed bandwidth * reclamation active when no full-speed control or bulk QHs are linked * into the schedule. It has an inactive TD (to work around a PIIX bug, * see the Intel errata) and it points back to itself. * * There's a special skeleton QH for Isochronous QHs which never appears * on the schedule. Isochronous TDs go on the schedule before the * skeleton QHs. The hardware accesses them directly rather than * through their QH, which is used only for bookkeeping purposes. * While the UHCI spec doesn't forbid the use of QHs for Isochronous, * it doesn't use them either. And the spec says that queues never * advance on an error completion status, which makes them totally * unsuitable for Isochronous transfers. * * There's also a special skeleton QH used for QHs which are in the process * of unlinking and so may still be in use by the hardware. It too never * appears on the schedule. */ #define UHCI_NUM_SKELQH 11 #define SKEL_UNLINK 0 #define skel_unlink_qh skelqh[SKEL_UNLINK] #define SKEL_ISO 1 #define skel_iso_qh skelqh[SKEL_ISO] /* int128, int64, ..., int1 = 2, 3, ..., 9 */ #define SKEL_INDEX(exponent) (9 - exponent) #define SKEL_ASYNC 9 #define skel_async_qh skelqh[SKEL_ASYNC] #define SKEL_TERM 10 #define skel_term_qh skelqh[SKEL_TERM] /* The following entries refer to sublists of skel_async_qh */ #define SKEL_LS_CONTROL 20 #define SKEL_FS_CONTROL 21 #define SKEL_FSBR SKEL_FS_CONTROL #define SKEL_BULK 22 /* * The UHCI controller and root hub */ /* * States for the root hub: * * To prevent "bouncing" in the presence of electrical noise, * when there are no devices attached we delay for 1 second in the * RUNNING_NODEVS state before switching to the AUTO_STOPPED state. * * (Note that the AUTO_STOPPED state won't be necessary once the hub * driver learns to autosuspend.) */ enum uhci_rh_state { /* In the following states the HC must be halted. * These two must come first. */ UHCI_RH_RESET, UHCI_RH_SUSPENDED, UHCI_RH_AUTO_STOPPED, UHCI_RH_RESUMING, /* In this state the HC changes from running to halted, * so it can legally appear either way. */ UHCI_RH_SUSPENDING, /* In the following states it's an error if the HC is halted. * These two must come last. */ UHCI_RH_RUNNING, /* The normal state */ UHCI_RH_RUNNING_NODEVS, /* Running with no devices attached */ }; /* * The full UHCI controller information: */ struct uhci_hcd { /* Grabbed from PCI */ unsigned long io_addr; /* Used when registers are memory mapped */ void __iomem *regs; struct dma_pool *qh_pool; struct dma_pool *td_pool; struct uhci_td *term_td; /* Terminating TD, see UHCI bug */ struct uhci_qh *skelqh[UHCI_NUM_SKELQH]; /* Skeleton QHs */ struct uhci_qh *next_qh; /* Next QH to scan */ spinlock_t lock; dma_addr_t frame_dma_handle; /* Hardware frame list */ __hc32 *frame; void **frame_cpu; /* CPU's frame list */ enum uhci_rh_state rh_state; unsigned long auto_stop_time; /* When to AUTO_STOP */ unsigned int frame_number; /* As of last check */ unsigned int is_stopped; #define UHCI_IS_STOPPED 9999 /* Larger than a frame # */ unsigned int last_iso_frame; /* Frame of last scan */ unsigned int cur_iso_frame; /* Frame for current scan */ unsigned int scan_in_progress:1; /* Schedule scan is running */ unsigned int need_rescan:1; /* Redo the schedule scan */ unsigned int dead:1; /* Controller has died */ unsigned int RD_enable:1; /* Suspended root hub with Resume-Detect interrupts enabled */ unsigned int is_initialized:1; /* Data structure is usable */ unsigned int fsbr_is_on:1; /* FSBR is turned on */ unsigned int fsbr_is_wanted:1; /* Does any URB want FSBR? */ unsigned int fsbr_expiring:1; /* FSBR is timing out */ struct timer_list fsbr_timer; /* For turning off FBSR */ /* Silicon quirks */ unsigned int oc_low:1; /* OverCurrent bit active low */ unsigned int wait_for_hp:1; /* Wait for HP port reset */ unsigned int big_endian_mmio:1; /* Big endian registers */ unsigned int big_endian_desc:1; /* Big endian descriptors */ unsigned int is_aspeed:1; /* Aspeed impl. workarounds */ /* Support for port suspend/resume/reset */ unsigned long port_c_suspend; /* Bit-arrays of ports */ unsigned long resuming_ports; unsigned long ports_timeout; /* Time to stop signalling */ struct list_head idle_qh_list; /* Where the idle QHs live */ int rh_numports; /* Number of root-hub ports */ wait_queue_head_t waitqh; /* endpoint_disable waiters */ int num_waiting; /* Number of waiters */ int total_load; /* Sum of array values */ short load[MAX_PHASE]; /* Periodic allocations */ struct clk *clk; /* (optional) clock source */ /* Reset host controller */ void (*reset_hc) (struct uhci_hcd *uhci); int (*check_and_reset_hc) (struct uhci_hcd *uhci); /* configure_hc should perform arch specific settings, if needed */ void (*configure_hc) (struct uhci_hcd *uhci); /* Check for broken resume detect interrupts */ int (*resume_detect_interrupts_are_broken) (struct uhci_hcd *uhci); /* Check for broken global suspend */ int (*global_suspend_mode_is_broken) (struct uhci_hcd *uhci); }; /* Convert between a usb_hcd pointer and the corresponding uhci_hcd */ static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd) { return (struct uhci_hcd *) (hcd->hcd_priv); } static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci) { return container_of((void *) uhci, struct usb_hcd, hcd_priv); } #define uhci_dev(u) (uhci_to_hcd(u)->self.controller) /* Utility macro for comparing frame numbers */ #define uhci_frame_before_eq(f1, f2) (0 <= (int) ((f2) - (f1))) /* * Private per-URB data */ struct urb_priv { struct list_head node; /* Node in the QH's urbp list */ struct urb *urb; struct uhci_qh *qh; /* QH for this URB */ struct list_head td_list; unsigned fsbr:1; /* URB wants FSBR */ }; /* Some special IDs */ #define PCI_VENDOR_ID_GENESYS 0x17a0 #define PCI_DEVICE_ID_GL880S_UHCI 0x8083 /* Aspeed SoC needs some quirks */ static inline bool uhci_is_aspeed(const struct uhci_hcd *uhci) { return IS_ENABLED(CONFIG_USB_UHCI_ASPEED) && uhci->is_aspeed; } /* * Functions used to access controller registers. The UCHI spec says that host * controller I/O registers are mapped into PCI I/O space. For non-PCI hosts * we use memory mapped registers. */ #ifndef CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC /* Support PCI only */ static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg) { return inl(uhci->io_addr + reg); } static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg) { outl(val, uhci->io_addr + reg); } static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg) { return inw(uhci->io_addr + reg); } static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg) { outw(val, uhci->io_addr + reg); } static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg) { return inb(uhci->io_addr + reg); } static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg) { outb(val, uhci->io_addr + reg); } #else /* Support non-PCI host controllers */ #ifdef CONFIG_USB_PCI /* Support PCI and non-PCI host controllers */ #define uhci_has_pci_registers(u) ((u)->io_addr != 0) #else /* Support non-PCI host controllers only */ #define uhci_has_pci_registers(u) 0 #endif #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO /* Support (non-PCI) big endian host controllers */ #define uhci_big_endian_mmio(u) ((u)->big_endian_mmio) #else #define uhci_big_endian_mmio(u) 0 #endif static inline int uhci_aspeed_reg(unsigned int reg) { switch (reg) { case USBCMD: return 00; case USBSTS: return 0x04; case USBINTR: return 0x08; case USBFRNUM: return 0x80; case USBFLBASEADD: return 0x0c; case USBSOF: return 0x84; case USBPORTSC1: return 0x88; case USBPORTSC2: return 0x8c; case USBPORTSC3: return 0x90; case USBPORTSC4: return 0x94; default: pr_warn("UHCI: Unsupported register 0x%02x on Aspeed\n", reg); /* Return an unimplemented register */ return 0x10; } } static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg) { if (uhci_has_pci_registers(uhci)) return inl(uhci->io_addr + reg); else if (uhci_is_aspeed(uhci)) return readl(uhci->regs + uhci_aspeed_reg(reg)); #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO else if (uhci_big_endian_mmio(uhci)) return readl_be(uhci->regs + reg); #endif else return readl(uhci->regs + reg); } static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg) { if (uhci_has_pci_registers(uhci)) outl(val, uhci->io_addr + reg); else if (uhci_is_aspeed(uhci)) writel(val, uhci->regs + uhci_aspeed_reg(reg)); #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO else if (uhci_big_endian_mmio(uhci)) writel_be(val, uhci->regs + reg); #endif else writel(val, uhci->regs + reg); } static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg) { if (uhci_has_pci_registers(uhci)) return inw(uhci->io_addr + reg); else if (uhci_is_aspeed(uhci)) return readl(uhci->regs + uhci_aspeed_reg(reg)); #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO else if (uhci_big_endian_mmio(uhci)) return readw_be(uhci->regs + reg); #endif else return readw(uhci->regs + reg); } static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg) { if (uhci_has_pci_registers(uhci)) outw(val, uhci->io_addr + reg); else if (uhci_is_aspeed(uhci)) writel(val, uhci->regs + uhci_aspeed_reg(reg)); #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO else if (uhci_big_endian_mmio(uhci)) writew_be(val, uhci->regs + reg); #endif else writew(val, uhci->regs + reg); } static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg) { if (uhci_has_pci_registers(uhci)) return inb(uhci->io_addr + reg); else if (uhci_is_aspeed(uhci)) return readl(uhci->regs + uhci_aspeed_reg(reg)); #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO else if (uhci_big_endian_mmio(uhci)) return readb_be(uhci->regs + reg); #endif else return readb(uhci->regs + reg); } static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg) { if (uhci_has_pci_registers(uhci)) outb(val, uhci->io_addr + reg); else if (uhci_is_aspeed(uhci)) writel(val, uhci->regs + uhci_aspeed_reg(reg)); #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO else if (uhci_big_endian_mmio(uhci)) writeb_be(val, uhci->regs + reg); #endif else writeb(val, uhci->regs + reg); } #endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */ /* * The GRLIB GRUSBHC controller can use big endian format for its descriptors. * * UHCI controllers accessed through PCI work normally (little-endian * everywhere), so we don't bother supporting a BE-only mode. */ #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC #define uhci_big_endian_desc(u) ((u)->big_endian_desc) /* cpu to uhci */ static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x) { return uhci_big_endian_desc(uhci) ? (__force __hc32)cpu_to_be32(x) : (__force __hc32)cpu_to_le32(x); } /* uhci to cpu */ static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x) { return uhci_big_endian_desc(uhci) ? be32_to_cpu((__force __be32)x) : le32_to_cpu((__force __le32)x); } #else /* cpu to uhci */ static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x) { return cpu_to_le32(x); } /* uhci to cpu */ static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x) { return le32_to_cpu(x); } #endif #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1